Effect of Training-Detraining Phases of Multicomponent Exercises and BCAA Supplementation on Inflammatory Markers and Albumin Levels in Frail Older Persons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Procedures and Ethics
2.2. Participants Elegibility
2.3. Participants Allocation
2.4. Experimental Design
3. Outcome Measures
3.1. Physical Frailty Index
3.2. Nutritional Assessment
3.3. Lower Limb Muscle-Strength Test
3.4. Clinical and Health Status
3.5. Cognitive Profile
3.6. Biochemical Analysis
3.7. Full Characterization of the MIP
3.7.1. Oral BCAAs
3.7.2. Washout Period (Oral BCAAs)
3.7.3. Exercise Intervention (Phase 1)
3.7.4. Washout (ME Detraining)
3.7.5. Exercise Retraining Protocol
3.8. Statistical Analysis
4. Results
4.1. Biochemical Analysis
4.2. Five-Times-Sit-to-Stand-Test (5TSS test)
4.3. Cognitive Assessment
5. Discussion
Study Limitation and Perspectives for Future Researchers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aiello, A.; Farzaneh, F.; Candore, G.; Caruso, C.; Davinelli, S.; Gambino, C.M.; Ligotti, M.E.; Zareian, N.; Accardi, G. Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention. Front. Immunol. 2019, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Duggal, N.A.; Niemiro, G.; Harridge, S.D.; Simpson, R.J.; Lord, J.M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 2019, 19, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Amirato, G.R.; Borges, J.O.; Marques, D.L.; Santos, J.M.B.; Santos, C.A.F.; Andrade, M.S.; Furtado, G.E.; Rossi, M.; Luis, L.N.; Zambonatto, R.F.; et al. L-glutamine supplementation enhances strength and power of knee muscles and improves glycemia control and plasma redox balance in exercising elderly women. Nutrients 2021, 13, 1025. [Google Scholar] [CrossRef]
- Chodzko-Zajko, W.; Schwingel, A. Successful Aging: The Role of Physical Activity. Am. J. Lifestyle Med. 2008, 3, 20–28. [Google Scholar] [CrossRef]
- Bauman, A.; Merom, D.; Bull, F.C.; Buchner, D.M.; Fiatarone Singh, M.A. Updating the Evidence for Physical Activity: Summative Reviews of the Epidemiological Evidence, Prevalence, and Interventions to Promote “active Aging”. Gerontologist 2016, 56, S268–S280. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.; Kirkham, C.; Clemson, L.; Howard, K.; Vogler, C.; Close, J.C.; Moseley, A.M.; Cameron, I.D.; Mak, J.; et al. Exercise and fall prevention self-management to reduce mobility-related disability and falls after fall-related lower limb fracture in older people: Protocol for the RESTORE (Recovery Exercises and Stepping on after Fracture) randomised controlled trial. BMC Geriatr. 2016, 16, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcante, P.A.M.; Doro, M.R.; Suzuki, F.S.; Rica, R.L.; Serra, A.J.; Pontes Junior, F.L.; Evangelista, A.L.; Figueira Junior, A.J.; Baker, J.S.; Bocalini, D.S. Functional Fitness and Self-Reported Quality of Life of Older Women Diagnosed with Knee Osteoarthrosis: A Cross-Sectional Case Control Study. J. Aging Res. 2015, 2015, 841985. [Google Scholar] [CrossRef]
- Covinsky, K.E.; Eng, C.; Lui, L.-Y.; Sands, L.P.; Yaffe, K. The last 2 years of life: Functional trajectories of frail older people. J. Am. Geriatr. Soc. 2003, 51, 492–498. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Rodakowski, J.; Saghafi, E.S.; Butters, M.A.; Skidmore, E.R. Nonpharmacological Interventions in Adults with MCI and Early dementia. Mol. Asp. Med. 2015, 38–53. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Q.; Yu, Z.; Chen, M.; Bao, Z.; Li, J.; He, W. Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res. Rev. 2015, 20, 1–10. [Google Scholar] [CrossRef]
- Higueras-Fresnillo, S.; Cabanas-Sánchez, V.; Lopez-Garcia, E.; Esteban-Cornejo, I.; Banegas, J.R.; Sadarangani, K.P.; Rodríguez-Artalejo, F.; Martinez-Gomez, D. Physical Activity and Association Between Frailty and All-Cause and Cardiovascular Mortality in Older Adults: Population-Based Prospective Cohort Study. J. Am. Geriatr. Soc. 2018, 66, 2097–2103. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Tarazona-Santabalbina, F.J.; Gómez-Cabrera, M.C.; Pérez-Ros, P.; Martínez-Arnau, F.M.; Cabo, H.; Tsaparas, K.; Salvador-Pascual, A.; Rodriguez-Mañas, L.; Viña, J. A Multicomponent Exercise Intervention that Reverses Frailty and Improves Cognition, Emotion, and Social Networking in the Community-Dwelling Frail Elderly: A Randomized Clinical Trial. J. Am. Med. Dir. Assoc. 2016, 17, 426–433. [Google Scholar] [CrossRef] [Green Version]
- Theou, O.; Stathokostas, L.; Roland, K.P.; Jakobi, J.M.; Patterson, C.; Vandervoort, A.A.; Jones, G.R. The effectiveness of exercise interventions for the management of frailty: A systematic review. J. Aging Res. 2011, 2011, 569194. [Google Scholar] [CrossRef] [Green Version]
- Woods, J.A.; Keylock, K.T.; Lowder, T.; Vieira, V.J.; Zelkovich, W.; Dumich, S.; Colantuano, K.; Lyons, K.; Leifheit, K.; Cook, M.; et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: The immune function intervention trial. J. Am. Geriatr. Soc. 2009, 57, 2183–2191. [Google Scholar] [CrossRef]
- Paixão, V.; Almeida, E.B.; Amaral, J.B.; Roseira, T.; Monteiro, F.R.; Foster, R.; Sperandio, A.; Rossi, M.; Amirato, G.R.; Santos, C.A.F.; et al. Elderly Subjects Supplemented with L-Glutamine Shows an Improvement of Mucosal Immunity in the Upper Airways in Response to Influenza Virus Vaccination. Vaccines 2021, 9, 107. [Google Scholar] [CrossRef]
- Abizanda, P.; Sinclair, A.; Barcons, N.; Lizán, L.; Rodríguez-Mañas, L. Costs of Malnutrition in Institutionalized and Community-Dwelling Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2016, 17, 17–23. [Google Scholar] [CrossRef]
- Goates, S.; Du, K.; Braunschweig, C.A.; Arensberg, M.B. Economic burden of disease-associated malnutrition at the state level. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef]
- Artaza-Artabe, I.; Sáez-López, P.; Sánchez-Hernández, N.; Fernández-Gutierrez, N.; Malafarina, V. The relationship between nutrition and frailty: Effects of protein intake, nutritional supplementation, vitamin D and exercise on muscle metabolism in the elderly. A systematic review. Maturitas 2016, 93, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Aizawa, J.; Nagasawa, H.; Gomi, I.; Kugota, H.; Nanjo, K.; Jinno, T.; Masuda, T.; Morita, S. Effects and feasibility of exercise therapy combined with branched-chain amino acid supplementation on muscle strengthening in frail and pre-frail elderly people requiring long-term care: A crossover trial. Appl. Physiol. Nutr. Metab. 2016, 41, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Matsunaga, Y.; Kanbara, M.; Kamono, A.; Masuda, T.; Watanabe, M.; Nakanishi, R.; Jinno, T. Effect of exercise therapy combined with branched-chain amino acid supplementation on muscle strength in elderly women after total hip arthroplasty: A randomized controlled trial. Asia Pac. J. Clin. Nutr. 2019, 28, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulou, I.; Fernhall, B.; Carhart, R.; Weinstock, R.S.; Baynard, T.; Figueroa, A.; Kanaley, J.A. Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism 2005, 54, 866–875. [Google Scholar] [CrossRef]
- Loria, V.; Dato, I.; Graziani, F.; Biasucci, L.M. Myeloperoxidase: A new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediat. Inflamm. 2008, 2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannini, S.; Onder, G.; Leeuwenburgh, C.; Carter, C.; Marzetti, E.; Russo, A.; Capoluongo, E.; Pahor, M.; Bernabei, R.; Landi, F. Myeloperoxidase levels and mortality in frail community-living elderly individuals. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65 A, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Chupel, M.U.; Minuzzi, L.G.; Furtado, G.E.; Santos, M.L.; Ferreira, J.P.; Filaire, E.; Teixeira, A.M. Taurine supplementation reduces myeloperoxidase and matrix—Metalloproteinase—9 levels and improves the effects of exercise in cognition and physical fitness in older women. Amino Acids 2021, 1–13. [Google Scholar] [CrossRef]
- Alcorta, M.D.; Alvarez, P.C.; Cabetas, R.N.; Martín, M.A.; Valero, M.; Candela, C.G. The importance of serum albumin determination method to classify patients based on nutritional status. Clin. Nutr. ESPEN 2018, 25, 110–113. [Google Scholar] [CrossRef]
- Abizanda, P.; López, M.D.; García, V.P.; de Estrella, J.D.; da Silva, G.Á.; Vilardell, N.B.; Torres, K.A. Effects of an Oral Nutritional Supplementation Plus Physical Exercise Intervention on the Physical Function, Nutritional Status, and Quality of Life in Frail Institutionalized Older Adults: The ACTIVNES Study. J. Am. Med. Dir. Assoc. 2015, 1, 439.e9–439.e16. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. A short physical performance battery Assessing Lower Extremety Function: Association with self reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Begg, M.; Eastwood, E.; Horton, R.; Moher, M.; Ingram, O.; Pitkin, R.; Drummond, R.; Schulz, K.; Simel, D.; Stroup, D. Improving the Quality of Reporting of Randomized Controlled Trials The CONSORT Statement. JAMA 1996, J276, 637–639. [Google Scholar] [CrossRef]
- Gonçalves, B.; Fagulha, T.; Ferreira, A.; Reis, N. Depressive symptoms and pain complaints as predictors of later development of depression in Portuguese middle-aged women. Health Care Women Int. 2014, 35, 1228–1244. [Google Scholar] [CrossRef] [PubMed]
- Syddall, H.; Cooper, C.; Martin, F.; Briggs, R.; Aihie Sayer, A. Is grip strength a useful single marker of frailty? Age Ageing 2003, 32, 650–656. [Google Scholar] [CrossRef] [Green Version]
- Campaniço Validade Simultânea do Questionário. Internacional de Actividade Física Através da Medição Objectiva da Actividade Física por Actigrafia Proporcional. 2016. Available online: http://hdl.handle.net/10400.5/11866 (accessed on 1 March 2021).
- Torres, D.; Oliveira, A.; Severo, M.; Alarcão, V.; Guiomar, S.; Mota, J.; Teixeira, P.; Rodrigues, S.; Vilela, S.; Oliveira, L.; et al. Inquérito Alimentar Nacional e de Atividade Física. Inq. Aliment. Nac. Ativ. Fís. IAN-AF 2015–2016 2016, 53, 1689–1699. [Google Scholar]
- Goios, A. Pesos e Porções de Alimentos (2a Edição). In Pesos e Porções de Alimentos (2a Edição); U. Porto Press: Porto, Portugal, 2016; ISBN 9789897461033. [Google Scholar]
- INSA. Tabela da Composição de Alimentos. 2006. Available online: http://www2.insa.pt/sites/INSA/Portugues/AreasCientificas/AlimentNutricao/AplicacoesOnline/TabelaAlimentos/Paginas/TabelaAlimentos.aspx (accessed on 2 March 2021).
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L.; Vellas, B. The Mini Nutritional Assessment (MNA) for grading the nutritional state of elderly patients: Presentation of the MNA, history and validation. Nestle Nutr. Workshop Ser. Clin. Perform. Programme 1999, 1, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Loureiro, M.H.V.S. Validação do “Mini-Nutricional Assessement” em Idosos. Available online: https://estudogeral.uc.pt/handle/10316/10439 (accessed on 1 March 2021).
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Lohman Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1992. [Google Scholar]
- Morgado, J.; Rocha, C.S.; Maruta, C.; Guerreiro, M.; Martins, I.P. Novos valores normativos do mini-mental state examination. Sinapse 2009, 9, 2009. [Google Scholar]
- Folstein Mini-mental State. A grading the cognitive state of patiens for the clinician. J. Psychiatr Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Ispoglou, T.; White, H.; Preston, T.; McElhone, S.; McKenna, J.; Hind, K. Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65-75 years. Eur. J. Clin. Nutr. 2016, 70, 182–188. [Google Scholar] [CrossRef]
- Negro Perna, S.; Spadaccini, D.; Castelli, L.; Calanni, L.; Barbero, M.; Cescon, C.; Rondanelli, M. D´antonaEffects of 12 Weeks of Essential Amino Acids (EAA)-Based Multi-Ingredient Nutritional Supplementation on Muscle Mass, Muscle Strength, Muscle Power and Fatigue in Healthy Elderly Subjects: A Randomized Controlled Double-Blind Study. J. Nutr. Health Aging 2019, 23, 414–424. [Google Scholar] [CrossRef]
- Honka, X.M.J.; Bucci, M.; Andersson, J.; Huovinen, V.; Guzzardi, M.A.; Sandboge, S.; Savisto, N.; Salonen, M.K.; Badeau, R.M.; Parkkola, R.; et al. Resistance training enhances insulin suppression of endogenous glucose production in elderly women. J. Appl. Physiol. 2016, 120, 633–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis, M.Y.; Cooper, S.; Hobson, R.M.; Artioli, G.G.; Otaduy, M.C.; Roschel, H.; Robertson, J.; Martin, D.; Painelli, V.S.; Harris, R.C.; et al. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: An exploratory study. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1435–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souto Barreto, P.; Morley, J.E.; Chodzko-Zajko, W.; Pitkala, K.H.; Weening-Djiksterhuis, E.; Rodriguez-Mañas, L.; Barbagallo, M.; Rosendahl, E.; Sinclair, A.; Landi, F.; et al. Recommendations on Physical Activity and Exercise for Older Adults Living in Long-Term Care Facilities: A Taskforce Report. J. Am. Med. Dir. Assoc. 2016, 17, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Colado, J.C.; Pedrosa, F.M.; Juesas, A.; Gargallo, P.; Carrasco, J.J.; Flandez, J.; Chupel, M.U.; Teixeira, A.M.; Naclerio, F. Concurrent validation of the OMNI-Resistance Exercise Scale of perceived exertion with elastic bands in the elderly. Exp. Gerontol. 2018, 103, 11–16. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Borg, G.A. Psychophysical Bases of Perception Exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Sakugawa, R.L.; Moura, B.M.; Orssatto, L.B.d.R.; Bezerra, E.d.S.; Cadore, E.L.; Diefenthaeler, F. Effects of resistance training, detraining, and retraining on strength and functional capacity in elderly. Aging Clin. Exp. Res. 2019, 31, 31–39. [Google Scholar] [CrossRef]
- Furtado, G.E.; Carvalho, H.M.; Loureiro, M.; Patrício, M.; Uba-Chupel, M.; Colado, J.C.J.C.; Hogervorst, E.; Ferreira, J.P.J.P.; Teixeira, A.M. Chair-based exercise programs in institutionalized older women: Salivary steroid hormones, disabilities and frailty changes. Exp. Gerontol. 2020, 130, 110790. [Google Scholar] [CrossRef]
- Baker, M.K.; Atlantis, E.; Fiatarone Singh, M.A. Multi-modal exercise programs for older adults. Age Ageing 2007, 36, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Torres, S.; Fahey, T.D.; Rivera, M.A. Adherence to Exercise Programs in Older Adults: Informative Report. Gerontol. Geriatr. Med. 2019, 5, 233372141882360. [Google Scholar] [CrossRef]
- Vandewoude, M.F.J.; Alish, C.J.; Sauer, A.C.; Hegazi, R.A. Malnutrition-sarcopenia syndrome: Is this the future of nutrition screening and assessment for older adults? J. Aging Res. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Pilgeram, L. Control of fibrinogen biosynthesis: Role of the FFA/Albumin ratio. Cardiovasc. Eng. 2010, 10, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.Y.; Ryu, J.; Baek, S.H.; Han, J.W.; Lee, J.H.; Ahn, S.; Kim, K.I.; Chin, H.J.; Na, K.Y.; Chae, D.W.; et al. Serum anion gap is predictive of mortality in an elderly population. Exp. Gerontol. 2014, 50, 122–127. [Google Scholar] [CrossRef]
- Hiroshige, K.; Sonta, T.; Suda, T.; Kanegae, K.; Ohtani, A. Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol. Dial. Transplant. 2001, 16, 1856–1862. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Flato, U.A.P.; Tofano, R.J.; Goulart, R.d.A.; Guiguer, E.L.; Detregiachi, C.R.P.; Buchaim, D.V.; Araújo, A.C.; Buchain, R.L.; Reina, F.T.R.; et al. Physical exercise and myokines: Relationships with sarcopenia and cardiovascular complications. Int. J. Mol. Sci. 2020, 21, 3607. [Google Scholar] [CrossRef]
- Pedrero-Chamizo, R.; Albers, U.; Palacios, G.; Pietrzik, K.; Meléndez, A.; González-Gross, M. Health risk, functional markers and cognitive status in institutionalized older adults: A longitudinal study. Int. J. Environ. Res. Public Health 2020, 17, 7303. [Google Scholar] [CrossRef] [PubMed]
- Starling, R.D.; Ades, P.A.; Poehlman, E.T. Physical activity, protein intake, and appendicular skeletal muscle mass in older men. Am. J. Clin. Nutr. 1999, 70, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Kerr, D.A.; Meng, X.; Devine, A.; Solah, V.; Binns, C.W.; Prince, R.L. Two-year whey protein supplementation did not enhance muscle mass and physical function in well-nourished healthy older postmenopausal women. J. Nutr. 2015, 145, 2520–2526. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, T.; Tanaka, Y.; Sugauchi, F.; Orito, E.; Hasegawa, I.; Nukaya, H.; Kato, A.; Matunaga, S.; Endo, M.; Tanaka, Y.; et al. Suppressive effect of oral administration of branched-chain amino acid granules on oxidative stress and inflammation in HCV-positive patients with liver cirrhosis. Hepatol. Res. 2008, 38, 683–688. [Google Scholar] [CrossRef]
- Franceschi, C.; Capri, M.; Monti, D.; Giunta, S.; Olivieri, F.; Sevini, F.; Panourgia, M.P.; Invidia, L.; Celani, L.; Scurti, M.; et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007, 128, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Z.; Wang, Y.X.; Jiang, C.L. Inflammation: The common pathway of stress-related diseases. Front. Hum. Neurosci. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Simioni, C.; Zauli, G.; Martelli, A.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 9, 17181–17198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beard, J.R.; Officer, A.M.; Cassels, A.K. WHO World Report on Ageing And HeAltH. Gerontologist 2016, 56, S163–S166. [Google Scholar] [CrossRef] [Green Version]
- Cadore, E.L.; Casas-Herrero, A.; Zambom-Ferraresi, F.; Idoate, F.; Millor, N.; Gómez, M.; Rodriguez-Mañas, L.; Izquierdo, M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age (Omaha) 2014, 36, 773–785. [Google Scholar] [CrossRef] [Green Version]
- Villareal, D.T.; Smith, G.I.; Sinacore, D.R.; Shah, K.; Mittendorfer, B. Regular Multicomponent Exercise Increases Physical Fitness and Muscle Protein Anabolism in Frail, Obese, Older Adults. Obesity 2011, 19, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Casas-Herrero, A.; Anton-Rodrigo, I.; Zambom-Ferraresi, F.; Sáez De Asteasu, M.L.; Martinez-Velilla, N.; Elexpuru-Estomba, J.; Marin-Epelde, I.; Ramon-Espinoza, F.; Petidier-Torregrosa, R.; Sanchez-Sanchez, J.L.; et al. Effect of a multicomponent exercise programme (VIVIFRAIL) on functional capacity in frail community elders with cognitive decline: Study protocol for a randomized multicentre control trial. Trials 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef]
- Gariballa, S.; Forster, S. Effects of dietary supplements on depressive symptoms in older patients: A randomised double-blind placebo-controlled trial. Clin. Nutr. 2007, 26, 545–551. [Google Scholar] [CrossRef]
- Fernstrom, J.D. Large neutral amino acids: Dietary effects on brain neurochemistry and function. Amino Acids 2013, 45, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Neishabouri, H.; Hutson, S.; Davoodi, J. Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 2015, 47, 1167–1182. [Google Scholar] [CrossRef] [PubMed]
- Ko Wu, S.; Wang, S.; Chang, Y.; Chang, C.; Kuan, T.; Chuang, H.; Chang, C.; Chou, W.; Wu, C. Effects of enriched branched-chain amino acid supplementation on sarcopenia. Aging (Albany N. Y.) 2020, 12, 15091–15103. [Google Scholar] [CrossRef]
Warm-Up | 5 min | PSE 1–3 | Progression | Weeks | Intensity (Color) | |||
---|---|---|---|---|---|---|---|---|
Exercises (8–10) | Sets | Repetitions | Cadence | Interval | PSE | 2 × 10 | 2 | Yellow |
Front squat | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | 3 × 20 | 2 | Yellow |
Chair unilateral hip flexion | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | 3 × 10 | 2 | Red |
Chair Bench over row (with flexion) | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | 3 × 20 | 2 | Red |
Chest Press (stand and/or chair) | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | 3 × 10 | 2 | Green |
Standing (or chair) reverse fly | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | 3 × 20 | 2 | Green |
Shoulder Press/twist arm position | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | 3 × 15 | 2 | Blue |
Chair (or stand) frontal total raiser | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | 3–4 × 10−15 | 2 | Blue |
Biceps arm curl (stand and/or chair) | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | |||
Chair Overhead triceps extension | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 | |||
Cooling down | 5 min | PSE 1–2 |
Exercises (8–10) | Sets | Repetitions | Cadence | Interval | PSE |
---|---|---|---|---|---|
Front squat | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Chair unilateral hip flexion | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Chair Bench over row (with flexion) | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Chest Press (stand and/or chair) | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Standing (or chair) reverse fly | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Shoulder Press/twist arm front position | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Chair (or stand) frontal total raiser | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Biceps arm curl (stand and/or chair) | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Chair Overhead triceps extension | 2–3 | 10–20 | 2:3 | 30–45 s | 4 to 6 |
Circuit Training | |||||
Walking around the room | 2–3 | 3 min | 30–45 s | 4 to 6 | |
Balance/agility exercise | 2–3 | 3 min | 30–45 s | 4 to 6 |
Variables | ME + BCAA (n = 8) | ME (n = 7) | BCAA (n = 7) | CG (n = 13) | p-Value |
---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | M ± SD | ||
Age (years) | 80 ± 6.1 | 86.7 ± 4 | 84.2 ± 5.8 | 83.1 ± 5.4 | 0.139 |
Time in residential care (years) | 3.6 ± 1 | 4.7 ± 1.4 | 4.5 ± 1.1 | 5 ± 1 | 0.06 |
MNA (0–30 pts) | 25.5 ± 2.2 | 24 ± 2.7 | 21.7 ± 2.8 | 24.7 ± 1.8 | 0.02 |
BMI (kg/m2) | 28.53 ± 5.1 | 28.7 ± 5.6 | 25.8 ± 3.1 | 30.2 ± 3.7 | 0.23 |
Stature (cm) | 158 ± 0.05 | 150 ± 0.06 | 161 ± 0.12 | 155 ± 011 | 0.16 |
Comorbidity index (0–10 pts) | 4.87 ± 1.12 | 5.28 ± 0.95 | 5.42 ± 1.1 | 4.92 ± 1.2 | 0.71 |
Schooling time (years) | 4 ± 0 | 4 ± 0 | 4 ± 0 | 4 ± 0 | 0.99 |
Cognitive profile (0–30 pts) | 26.00 (3.11) | 21.00 (3.78) | 20.85 (2.79) | 21.69 (2.89) | 0.00 |
Physical Frailty index (0–5 pts) | 2.00 (0.53) | 2.71 (1.1) | 3.00 (0.57) | 2.16 (0.71) | 0.40 |
Daily Individual Protein (gr/kg/day) | 1.42 ± 0.28 | 1.83 ± 0.44 | 1.48 ± 0.22 | 1.60 ± 0.23 | 0.159 |
BCAAs (per person/gr/week) | 30.3 ± 6.0 | n.d. | 28.4 ± 5.0 | n.d. |
Time-Points of Evaluation | Effect | F | Overall p | |||||
---|---|---|---|---|---|---|---|---|
Biomarker/Variables | Groups | T1 | T2 | T3 | T4 | |||
M ± SD | M ± SD | M ± SD | M ± SD | |||||
IL-10 (μg/mL) | ME + BCAA | 10.36 (6.96) | 12.0 (6.53) | 15.99 (7.98) | 11.52 (7.56) | |||
ME | 8.68 (7.68) | 12.25 (12.35) | 4.16 (3.39) | 10.53 (5.82) | Time | 0.491 | 0.690 | |
BCAA | 7.71 (2.54) | 9.24 (4.15) | 13.83 (6.94) | 9.85 (10.89) | Time*group | 1.567 | 0.150 | |
CG | 16.10 (7.4) | 12.21 (2.81) | 12.74 (7.36) | 20.45 (5.42) | ||||
TNF-α (pg/mL) | ME + BCAA | 62.44 (53.65) | 71.42 (38.06) | 112.86 (62.51) | 57.37 (31.18) | |||
ME | 41.78 (54.08) | 45.83 (21.07) | 24.92 (15.60) | 54.05 (29.19) | Time | 1.552 | 0.210 | |
BCAA | 32.65 (15.74) | 37.18 (26.91) | 62.93 (35.77) | 60.02 (55.42) | Time*group | 2.524 | 0.015 | |
CG | 44.46 (41.72) | 44.81 (37.16) | 41.78 (37.86) | 57.01 (44.15) | ||||
TNF-α/IL-10 ratio (pg/mL) | ME + BCAA | 6.24 (4.46) | 7.47 (4.09) | 6.96 (1.63) | 6.10 (3.25) | |||
ME | 4.43 (1.99) | 9.06 (10.46) | 8.64 (7.36) | 5.70 (3.27) | Time | 0.472 | 0.703 | |
BCAA | 5.44 (3.39) | 3.85 (1.84) | 5.45 (1.54) | 11.19 (9.77) | Time*group | 0.777 | 0.638 | |
CG | 4.10 (1.27) | 5.37 (1.56) | 4.56 (1.80) | 4.41 (0.38) | ||||
MPO (μg/mL) | ME + BCAA | 5653.91 (1106.71) | 5871.97 (1159.09) | 4843.50 (1221.63) | 5196.53 (591.62) | |||
ME | 5935.71 (1315.33) | 5252.76 (1084.06) | 4685.42 (1043.31) | 4512.34 (794.61) | Time | 1.191 | 0.323 | |
BCAA | 5139.04 (909.07) | 4069.64 (1009.10) | 5416.47 (1539.50) | 5575.80 (1181.43) | Time*group | 2.010 | 0.059 | |
CG | 4623.56 (699.03) | 4593.56 (1310.34) | 4655.42 (815.10) | 4327.39 (863.95) | ||||
Albumin (g/dL) | ME + BCAA | 3.60 (0.39) | 3.63 (0.61) | 3.82 (0.54) | 3.75 (0.63) | |||
ME | 3.73 (0.61) | 4.12 (0.74) | 3.57 (0.43) | 4.13 (0.22) | Time | 3.841 | 0.013 | |
BCAA | 3.77 (0.39) | 3.61 (0.40) | 1.56 (2.15) | 2.83 (1.60) | Time*group | 1.446 | 0.185 | |
CG | 3.75 (0.72) | 3.60 (0.35) | 2.59 (1.85) | 2.96 (1.69) | ||||
5TSS test (s) | ME + BCAA | 21.87 (3.64) | 18.71 (3.59) | 20.66 (4.98) | 17.54 (4.4) | |||
ME | 26.69 (12.98) | 28.02 (11.28) | 26.08 (10.46) | 27.56 (12.24) | Time | 0.165 | 0.841 | |
BCAA | 36.54 (14.14) | 36.24 (13.39) | 36.74 (11.89) | 35.76 (17.28) | Time*group | 0.436 | 0.846 | |
CG | 24.58 (8.99) | 24.76 (9.0) | 23.66 (9.30) | 25.17 (9.75) | ||||
Physical Frailty (index) | ME + BCAA | 2.00 (0.53) | 1.50 (0.53) | 2.12 (0.99) | 2.00 (0.53) | |||
ME | 2.71 (1.1) | 2.57 (1.13) | 2.14 (0.69) | 2.00 (0.81) | Time | 2.702 | 0.05 | |
BCAA | 3.00 (0.57) | 2.14 (0.37) | 2.28 (1.25) | 2.71 (0.48) | Time*group | 3.799 | 0.00 | |
CG | 2.16 (0.71) | 2.25 (0.75) | 2.66 (0.49) | 3.16 (0.71) | ||||
MMSE (0–30 points) | ME + BCAA | 26.00 (3.11) | 26.37 (2.44) | 26.00 (2.87) | 24.37 (3.58) | |||
ME | 21.00 (3.78) | 22.42 (2.99) | 21.00 (4.65) | 20.00 (3.91) | Time | 4.262 | 0.13 | |
BCAA | 20.85 (2.79) | 19.42 (4.07) | 20.71 (4.02) | 19.57 (3.64) | Time*group | 1.214 | 0.305 | |
CG | 21.69 (2.89) | 23.92 (3.47) | 23.23 (3.83) | 21.76 (2.94) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldo-Silva, A.; Furtado, G.E.; Chupel, M.U.; Bachi, A.L.L.; de Barros, M.P.; Neves, R.; Marzetti, E.; Massart, A.; Teixeira, A.M. Effect of Training-Detraining Phases of Multicomponent Exercises and BCAA Supplementation on Inflammatory Markers and Albumin Levels in Frail Older Persons. Nutrients 2021, 13, 1106. https://doi.org/10.3390/nu13041106
Caldo-Silva A, Furtado GE, Chupel MU, Bachi ALL, de Barros MP, Neves R, Marzetti E, Massart A, Teixeira AM. Effect of Training-Detraining Phases of Multicomponent Exercises and BCAA Supplementation on Inflammatory Markers and Albumin Levels in Frail Older Persons. Nutrients. 2021; 13(4):1106. https://doi.org/10.3390/nu13041106
Chicago/Turabian StyleCaldo-Silva, Adriana, Guilherme Eustáquio Furtado, Matheus Uba Chupel, André L. L. Bachi, Marcelo P. de Barros, Rafael Neves, Emanuele Marzetti, Alain Massart, and Ana Maria Teixeira. 2021. "Effect of Training-Detraining Phases of Multicomponent Exercises and BCAA Supplementation on Inflammatory Markers and Albumin Levels in Frail Older Persons" Nutrients 13, no. 4: 1106. https://doi.org/10.3390/nu13041106
APA StyleCaldo-Silva, A., Furtado, G. E., Chupel, M. U., Bachi, A. L. L., de Barros, M. P., Neves, R., Marzetti, E., Massart, A., & Teixeira, A. M. (2021). Effect of Training-Detraining Phases of Multicomponent Exercises and BCAA Supplementation on Inflammatory Markers and Albumin Levels in Frail Older Persons. Nutrients, 13(4), 1106. https://doi.org/10.3390/nu13041106