Prevalence and Predictors of Vitamin D Deficiency and Insufficiency among Pregnant Rural Women in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Selection of Participants
2.3. Data Collection
2.4. Blood Specimen Collection
2.5. Analytical Procedures
2.6. Cut-Off Used to Define Vitamin D and Other Micronutrient Deficiency
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holick, M.F. Vitamin D: The underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr. Opin. Endocrinol. Diabetes Obes. 2002, 9, 87–98. [Google Scholar] [CrossRef]
- Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D status and ill health: A systematic review. Lancet Diabetes Endocrinol. 2014, 2, 76–89. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: Importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am. J. Clin. Nutr. 2004, 79, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Iolascon, G.; Letizia Mauro, G.; Fiore, P.; Cisari, C.; Benedetti, M.G.; Panella, L.; de Sire, A.; Calafiore, D.; Moretti, A.; Gimigliano, F. Can vitamin D deficiency influence muscle performance in post-menopausal women? A multicenter retrospective study. Eur. J. Phys. Rehabil. Med. 2018, 54, 676–682. [Google Scholar] [CrossRef]
- Iolascon, G.; de Sire, A.; Calafiore, D.; Moretti, A.; Gimigliano, R.; Gimigliano, F. Hypovitaminosis D is associated with a reduction in upper and lower limb muscle strength and physical performance in post-menopausal women: A retrospective study. Aging Clin. Exp. Res. 2015, 27 (Suppl. S1), 23–30. [Google Scholar] [CrossRef] [PubMed]
- Gimigliano, F.; Moretti, A.; de Sire, A.; Calafiore, D.; Iolascon, G. The combination of vitamin D deficiency and overweight affects muscle mass and function in older post-menopausal women. Aging. Clin. Exp. Res. 2018, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 2014, 144, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Grover, S.R.; Morley, R. Vitamin D deficiency in veiled or dark-skinned pregnant women. Med. J. Aust. 2001, 175, 251–252. [Google Scholar] [CrossRef]
- Sachan, A.; Gupta, R.; Das, V.; Agarwal, A.; Awasthi, P.K.; Bhatia, V. High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. Am. J. Clin. Nutr. 2005, 81, 1060–1064. [Google Scholar] [CrossRef] [Green Version]
- Brannon, P.M. Vitamin D and adverse pregnancy outcomes: Beyond bone health and growth. Proc. Nutr. Soc. 2012, 71, 205–212. [Google Scholar]
- Bener, A.; AL-Hamaq, A.O.A.A.; Saleh, N.M. Association between vitamin D insufficiency and adverse pregnancy outcome: Global comparisons. Int. J. Womens Health 2013, 5, 523–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodnar, L.M.; Catov, J.M.; Zmuda, J.M.; Cooper, M.E.; Parrott, M.S.; Roberts, J.M.; Marazita, M.L.; Simhan, H.N. Maternal Serum 25-Hydroxyvitamin D Concentrations Are Associated with Small-for-Gestational Age Births in White Women. J. Nutr. 2010, 140, 999–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, D.E.; Leung, M.; Mesfin, E.; Qamar, H.; Watterworth, J.; Papp, E. Vitamin D supplementation during pregnancy: Current and future state of the evidence from a systematic review of randomized controlled trials. BMJ 2017, 359, j5237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.Z.; Shamim, A.A.; Kemi, V.; Nevanlinna, A.; Akhtaruzzaman, M.; Laaksonen, M.; Jehan, A.H.; Jahan, K.; Khan, H.U.; Lamberg-Allardt, C. Vitamin D deficiency and low bone status in adult female garment factory workers in Bangladesh. Br. J. Nutr. 2008, 99, 1322–1329. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.Z.; Lamberg-Allardt, C.; Kärkkäinen, M.; Outila, T.; Salamatullah, Q.; Shamim, A.A. Vitamin D deficiency: A concern in premenopausal Bangladeshi women of two socio-economic groups in rural and urban region. Eur. J. Clin. Nutr. 2002, 56, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.Z.; Akhtaruzzaman, M.; Lamberg-Allardt, C. Hypovitaminosis D is common in both veiled and nonveiled Bangladeshi women. Asia Pac. J. Clin. Nutr. 2006, 15, 81–87. [Google Scholar]
- Mahmood, S.; Rahman, M.; Biswas, S.K.; Saqueeb, S.N.; Zaman, S.; Manirujjaman, M.; Perveen, R.; Ali, N. Vitamin D and Parathyroid Hormone Status in Female Garment Workers: A Case-Control Study in Bangladesh. BioMed Res. Int. 2017, 4105375. [Google Scholar] [CrossRef]
- Ahmed, A.K.M.S.; Haque, W.M.M.U.I.; Uddin, K.N.; Abrar, F.A.; Afroz, F.; Huque, H.F.; Afrose, S.R. Vitamin D and bone mineral density status among postmenopausal Bangladeshi women. IMC J. Med. Sci. 2018, 12, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Asaduzzaman, M.; Basak, M.R.; Islam, M.S.; Juliana, F.M.; Ferdous, T.; Islam, M.J.; Al-Mamun, A.; Sabrina, S.; Uddin, M.M.; Islam, M.K. Vitamin D Deficiency and Insufficiency in Healthy Pregnant Women Living in Dhaka, Bangladesh. IOSR J. Dent. Med. Sci. 2018, 17, 66–73. [Google Scholar]
- Jeong, J.-H.; Korsiak, J.; Papp, E.; Shi, J.; Gernand, A.D.; Mahmud, A.A.; Roth, D.E. Determinants of Vitamin D Status of Women of Reproductive Age in Dhaka, Bangladesh: Insights from Husband–Wife Comparisons. Curr. Dev. Nutr. 2019, 3, nzz112. [Google Scholar] [CrossRef]
- Bhowmik, B.; Siddique, T.; Majumder, A.; Mdala, I.; Hossain, I.A.; Hassan, Z.; Jahan, I.; Moreira, N.C.V.; Alim, A.; Basit, A.; et al. Maternal BMI and nutritional status in early pregnancy and its impact on neonatal outcomes at birth in Bangladesh. BMC Pregnancy Childbirth 2019, 19, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, K.J.; Shaikh, S.; Ali, H.; Shamim, A.A.; Wu, L.S.-F.; Mitra, M.; Arguello, M.A.; Kmush, B.; Sungpuag, P.; Udomkesmelee, E.; et al. Antenatal Multiple Micronutrient Supplementation Compared to Iron–Folic Acid Affects Micronutrient Status but Does Not Eliminate Deficiencies in a Randomized Controlled Trial Among Pregnant Women of Rural Bangladesh. J. Nutr. 2019, 149, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Holvik, K.; Meyer, H.; Haug, E.; Brunvand, L. Prevalence and predictors of vitamin D deficiency in five immigrant groups living in Oslo, Norway: The Oslo Immigrant Health Study. Eur. J. Clin. Nutr. 2005, 59, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, I.M.; Karamali, N.S.; Boeke, A.J.P.; Lips, P.; Middelkoop, B.J.; Verhoeven, I.; Wuister, J.D. High prevalence of vitamin D deficiency in pregnant non-Western women in The Hague, Netherlands. Am. J. Clin. Nutr. 2006, 84, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Dawodu, A.; Absood, G.; Patel, M.; Agarwal, M.; Ezimokhai, M.; Abdulrazzaq, Y.; Khalayli, G. Biosocial factors affecting vitamin D status of women of childbearing age in the United Arab Emirates. J. Biosoc. Sci. 1998, 30, 431–437. [Google Scholar] [CrossRef]
- Joh, H.-K.; Lim, C.S.; Cho, B. Lifestyle and Dietary Factors Associated with Serum 25-Hydroxyvitamin D Levels in Korean Young Adults. J. Korean Med. Sci. 2015, 30, 1110–1120. [Google Scholar] [CrossRef] [Green Version]
- Jääskeläinen, T.; Knekt, P.; Marniemi, J.; Sares-Jäske, L.; Männistö, S.; Heliövaara, M.; Järvinen, R. Vitamin D status is associated with sociodemographic factors, lifestyle and metabolic health. Eur. J. Nutr. 2013, 52, 513–525. [Google Scholar] [CrossRef]
- Azizi-Soleiman, F.; Vafa, M.; Abiri, B.; Safavi, M. Effects of iron on vitamin d metabolism: A systematic review. Int. J. Prev. Med. 2016, 7, 126. [Google Scholar] [CrossRef]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef] [Green Version]
- Haynes, B.M.H.; Pfeiffer, C.M.; Sternberg, M.R.; Schleicher, R.L. Selected Physiologic Variables Are Weakly to Moderately Associated with 29 Biomarkers of Diet and Nutrition, NHANES 2003–2006. J. Nutr. 2013, 143, 1001S–1010S. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O’Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2012, 95, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, F.; Hasan, N.; Kabir, Y. Vitamin A deficiency among adolescent garment factory workers in Bangladesh. Eur. J. Clin. Nutr. 1997, 51, 346–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillon, R. Comparative analysis of nutritional guidelines for vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Adler, R.A.; Binkley, N.; Bouillon, R.; Lazaretti-Castro, E.M.; Marcocci, C.; Rizzoli, R.; Sempos, C.T.; Bilezikian, J.P. Controversies in Vitamin D: Summary Statement from an International Conference. J. Clin. Endocrinol. Metab. 2019, 104, 234–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Children’s Fund; United Nations University; World health Organization. Iron Deficiency Anaemia Assessment, Prevention, and Control: A Guide for Programme Managers; WHO/NHD/01.3; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Tomkins, A. Assessing micronutrient status in the presence of inflammation. J. Nutr. 2003, 133 (Suppl. S2), 1649S–1655S. [Google Scholar] [CrossRef]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Willumsen, J.F.; Simmank, K.; Filteau, S.M.; Wagstaff, L.A.; Tomkins, A.M. Toxic damage to the respiratory epithelium induces acute phase changes in vitamin A metabolism without depleting retinol stores of South African children. J. Nutr. 1997, 127, 1339–1343. [Google Scholar]
- Thurnham, D.I.; McCabe, G.P.; Northrop-Clewes, C.A.; Nestel, P. Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: Meta-analysis. Lancet 2003, 362, 2052–2058. [Google Scholar] [CrossRef]
- World Health Organization. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. In WHO Global Database on Vitamin A Deficiency; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Yoo, E.-H.; Cho, H.-J. Prevalence of 25-hydroxyviotamin D deficiency in Korean patients with anemia. J. Clin. Lab. Anal. 2015, 29, 129–134. [Google Scholar] [CrossRef]
- Sahu, M.; Bhatia, V.; Aggarwal, A.; Rawat, V.; Saxena, P.; Pandey, A.; Das, V. Vitamin D deficiency in rural girls and pregnant women despite abundant sunshine in northern India. Clin. Endocrinol. 2009, 70, 680–684. [Google Scholar] [CrossRef]
- Wang, J.; Yang, F.; Mao, M.; Liu, D.-H.; Yang, H.-M.; Yang, S.-F. High prevalence of vitamin D and calcium deficiency among pregnant women and their newborns in Chengdu, China. World J. Pediatr. 2010, 6, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.D.; Wagner, C.L.; Hulsey, T.C.; McNeil, R.B.; Ebeling, M.; Hollis, B.W. Vitamin D deficiency and insufficiency is common during pregnancy. Am. J. Perinatol. 2011, 28, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Parlak, M.; Kalay, S.; Kalay, Z.; Kirecci, A.; Guney, O.; Koklu, E. Severe vitamin D deficiency among pregnant women and their newborns in Turkey. J. Matern. Fetal Neonatal Med. 2015, 28, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Holmes, V.A.; Barnes, M.S.; Alexander, H.D.; McFaul, P.; Wallace, J.M. Vitamin D deficiency and insufficiency in pregnant women: A longitudinal study. Br. J. Nutr. 2009, 102, 876–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykkedegn, S.; Beck-Nielsen, S.S.; Sorensen, G.L.; Andersen, L.B.; Fruekilde, P.B.N.; Nielsen, J.; Kyhl, H.B.; Joergensen, J.S.; Husby, S.; Christesen, H.T. Vitamin D supplementation, cord 25-hydroxyvitamin D and birth weight: Findings from the Odense Child Cohort. Clin. Nutr. 2017, 36, 1621–1627. [Google Scholar] [CrossRef]
- Vandevijvere, S.; Amsalkhir, S.; Van Oyen, H.; Moreno-Reyes, R. High prevalence of vitamin D deficiency in pregnant women: A national cross-sectional survey. PLoS ONE 2012, 7, e43868. [Google Scholar] [CrossRef] [Green Version]
- Cross, N.A.; Hillman, L.S.; Allen, S.H.; Krause, G.F.; Vieira, N.E. Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: A longitudinal study. Am. J. Clin. Nutr. 1995, 61, 514–523. [Google Scholar] [CrossRef]
- Moon, R.J.; Davies, J.H.; Cooper, C.; Harvey, N.C. Vitamin D, and Maternal and Child Health. Calcif. Tissue Int. 2020, 106, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Mulligan, M.L.; Felton, S.K.; Riek, A.E.; Bernal-Mizrachi, C. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstet. Gynecol. 2010, 202, 429.e1–429.e9. [Google Scholar] [CrossRef] [Green Version]
- Bowyer, L.; Catling-Paull, C.; Diamond, T.; Homer, C.; Davis, G.; Craig, M.E. Vitamin D, PTH and calcium levels in pregnant women and their neonates. Clin. Endocrinol. 2009, 70, 372–377. [Google Scholar] [CrossRef]
- Jin, H.J.; Lee, J.H.; Kim, M.K. The prevalence of vitamnin D deficiency in iron-deficient and normal children under the age of 24 months. Blood Res. 2013, 48, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malczewska-Lenczowska, J.; Sitkowski, D.; Surała, O.; Orysiak, J.; Szczepánska, B.; Witek, K. The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients 2018, 10, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, C.E.; Guillet, R.; Queenan, R.A.; Cooper, E.M.; Kent, T.R.; Pressman, E.K.; Vermeylen, F.M.; Roberson, M.S.; O’Brien, K.O. Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am. J. Clin. Nutr. 2015, 102, 1088–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toxqui, L.; Vaquero, M.P. Chronic Iron Deficiency as an Emerging Risk Factor for Osteoporosis: A Hypothesis. Nutrients 2015, 7, 2324–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergwitz, C.; Jüppner, H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu. Rev. Med. 2010, 61, 91–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinkenbeard, E.L.; Farrow, E.G.; Summers, L.J.; Cass, T.A.; Roberts, J.L.; Bayt, C.A.; Lahm, T.; Albrecht, M.; Allen, M.R.; Peacock, M.; et al. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J. Bone Miner. Res. 2014, 29, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Martinez, R.; Castillo, A.I.; Steinmeyer, A.; Aranda, A. The retinoid X receptor ligand restores defective signalling by the vitamin D receptor. EMBO Rep. 2006, 7, 1030–1034. [Google Scholar] [CrossRef] [Green Version]
- Khosravi-Boroujeni, H.; Ahmed, F.; Sarrafzadegan, N. Is association between vitamin D and Metabolic syndrome independent of other micronutrients? Int. J. Vitam. Nutr. Res. 2016, 1–16. [Google Scholar] [CrossRef]
- Dawodu, A.; Wagner, C.L. Mother-child vitamin D deficiency: An international perspective. Arch. Dis. Child. 2007, 92, 737–740. [Google Scholar] [CrossRef]
- Hollick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1008–1086. [Google Scholar] [CrossRef] [Green Version]
- Institute of Public Health Nutrition. National Strategy on Prevention and Control of Micronutrient Deficiencies, Bangladesh (2015–2024); Ministry of Health and Family Welfare, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2015.
- WHO. Recommendations on Antenatal Care for a Positive Pregnancy Experience; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
Variable | n | % |
---|---|---|
Age (Year) | ||
<20 | 124 | 24.0 |
20–24.0 | 163 | 31.7 |
≥25 | 228 | 44.3 |
Parity | ||
Nullipara | 191 | 37.1 |
Multipara (parity ≥ 1) | 324 | 62.9 |
Gestational Age (Week) | ||
<13 | 70 | 13.6 |
≥13 | 445 | 86.4 |
Participant’s Education | ||
Functionally illiterate * | 229 | 44.5 |
Class 6–10 but not SSC ** | 201 | 39.0 |
SSC or above | 85 | 16.5 |
Husband’s Education | ||
Functionally illiterate * | 299 | 58.1 |
Class 6–10 but not SSC ** | 109 | 21.1 |
SSC or above | 107 | 20.8 |
Husband’s Occupation | ||
Labourer | 198 | 38.4 |
Farmer | 136 | 26.4 |
Business | 108 | 21.0 |
Service | 73 | 14.2 |
Participant’s Occupation | ||
No | 496 | 96.3 |
Yes | 19 | 3.7 |
Household Size | ||
Small family (<5) | 310 | 60.2 |
Large family (≥5) | 205 | 39.8 |
Cultivable Land Ownership | ||
No land | 291 | 56.5 |
Small land holding | 224 | 43.5 |
Vitamin/Mineral Supplementation | ||
Yes | 40 | 7.8 |
No | 475 | 92.2 |
Presence of Inflammation/Sub-Clinical Infection | ||
Acute (judged by serum CRP > 10.0 mg/L) | 37 | 7.2 |
Chronic (judged by serum AGP > 1.0 g/L) | 8 | 1.6 |
Selected Micronutrient Status | ||
Anaemia (Haemoglobin < 11.0 g/dL) | 176 | 34.2 |
Iron deficiency (Serum ferritin < 15.0 μg/dL) | 136 | 26.4 |
Sub-optimal vitamin A status (Serum retinol < 30.0 μg/dL) | 155 | 30.1 |
Variable | n | Mean | SD | p-Value |
---|---|---|---|---|
Age (year) | ||||
<20 | 124 | 40.1 a | 13.7 | 0.001 * |
20–24 | 163 | 43.3 a | 14.7 | |
≥25 | 228 | 50.2 b | 18.1 | |
Parity | ||||
Nullipara | 191 | 39.8 | 13.7 | 0.001 |
Multipara (parity ≥ 1) | 324 | 49.0 | 17.2 | |
Gestational age (week) | ||||
<13 | 70 | 40.4 | 12.7 | 0.005 |
≥13 | 445 | 46.4 | 17.0 | |
Taking Vitamin/Mineral supplement | ||||
Yes | 40 | 48.1 | 18.4 | 0.322 |
No | 475 | 45.4 | 16.4 | |
Acute inflammation/infection | ||||
Elevated serum CRP (>10.0 mg/L) | 37 | 46.1 | 18.3 | 0.848 |
Normal serum CRP (<10.0 mg/L) | 478 | 45.5 | 16.5 | |
Chronic inflammation/infection | ||||
Elevated serum AGP (>1.0 g/L) | 8 | 49.6 | 17.9 | 0.493 |
Normal serum AGP (<1.0 g/L) | 507 | 45.5 | 16.6 | |
Anaemia status | ||||
Anaemic (Haemoglobin < 11.0 g/dL) | 176 | 44.5 | 15.5 | 0.282 |
Normal (Haemoglobin ≥ 11.0 g/dL) | 339 | 46.1 | 17.1 | |
Iron Status | ||||
Deficient (Serum ferritin < 15.0 μg/dL) | 136 | 44.5 | 15.1 | 0.369 |
Normal (Serum ferritin ≥ 15.0 μg/dL) | 379 | 46.0 | 17.1 | |
Vitamin A Status | ||||
Sub-optimal (Serum retinol < 30.0 μg/dL) | 155 | 41.9 | 15.8 | 0.001 |
Normal (Serum retinol ≥ 30.0 μg/dL) | 360 | 47.1 | 16.7 |
Variable | Normal | Insufficiency | Deficiency | p-Value | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Age (year) | |||||||
<20 | 28 | 15.3 | 66 | 27.2 | 30 | 33.7 | |
20–24 | 48 | 26.2 | 82 | 33.7 | 33 | 37.1 | 0.000 |
≥25 | 107 | 58.5 | 95 | 39.1 | 26 | 29.2 | |
Parity | |||||||
Nullipara | 41 | 22.4 | 103 | 42.4 | 47 | 52.8 | |
Multiparous (≥1) | 142 | 77.6 | 140 | 57.6 | 42 | 47.2 | 0.000 |
Gestational age (week) | |||||||
<13 | 15 | 8.2 | 39 | 16.0 | 16 | 18.0 | |
≥13 | 168 | 91.8 | 204 | 84.0 | 73 | 82.0 | 0.026 |
Participant’s education | |||||||
Functionally illiterate * | 88 | 48.1 | 108 | 44.4 | 33 | 37.1 | |
Class 6–10 but not SSC ** | 63 | 34.4 | 100 | 41.2 | 38 | 42.7 | 0.319 |
SSC or above | 32 | 17.5 | 35 | 14.4 | 18 | 20.2 | |
Husband’s education | |||||||
Functionally illiterate * | 113 | 61.7 | 134 | 55.1 | 52 | 58.5 | |
Class 6–10 but not SSC ** | 30 | 16.4 | 61 | 25.1 | 18 | 20.2 | 0.308 |
SSC or above | 40 | 21.9 | 48 | 19.8 | 19 | 21.3 | |
Husband’s occupation | |||||||
Labourer | 74 | 40.4 | 91 | 37.5 | 33 | 37.1 | |
Farmer | 38 | 20.8 | 77 | 31.7 | 21 | 23.6 | |
Business | 45 | 24.6 | 46 | 18.9 | 17 | 19.1 | |
Service | 26 | 14.2 | 29 | 11.9 | 18 | 20.2 | 0.114 |
Participant’s occupation | |||||||
Service | 6 | 3.3 | 9 | 3.7 | 4 | 4.5 | |
Housewife | 177 | 96.7 | 234 | 96.3 | 85 | 95.5 | 0.371 *** |
Household size | |||||||
Small family (<5) | 122 | 66.7 | 141 | 58.0 | 47 | 52.8 | |
Large family (≥5) | 61 | 33.3 | 102 | 42.0 | 42 | 47.2 | 0.058 |
Cultivable land ownership | |||||||
No land | 111 | 60.7 | 134 | 55.1 | 46 | 51.7 | |
Small land holding | 72 | 39.3 | 109 | 44.9 | 43 | 48.3 | 0.319 |
Intake of vitamin D rich food | |||||||
Milk and milk products | |||||||
<3 | 100 | 54.6 | 125 | 51.4 | 41 | 46.1 | |
≥3 | 83 | 45.4 | 118 | 48.6 | 48 | 53.9 | 0.419 |
Eggs | |||||||
<3 | 89 | 48.6 | 113 | 46.5 | 39 | 43.8 | |
≥3 | 94 | 51.4 | 130 | 53.5 | 50 | 56.2 | 0.751 |
Big fish | |||||||
<3 | 124 | 67.8 | 174 | 71.6 | 70 | 78.7 | |
≥3 | 59 | 32.2 | 69 | 28.4 | 19 | 21.3 | 0.175 |
Meat and Liver | |||||||
<1 | 97 | 53.0 | 139 | 57.2 | 47 | 52.8 | |
≥1 | 86 | 47.0 | 104 | 42.8 | 42 | 47.2 | 0.636 |
Vitamin/Mineral supplementation | |||||||
Yes | 15 | 8.2 | 19 | 7.8 | 6 | 6.7 | |
No | 168 | 91.2 | 224 | 92.2 | 83 | 93.3 | 0.952 |
Variable | Normal | Insufficiency | Deficiency | p-Value | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Acute inflammation/infection | |||||||
Elevated serum CRP (>10.0 mg/L) | 15 | 8.2 | 14 | 5.8 | 8 | 9.0 | |
Normal serum CRP (<10.0 mg/L) | 168 | 91.8 | 229 | 94.2 | 81 | 91.0 | 0.498 |
Chronic inflammation/infection | |||||||
Elevated serum AGP (>1.0 g/L) | 4 | 2.2 | 3 | 1.2 | 1 | 1.1 | |
Normal serum AGP (<1.0 g/L) | 179 | 97.8 | 240 | 98.8 | 88 | 98.9 | 0.805 * |
Anaemia status | |||||||
Anaemic (Haemoglobin < 11.0 g/dL) | 56 | 30.6 | 90 | 37.0 | 30 | 33.7 | |
Normal (Haemoglobin ≥ 11.0 g/dL) | 127 | 69.4 | 153 | 63.0 | 59 | 66.3 | 0.381 |
Iron Status | |||||||
Deficient (Serum ferritin < 15.0 μg/dL) | 45 | 24.6 | 69 | 28.4 | 22 | 24.7 | |
Normal (Serum ferritin ≥ 15.0 μg/dL) | 138 | 75.4 | 174 | 71.6 | 67 | 75.3 | 0.625 |
Vitamin A Status | |||||||
Sub-optimal (Serum retinol < 30.0 μg/dL) | 45 | 24.6 | 72 | 29.6 | 38 | 42.7 | |
Normal (Serum retinol ≥ 30.0 μg/dL) | 138 | 75.4 | 171 | 70.4 | 51 | 57.3 | 0.009 |
Variable | Vitamin D Insufficiency * | Vitamin D Deficiency ** | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age (year) | ||||||
<25 | - | - | - | 2.12 | 1.06–4.21 | 0.033 |
≥25 (reference) | - | - | ||||
Parity | ||||||
Nulliparous | 2.72 | 1.75–4.23 | 0.0001 | 2.65 | 1.34–5.25 | 0.005 |
Multipara (reference) | - | - | ||||
Gestational age (week) | ||||||
<13 | 2.68 | 1.39–5.19 | 0.003 | 2.55 | 1.12–5.79 | 0.025 |
≥13 (reference) | - | - | ||||
Husband’s occupation | ||||||
Labourer | 1.26 | 0.80–2.00 | 0.332 | - | - | - |
Farmer | 2.06 | 1.22–3.50 | 0.007 | |||
Business/Service (reference) | - | - | ||||
Anaemia status | ||||||
Anaemic (Haemoglobin < 11.0 g/dL) | 1.53 | 0.99–2.35 | 0.056 | - | - | - |
Normal (Haemoglobin ≥ 11.0 g/dL) (reference) | ||||||
Vitamin A Status | ||||||
Sub-optimal (Serum retinol < 30.0 μg/dL) | - | - | - | 2.30 | 1.28–4.11 | 0.005 |
Normal (reference) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, F.; Khosravi-Boroujeni, H.; Khan, M.R.; Roy, A.K.; Raqib, R. Prevalence and Predictors of Vitamin D Deficiency and Insufficiency among Pregnant Rural Women in Bangladesh. Nutrients 2021, 13, 449. https://doi.org/10.3390/nu13020449
Ahmed F, Khosravi-Boroujeni H, Khan MR, Roy AK, Raqib R. Prevalence and Predictors of Vitamin D Deficiency and Insufficiency among Pregnant Rural Women in Bangladesh. Nutrients. 2021; 13(2):449. https://doi.org/10.3390/nu13020449
Chicago/Turabian StyleAhmed, Faruk, Hossein Khosravi-Boroujeni, Moududur Rahman Khan, Anjan Kumar Roy, and Rubhana Raqib. 2021. "Prevalence and Predictors of Vitamin D Deficiency and Insufficiency among Pregnant Rural Women in Bangladesh" Nutrients 13, no. 2: 449. https://doi.org/10.3390/nu13020449
APA StyleAhmed, F., Khosravi-Boroujeni, H., Khan, M. R., Roy, A. K., & Raqib, R. (2021). Prevalence and Predictors of Vitamin D Deficiency and Insufficiency among Pregnant Rural Women in Bangladesh. Nutrients, 13(2), 449. https://doi.org/10.3390/nu13020449