Analysis of Eating Habits and Body Composition of Young Adult Poles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Study Design
2.2. Statistical Analyses
3. Results
3.1. Motivations and Barriers for the Use to Healthy Eating Habits among Young Poles
3.2. Physical Activity and the Use of Healthy Eating Habits among Young Poles
3.3. Body Composition and the Use of Healthy Eating Habits among Young Poles
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Wang, D.-H.; Kogashiwa, M.; Ohta, S.; Kira, S. Validity and Reliability of a Dietary Assessment Method: The Application of a Digital Camera with a Mobile Phone Card Attachment. J. Nutr. Sci. Vitaminol. 2002, 48, 498–504. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia Dla Populacji Polski i Ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny: Warszawa, Poland, 2020.
- Bryła, P. Organic food consumption in Poland: Motives and barriers. Appetite 2016, 105, 737–746. [Google Scholar] [CrossRef]
- Jarosz, M. Narodowe Centrum Edukacji Żywieniowej|Piramida Zdrowego Żywienia i Aktywności Fizycznej dla osób dorosłych. Available online: https://ncez.pzh.gov.pl/abc-zywienia/piramida-zdrowego-zywienia-i-aktywnosci-fizycznej-dla-osob-doroslych/ (accessed on 2 September 2021).
- Finegold, J.A.; Asaria, P.; Francis, D.P. Mortality from Ischaemic Heart Disease by Country, Region, and Age: Statistics from World Health Organisation and United Nations. Int. J. Cardiol. 2013, 168, 934–945. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, T.; Malvezzi, M.; Chatenoud, L.; Bosetti, C.; Levi, F.; Negri, E.; La Vecchia, C. Trends in Mortality from Coronary Heart and Cerebrovascular Diseases in the Americas: 1970–2000. Heart 2006, 92, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Bui, C.; Lin, L.-Y.; Wu, C.-Y.; Chiu, Y.-W.; Chiou, H.-Y. Association between Emotional Eating and Frequency of Unhealthy Food Consumption among Taiwanese Adolescents. Nutrients 2021, 13, 2739. [Google Scholar] [CrossRef]
- Maurer, D.; Sobal, J. Eating Agendas: Food and Nutrition as Social Problems; Transaction Publishers: Piscataway, NJ, USA, 1995. [Google Scholar]
- Pirlich, M.; Lochs, H. Nutrition in the Elderly. Best Pract. Res. Clin. Gastroenterol. 2001, 15, 869–884. [Google Scholar] [CrossRef]
- Hill, J.O. Understanding and Addressing the Epidemic of Obesity: An Energy Balance Perspective. Endocr. Rev. 2006, 27, 750–761. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy Balance and Obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef]
- Fried, M.; Yumuk, V.; Oppert, J.M.; Scopinaro, N.; Torres, A.; Weiner, R.; Yashkov, Y.; Frühbeck, G. Interdisciplinary European Guidelines on Metabolic and Bariatric Surgery. Obes. Surg. 2014, 24, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Mazurek-Kusiak, A.K.; Kobyłka, A.; Sawicki, B. Assessment of Nutritional Behavior of Polish Pupils and Students. Br. Food J. 2019, 121, 2296–2308. [Google Scholar] [CrossRef]
- Farrow, C.; Haycraft, E.; Meyer, C. Similarities between Eating Attitudes among Friendship Groups in Childhood: The Moderating Role of Child Anxiety. J. Pediatric Psychol. 2011, 36, 1144–1152. [Google Scholar] [CrossRef]
- Harris, J.L.; Schwartz, M.B.; Brownell, K.D. Evaluating Fast Food Nutrition and Marketing to Youth; Yale Rudd Center for Food Policy & Obesity: New Haven, CT, USA, 2010. [Google Scholar]
- Bugge, A.B. Lovin’it? A Study of Youth and the Culture of Fast Food. Food Cult. Soc. 2011, 14, 71–89. [Google Scholar] [CrossRef]
- Mattsson, J.; Helmersson, H. Eating Fast Food: Attitudes of High-School Students. Int. J. Consum. Stud. 2007, 31, 117–121. [Google Scholar] [CrossRef]
- Trafialek, J.; Czarniecka-Skubina, E.; Kulaitiené, J.; Vaitkevičienė, N. Restaurant’s Multidimensional Evaluation Concerning Food Quality, Service, and Sustainable Practices: A Cross-National Case Study of Poland and Lithuania. Sustainability 2020, 12, 234. [Google Scholar] [CrossRef] [Green Version]
- Bergman, C.; Tian, Y.; Moreo, A.; Raab, C. Menu Engineering and Dietary Behavior Impact on Young Adults’ Kilocalorie Choice. Nutrients 2021, 13, 2329. [Google Scholar] [CrossRef]
- Smith, A.; Kendrick, A.; Maben, A.; Salmon, J. Effects of Breakfast and Caffeine on Cognitive Performance, Mood and Cardiovascular Functioning. Appetite 1994, 22, 39–55. [Google Scholar] [CrossRef]
- Delgado-Alarcón, J.M.; Hernández Morante, J.J.; Aviles, F.V.; Albaladejo-Otón, M.D.; Morillas-Ruíz, J.M. Effect of the Fat Eaten at Breakfast on Lipid Metabolism: A Crossover Trial in Women with Cardiovascular Risk. Nutrients 2020, 12, 1695. [Google Scholar] [CrossRef]
- Walsh, J.; Byrd-Bredbenner, C.; Esters, O.; Greene, G.; Hoerr, S.; Kattelmann, K.; Morrell, J.; Nitzke, S.; Phillips, B.; Shelnutt, K. Eating Behavior and Perceptions of Young Adults in Two Stages of Readiness to Eat Fruits and Vegetables. J. Nutr. Educ. Behav. 2010, 42, 105–106. [Google Scholar] [CrossRef]
- Meldrum, D.R.; Morris, M.A.; Gambone, J.C. Obesity Pandemic: Causes, Consequences, and Solutions—but Do We Have the Will? Fertil. Steril. 2017, 107, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Lewandowicz, M.; Krzymińska-Siemaszko, R.; Wieczorowska-Tobis, K. A Review of Methods of Dietary Assessment with the Distinction of Food Photography Method with Possibility of Their Use in Elderly People. Geriatria 2015, 9, 116–122. [Google Scholar]
- Mistretta, A.; Marventano, S.; Antoci, M.; Cagnetti, A.; Giogianni, G.; Nolfo, F.; Rametta, S.; Pecora, G.; Marranzano, M. Mediterranean Diet Adherence and Body Composition among Southern Italian Adolescents. Obes. Res. Clin. Pract. 2017, 11, 215–226. [Google Scholar] [CrossRef]
- Nelson, M.C.; Story, M.; Larson, N.I.; Neumark-Sztainer, D.; Lytle, L.A. Emerging adulthood and college-aged youth: An overlooked age for weight-related behavior change. Obesity 2008, 16, 2205–2211. [Google Scholar] [CrossRef]
- Lobstein, T.; Brinsden, H. Obesity: Missing the 2025 Global Targets; World of Obesity: London, UK, 2020. [Google Scholar]
- Buoncristiano, M.; Spinelli, A.; Williams, J.; Nardone, P.; Rito, A.I.; García-Solano, M.; Grøholt, E.K.; Gutiérrez-González, E.; Klepp, K.I.; Starc, G.; et al. Childhood Overweight and Obesity in Europe: Changes from 2007 to 2017. Obes. Rev. 2021, e13226. [Google Scholar] [CrossRef]
- Zgliczyński, W.S. Nadwaga i otyłość w Polsce. Infos Zagadnienia Społeczno Gospod. 2017, 4, 1–4. [Google Scholar]
- Przybylska, D.; Kurkowska, M.; Przybylski, P. Otyłość i nadwaga w populacji rozwojowej. Hygeia Public Health 2012, 47, 28–35. [Google Scholar]
- CBOS. Komunikat z Badań Czy Polacy Mają Problem z Nadwagą? 103/2019. Available online: https://www.cbos.pl/SPISKOM.POL/2019/K_103_19.PDF (accessed on 2 September 2021).
- Narodowy Program Zdrowia na Lata 2021–2025. Available online: https://www.gov.pl/web/zdrowie/narodowy-program-zdrowia1 (accessed on 2 September 2021).
- Blondin, S.A.; Mueller, M.P.; Bakun, P.J.; Choumenkovitch, S.F.; Tucker, K.L.; Economos, C.D. Cross-Sectional Associations between Empirically-Derived Dietary Patterns and Indicators of Disease Risk among University Students. Nutrients 2016, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Durkalec-Michalski, K.; Suliburska, J.; Jeszka, J. Ocena stanu odżywiania i nawyków żywieniowych wybranej grupy zawodników uprawiających wioślarstwo. Bromatol. I Chem. Toksykol. 2011, 44, 262–270. [Google Scholar]
- Gawęcki, J.; Mossor-Pietraszewska, T. Kompendium Wiedzy o Żywności, Żywieniu i Zdrowiu; Gawęcki, J., Ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2006. [Google Scholar]
- Janiszewska, R. Ocena składu ciała metodą bioelektrycznej impedancji u studentów o różnym stopniu aktywności fizycznej. Med. Ogólna I Nauk. O Zdrowiu 2013, 19, 173–176. [Google Scholar]
- Lewitt, A.; Mądro, E.; Krupienicz, A. Podstawy teoretyczne zastosowania impedancji bioelektrycznej. Endokrynol Otyłość 2007, 3, 79–84. [Google Scholar]
- Dżygadło, B.; Łepecka-Klusek, C.; Pilewski, B. Wykorzystanie analizy impedancji bioelektrycznej w profilaktyce i leczeniu nadwagi i otyłości. Probl. Hig. Epidemiol. 2012, 93, 274–280. [Google Scholar]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Physique Rating. Available online: https://tanita.eu/help-guides/understanding-your-measurements/physique-rating/ (accessed on 2 September 2021).
- Body Composition Guide for InterScan, TANITA Corporation, p. 4. Available online: https://www.manualsdir.com/manuals/240739/garmin-tanita-bc-1000.html?page=44 (accessed on 2 September 2021).
- Rabiej, M. Statystyka z Programem Statistica; Helion: Gliwice, Poland, 2012; ISBN 978-83-246-4110-9. [Google Scholar]
- Grunert, K.G. The Health Trend. In Consumer Trends and New Product Opportunities in the Food Sector; Grunert, K.G., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; pp. 15–31. [Google Scholar]
- Zámková, M.; Prokop, M. Comparison of consumer behavior of Slovaks and Czechs in the market of organic products by using correspondence analysis. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2014, 4, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Blasius, J. Korrespondenz Analyse; Oldenbourg Verlag: München, Germany, 2001. [Google Scholar]
- Greenacre, M. Correspondence Analysis in Practice; Academic Press: London, UK, 1993. [Google Scholar]
- Starczewska, M.; Tamulewicz, A.; Stanisławska, M.; Szkup, M.; Grochans, E.; Karakiewicz, B. Analiza wybranych czynników wpływających na zachowania zdrowotne nastolatków. Fam. Med. Prim. Care Rev. 2015, 1, 39–42. [Google Scholar]
- Woynarowska, B. Edukacja Zdrowotna–Podstawy Teoretyczne i Metodyczne; Wojnarowska, B., Ed.; Edukacja zdrowotna; Podręcznik akademicki; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2008; pp. 50–58. [Google Scholar]
- Wojtyła-Buciora, P.; Marcinkowski, J.T. Sposób żywienia, zadowolenie z własnego wyglądu i wyobrażenie o idealnej sylwetce młodzieży licealnej. Probl. Hig. Epidemiol. 2010, 91, 227–232. [Google Scholar]
- Nawrocka, M.; Kujawska-Łuczak, M.; Bogdański, P. Ocena sposobu odżywiania i aktywności fizycznej wśród uczniów szkół ponadpodstawowych. Endokrynol Diabetol Chor Przem Mater. 2010, 6, 8–17. [Google Scholar]
- Stok, F.M.; Renner, B.; Clarys, P.; Deliens, T. Understanding Eating Behavior during the Transition from Adolescence to Young Adulthood: A Literature. Nutrients 2018, 10, 667. [Google Scholar] [CrossRef] [Green Version]
- Odette, F.; Israel, P.; Li, A.; Ullman, D.; Colontonio, A.; Maclean, H.; Locker, D. Barriers to wellness activities for Canadian women with physical disabilities. Health Care Women Int. 2003, 24, 125–134. [Google Scholar] [CrossRef]
- Plow, M.; Finlayson, M. A qualitative study of nutritional behaviors in adults with multiple sclerosis. J. Neurosci. Nurs. 2012, 44, 337–350. [Google Scholar] [CrossRef]
- Plow, M.; Moore, S.M.; Sajatovic, M.; Katzan, I. A mixed methods study of multiple health behaviors among individuals with stroke. PeerJ 2017, 5, e3210. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.; Colantonio, A.; Yoshida, K. Barriers to nutrition as a health promotion practice for women with disabilities. Int. J. Rehabil. Res. 2003, 26, 245–247. [Google Scholar]
- Nosek, M.A.; Hughes, R.B.; Howland, C.A.; Young, M.E.; Mullen, P.D.; Shelton, M.L. The meaning of health for women with physical disabilities: A qualitative analysis. Fam. Community Health 2004, 27, 6–21. [Google Scholar] [CrossRef]
- Tomey, K.M.; Chen, D.M.; Wang, X.; Braunschweig, C.L. Dietary intake and nutritional status of urban community-dwelling men with paraplegia. Arch. Phys. Med. Rehabil. 2005, 86, 664–671. [Google Scholar] [CrossRef]
- Bailey, K.A.; Lenz, K.; Allison, D.J.; Ditor, D.S. Barriers and facilitators to adhering to an anti-inflammatory diet for individuals with spinal cord injuries. Health Psychol. Open 2018, 5, 2055102918798732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sogari, G.; Velez-Argumedo, C.; Gómez, M.I.; Mora, C. College Students and Eating Habits: A Study Using an Ecological Model for Healthy Behavior. Nutrients 2018, 10, 1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allom, V.; Mullan, B. Maintaining healthy eating behaviour: Experiences and perceptions of young adults. Nutr. Food Sci. 2014, 44, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Ashton, L.M.; Hutchesson, M.J.; Rollo, M.E.; Morgan, P.J.; Collins, C.E. Motivators and Barriers to Engaging in Healthy Eating and Physical Activity: A Cross-Sectional Survey in Young Adult Men. Am. J. Men’s Health 2017, 11, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Menozzi, D.; Sogari, G.; Mora, C. Explaining Vegetable Consumption among Young Adults: An Application of the Theory of Planned Behaviour. Nutrients 2015, 7, 7633–7650. [Google Scholar] [CrossRef] [Green Version]
- Gall, T.L.; Evans, D.R.; Bellerose, S. Transitions to first-year university: Patterns of change in adjustment across life domains and time. J. Soc. Clin. Psychol. 2000, 19, 544–567. [Google Scholar] [CrossRef]
- Hardcastle, S.J.; Thøgersen-Ntoumani, C.; Chatzisarantis, N.L.D. Food Choice and Nutrition: A Social Psychological Perspective. Nutrients 2015, 7, 8712–8715. [Google Scholar] [CrossRef] [Green Version]
- Larson, N.; Laska, M.N.; Story, M.; Neumark-Sztainer, D. Predictors of fruit and vegetable intake in young adulthood. J. Acad. Nutr. Diet. 2012, 112, 1216–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laska, M.N.; Pelletier, J.E.; Larson, N.I.; Story, M. Interventions for weight gain prevention during the transition to young adulthood: A review of the literature. J. Adolesc. Health 2012, 50, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, G.; Fisberg, R.M.; Nogueira Previdelli, A.; Hermes Sales, C.; Kovalskys, I.; Fisberg, M.; Herrera-Cuenca, M.; Cortes Sanabria, L.Y.; Garcia, M.C.Y.; Pareja Torres, R.G.; et al. Diet Quality and Diet Diversity in Eight Latin American Countries: Results from the Latin American Study of Nutrition and Health (ELANS). Nutrients 2019, 11, 1605. [Google Scholar] [CrossRef] [Green Version]
- Backholer, K.; Spencer, E.; Gearon, E.; Magliano, D.J.; McNaughton, S.A.; Shaw, J.E.; Peeters, A. The association between socio-economic position and diet quality in Australian adults. Public Health Nutr. 2016, 19, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Deliens, T.; Clarys, P.; Bourdeaudhuij, I.; Deforche, B. Determinants of eating behaviour in university students: A qualitative study using focus group discussions. Br. Med. J. 2014, 14, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deforche, B.; Van Dyck, D.; Deliens, T.; De Bourdeaudhuij, I. Changes in weight, physical activity, sedentary behaviour and dietary intake during the transition to higher education: A prospective study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, G.; Cecil, J.; Higgs, S.; Hill, A.; Hetherington, M. Susceptibility to weight gain. Eating behaviour traits and physical activity as predictors of weight gain during the first year of university. Appetite 2012, 58, 1091–1098. [Google Scholar] [CrossRef]
- Niemeier, H.M.; Raynor, H.A.; Lloyd-Richardson, E.E.; Rogers, M.L.; Wing, R.R. Fast food consumption and breakfast skipping: Predictors of weight gain from adolescence to adulthood in a nationally representative sample. J. Adolesc. Health 2006, 39, 842–849. [Google Scholar] [CrossRef]
Specification | Proportion in % | |
---|---|---|
Sex | M | 43.60 |
F | 56.40 | |
Place of residence | villages | 35.09 |
towns with up to 20,000 residents | 29.82 | |
cities with over 20,000 residents | 35.09 | |
Region of Poland | north-east | 25.06 |
north-west | 25.06 | |
south-east | 25.06 | |
south-west | 24.82 | |
Professional status | working | 25.06 |
working and studying | 25.31 | |
only studying | 24.57 | |
secondary school | 25.06 |
Specification | Score |
---|---|
The number of meals per day planned in the menu | |
4–5 | 5 |
3 | 3 |
less than 3 | 0 |
Frequency of milk or cheese consumption | |
daily, in 2 meals | 5 |
daily, at least in one meal and in 50% of days in 2 meals | 2 |
less often | 0 |
Frequency of vegetables or fruits | |
daily, at least in 3 meals | 5 |
daily, at least in 2 meals | 2 |
less often | 0 |
Frequency of raw vegetables or fruits consumption | |
daily | 5 |
in 75% of days | 2 |
less often | 0 |
Frequency of wholemeal bread, groats and dry leguminous vegetables consumption | |
daily, at least in 1 meal | 5 |
in 75% of days, at least 1 of the products mentioned | 2 |
less often | 0 |
Total | 25 |
Score | Nutrition Assessment |
---|---|
23–25 | good |
16–22 | sufficient |
8–15 | bad |
<7 | very bad |
Motivations | N = 399; Number 1: 342; Number 0: 57; Total Loss: 144.42; χ2 (6) = 98.440; p < 0.001 | ||||||
---|---|---|---|---|---|---|---|
Rating | Standard Error | t (392) | p | χ2 Walda | p (Dla Walda) | UDR | |
Constant B0 | −4.159 | 0.877 | −4.741 | <0.001 * | 22.473 | <0.001 * | 0.016 |
x1—doctor’s recommendation * | 0.714 | 0.157 | 4.549 | <0.001 * | 20.692 | <0.001 * | 2.042 |
x2—intent to lose weight * | 0.647 | 0.167 | 3.864 | <0.001 * | 14.928 | <0.001 * | 1.909 |
x3—intent to live a healthy lifestyle * | 0.339 | 0.150 | 2.258 | 0.025 * | 5.097 | 0.024 * | 1.404 |
x4—following a trend * | 0.452 | 0.172 | 2.622 | 0.009 * | 6.874 | 0.008 * | 1.571 |
x5—persuasion by others | 0.096 | 0.118 | 0.817 | 0.414 | 0.668 | 0.414 | 1.101 |
x6—lifestyle | −0.149 | 0. 877 | 0.759 | 0.448 | 0.576 | 0.448 | 0.862 |
Observation | Odds Ratio: 45.68%, Correct: 89.72% | ||
---|---|---|---|
Predicted No | Predicted Yes | % Correct | |
no | 20 | 37 | 35.09 |
yes | 4 | 338 | 98.83 |
Barriers | N = 399; Number 1: 342; Number 0: 57; Total Loss: 152.81; χ2 (5) = 21.646; p = 0.001 | ||||||
---|---|---|---|---|---|---|---|
Rating | Standard Error | t (494) | p | Walda | p (Dla Walda) | UDR | |
Constant B0 | −0.826 | 0.496 | −1.665 | 0.096 | 2.773 | 0.096 | 0.438 |
x1—no time * | −0.369 | 0.171 | −2.159 | 0.031 * | 4.660 | 0.031 * | 0.692 |
x2—lack of financial resources * | −0.544 | 0.151 | −3.612 | <0.001 * | 13.043 | <0.001 * | 1.723 |
x3—inability to prepare meals * | −0.156 | 0.112 | −1.391 | 0.017 * | 1.934 | 0.016 * | 0.856 |
x4—lack of knowledge about the principles of healthy eating * | −0.386 | 0.147 | −2.629 | 0.009 * | 6.912 | 0.009 * | 0.680 |
x5—no housing conditions | 0.073 | 0.131 | 0.556 | 0.578 | 0.310 | 0.578 | 1.075 |
Observation | Odds Ratio: 6.12%, Correct: 90.05% | ||
---|---|---|---|
Predicted No | Predicted Yes | % Correct | |
no | 4 | 53 | 7.02 |
yes | 0 | 342 | 100.00 |
Motivations | Model of Discriminant Analysis: Wilks’s λ: 0.571; F(18.110) = 13.416; p < 0.001 | Classification Functions: Assessment of Physical Activity | ||||||
---|---|---|---|---|---|---|---|---|
Wilks’s λ | F | p | Tolerance | Inactive p = 0.14 | Not Very Active p = 0.46 | Active p = 0.35 | Very Active p = 0.05 | |
doctor’s recommendation | 0.635 | 14.522 | <0.001 * | 0.890 | 1.310 | 2.049 | 2.292 | 3.074 |
intent to lose weight | 0.619 | 10.943 | <0.001 * | 0.974 | 1.480 | 2.196 | 2.251 | 3.168 |
intent to live a healthy lifestyle | 0.611 | 8.961 | <0.001 * | 0.776 | 0.668 | 1.164 | 1.065 | 2.081 |
trend | 0.599 | 6.336 | <0.001 * | 0. 696 | 0.121 | 0.535 | 0.612 | 0.271 |
persuasion by others | 0.578 | 1.461 | 0.225 | 0.927 | 1.043 | 0.993 | 1.172 | 1.208 |
lifestyle | 0.623 | 11.634 | <0.001 * | 0.789 | 1.819 | 1.281 | 1.803 | 2.799 |
constant | −10.036 | −13.616 | −17.136 | −31.123 |
Motivations | Model of Discriminant Analysis: Wilks’s λ: 0.824; F(15.108) = 5.213; p < 0.001 | Classification Functions: Assessment of Physical Activity | ||||||
---|---|---|---|---|---|---|---|---|
Wilks’s λ | F | p | Tolerance | Inactive p = 0.14 | Not Very Active p = 0.46 | Active p = 0.35 | Very Active p = 0.05 | |
no time | 0.889 | 10.165 | <0.001 * | 0.831 | 1.146 | 1.724 | 1.401 | 0.388 |
lack of financial resources | 0.866 | 6.492 | <0.001 * | 0.792 | 1.581 | 0.953 | 0.954 | 0.283 |
inability to prepare meals | 0.847 | 3.620 | 0.013 * | 0.956 | 1.453 | 1.627 | 1.685 | 1.104 |
lack of knowledge about the principles of healthy eating | 0.880 | 8.802 | <0.001 * | 0. 798 | 0.162 | 0.522 | 0.447 | 1.468 |
no housing conditions | 0.827 | 0.346 | 0.792 | 0.894 | 1.517 | 1.487 | 1.398 | 1.467 |
constant | −8.663 | −8.610 | −7.971 | −9.231 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek-Kusiak, A.K.; Kobyłka, A.; Korcz, N.; Sosnowska, M. Analysis of Eating Habits and Body Composition of Young Adult Poles. Nutrients 2021, 13, 4083. https://doi.org/10.3390/nu13114083
Mazurek-Kusiak AK, Kobyłka A, Korcz N, Sosnowska M. Analysis of Eating Habits and Body Composition of Young Adult Poles. Nutrients. 2021; 13(11):4083. https://doi.org/10.3390/nu13114083
Chicago/Turabian StyleMazurek-Kusiak, Anna K., Agata Kobyłka, Natalia Korcz, and Małgorzata Sosnowska. 2021. "Analysis of Eating Habits and Body Composition of Young Adult Poles" Nutrients 13, no. 11: 4083. https://doi.org/10.3390/nu13114083