Intake Estimation of Phytochemicals in a French Well-Balanced Diet
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Polyphenols
3.2. Carotenoids
3.3. Organosulfur Compounds
3.4. Caffeine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nissensohn, M.; Román-Viñas, B.; Sánchez-Villegas, A.; Piscopo, S.; Serra-Majem, L. The Effect of the Mediterranean Diet on Hypertension: A Systematic Review and Meta-Analysis. J. Nutr. Educ. Behav. 2016, 48, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Korakas, E.; Dimitriadis, G.; Raptis, A.; Lambadiari, V. Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? Nutrients 2018, 10, 1912. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open 2015, 5, e008222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The Impact of the Mediterranean Diet on the Cognitive Functioning of Healthy Older Adults: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Petersson, S.D.; Philippou, E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence. Adv. Nutr. 2016, 7, 889–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef] [Green Version]
- Tolve, R.; Cela, N.; Condelli, N.; Di Cairano, M.; Caruso, M.C.; Galgano, F. Microencapsulation as a Tool for the Formulation of Functional Foods: The Phytosterols’ Case Study. Foods 2020, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Świergiel, A.H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020, 25, 3804. [Google Scholar] [CrossRef]
- Kim, M.; Park, K. Association between phytochemical index and metabolic syndrome. Nutr. Res. Pract. 2020, 14, 252–261. [Google Scholar] [CrossRef]
- Agence Nationale de Sécurité Sanitaire Alimentation. RAPPORT de l’Anses Relatif à l’Actualisation des Repères du PNNS: Étude des Relations Entre Consommation de Groupes d’Aliments et Risque de Maladies Chroniques Non Transmissibles. November 2016. Available online: https://www.researchgate.net/publication/312665902_Actualisation_des_reperes_du_PNNS_etude_des_relations_entre_consommation_de_groupes_d’aliments_et_risque_de_maladies_chroniques_non_transmissibles (accessed on 1 August 2021).
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Groupe d’Etude des Marches de Restauration Collective et Nutrition (GEM-RCN). Recommandation Nutrition. Available online: https://www.economie.gouv.fr/files/directions_services/daj/marches_publics/oeap/gem/nutrition/nutrition.pdf (accessed on 1 September 2021).
- Chaltiel, D.; Adjibade, M.; Deschamps, V.; Touvier, M.; Hercberg, S.; Julia, C.; Kesse-Guyot, E. Programme National Nutrition Santé—Guidelines score 2 (PNNS-GS2): Development and validation of a diet quality score reflecting the 2017 French dietary guidelines. Br. J. Nutr. 2019, 122, 331–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Department of Agriculture (USDA). USDA Database for the Proanthocyanidin Content of Selected Foods, Release 2. 2015. Available online: https://data.nal.usda.gov/dataset/usda-database-proanthocyanidin-content-selected-foods-release-2-2015 (accessed on 1 September 2021).
- US Department of Agriculture (USDA). USDA Database for the Flavonoid Content of Selected Foods. Release 3.2. November 2015. Available online: https://data.nal.usda.gov/dataset/usda-database-flavonoid-content-selected-foods-release-32-november-2015 (accessed on 1 September 2021).
- US Department of Agriculture (USDA). USDA Branded Food Products Database. Available online: https://data.nal.usda.gov/dataset/usda-branded-food-products-database (accessed on 1 September 2021).
- Rothwell, J.A.; Pérez-Jiménez, J.; Neveu, V.; Medina-Ramon, A.; M’Hiri, N.; Garcia Lobato, P.; Manach, C.; Knox, K.; Eisner, R.; Wishart, D.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Phenol-Explorer. Database on Polyphenol Content in Foods. Available online: http://phenol-explorer.eu/foods (accessed on 1 September 2021).
- McNaughton, S.A.; Marks, G.C. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br. J. Nutr. 2003, 90, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Tennant, D.R.; Davidson, J.; Day, A.J. Phytonutrient intakes in relation to European fruit and vegetable consumption patterns observed in different food surveys. Br. J. Nutr. 2014, 112, 1214–1225. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jiménez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011, 93, 1220–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Braffett, B.H.; Simmens, S.J.; Young, H.A.; Ogden, C.L. Dietary Polyphenol Intake in US Adults and 10-Year Trends: 2007-2016. J. Acad. Nutr. Diet. 2020, 120, 1821–1833. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Bhatti, S.K.; Patil, H.R.; DiNicolantonio, J.J.; Lucan, S.C.; Lavie, C.J. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 1043–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.; Cross, A.J.; Daniel, C.R.; Graubard, B.I.; Wu, J.W.; Hollenbeck, A.R.; Gunter, M.J.; Park, Y.; Freedman, N.D. Caffeinated and decaffeinated coffee and tea intakes and risk of colorectal cancer in a large prospective study. Am. J. Clin. Nutr. 2012, 96, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Seal, C.J.; Brownlee, I.A. Whole-grain foods and chronic disease: Evidence from epidemiological and intervention studies. Proc. Nutr. Soc. 2015, 74, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014, 4, e005497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol. Nutr. Food Res. 2021, 65, e2001019. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- García-Conesa, M.T.; Chambers, K.; Combet, E.; Pinto, P.; Garcia-Aloy, M.; Andrés-Lacueva, C.; de Pascual-Teresa, S.; Mena, P.; Konic Ristic, A.; Hollands, W.J.; et al. Meta-Analysis of the Effects of Foods and Derived Products Containing Ellagitannins and Anthocyanins on Cardiometabolic Biomarkers: Analysis of Factors Influencing Variability of the Individual Responses. Int. J. Mol. Sci. 2018, 19, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [Green Version]
- Delimont, N.M.; Haub, M.D.; Lindshield, B.L. The Impact of Tannin Consumption on Iron Bioavailability and Status: A Narrative Review. Curr. Dev. Nutr. 2017, 1, 1–12. [Google Scholar] [CrossRef]
- Amiot, M.J.; Riva, C.; Vinet, A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes. Rev. 2016, 17, 573–586. [Google Scholar] [CrossRef]
- Gouranton, E.; Thabuis, C.; Riollet, C.; Malezet-Desmoulins, C.; El Yazidi, C.; Amiot, M.J.; Borel, P.; Landrier, J.F. Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. J. Nutr. Biochem. 2011, 22, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 2018, 108, 1069–1091. [Google Scholar] [CrossRef]
- Goncalves, A.; Amiot, M.J. Fat-soluble micronutrients and metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 492–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef]
- Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential Health Benefit of Garlic Based on Human Intervention Studies: A Brief Overview. Antioxidants 2020, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Li, N.; Du, L.; Zhao, R.; Yi, M.; Xu, Q.; Zhou, Y. Allium vegetable consumption and health: An umbrella review of meta-analyses of multiple health outcomes. Food Sci. Nutr. 2019, 7, 2451–2470. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.M.; Cornelis, M.C. Caffeine in the Diet: Country-Level Consumption and Guidelines. Nutrients 2018, 10, 1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCusker, R.R.; Goldberger, B.A.; Cone, E.J. Caffeine content of specialty coffees. J. Anal. Toxicol. 2003, 27, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez de Mejia, E.; Ramirez-Mares, M.V. Impact of caffeine and coffee on our health. Trends Endocrinol. Metab. 2014, 25, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Hursel, R.; Viechtbauer, W.; Dulloo, A.G.; Tremblay, A.; Tappy, L.; Rumpler, W.; Westerterp-Plantenga, M.S. The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: A meta-analysis. Obes. Rev. 2011, 12, e573–e581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.; O’Brien, C.; Peck, J.; et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 2017, 109, 585–648. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the safety of caffeine. EFSA J. 2015, 13, 4102. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4102 (accessed on 1 September 2021).
- Zhu, Q.; Wang, B.; Tan, J.; Liu, T.; Li, L.; Liu, Y.G. Plant Synthetic Metabolic Engineering for Enhancing Crop Nutritional Quality. Plant Commun. 2020, 1, 100017. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean Wild Edible Plants: Weeds or “New Functional Crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [Green Version]
- Björkman, M.; Klingen, I.; Birch, A.N.; Bones, A.M.; Bruce, T.J.; Johansen, T.J.; Meadow, R.; Mølmann, J.; Seljåsen, R.; Smart, L.E.; et al. Phytochemicals of Brassicaceae in plant protection and human health—Influences of climate, environment and agronomic practice. Phytochemistry 2011, 72, 538–556. [Google Scholar] [CrossRef]
- Kesarwani, A.; Chiang, P.Y.; Chen, S.S. Distribution of phenolic compounds and antioxidative activities of rice kernel and their relationships with agronomic practice. Sci. World J. 2014, 2014, 620171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
Phytochemical Class | High | Medium | Low |
---|---|---|---|
Phenolic acids | 100–650 | 45–100 | 5–45 |
Flax and sunflower seeds, yams, red chicory, filter coffee, artichokes, prunes, mushrooms, endive, mangos, Jerusalem artichokes, raspberries | Cherries, chia seeds, dark chocolate (70–85% cocoa), pineapple, wholegrain wheat, flageolet beans, white beans, lentils, split peas | Watermelon, red beans, cashew nuts, walnuts, coriander (cilantro), potatoes, peaches, carrots, black tea, broccoli, dates, basil, apples, white rice, blackcurrants, quinces, green tea, nectarines, peaches, red wine, red bell peppers (capsicum), pears, strawberries, apricots, turnips, grapefruit, cauliflower | |
Flavonoids (except anthocyanins) | 50–250 | 10–50 | 1–10 |
Dark chocolate (70–85% cocoa), parsley, black tea, dill, shallots, fennel, green tea, red chicory, rocket, mint, grapefruit, cress, thyme | Red wine, blackberries, oranges, soy, kale, lemons, chia seeds, cranberries, onions, black grapes, artichokes, chives, asparagus, mandarins, blueberries, pecan nuts, buckwheat, cherries, olives, blackcurrants, turnips, pistachio nuts, broccoli, spinach, apricots, prunes, endive | Peaches, apples, almonds, figs, raspberries, green bell peppers (capsicum), Brussels sprouts, strawberries, bananas, nectarines, pears, coriander (cilantro), blackcurrants, hazelnuts, flat beans, flageolet beans, white beans, lentils, split peas, green beans, celery, garlic, leeks, white grapes, lettuce, kiwifruit, black radishes, chickpeas, quinces, persimmons, mangos, yellow bell peppers (capsicum), squash, potatoes, tomatoes, courgettes, flax seeds, cashew nuts, white cabbage, cauliflower, watermelon | |
Anthocyanins | 45–210 | 10–45 | 1–10 |
Red cabbage, blueberries, blackcurrants, red chicory, blackberries, aubergines (eggplants), cranberries, red radishes, raspberries | Currant berries, cherries, strawberries, red wine, pecan nuts | Pistachio nuts, hazelnuts, red beans, prunes, walnuts, almonds, apples, nectarines, pears, peaches, dates | |
Tannins | 100–600 | 10–100 | 1–10 |
Blackcurrants, red beans, hazelnuts, pecan nuts, cranberries, pistachios, red cabbage, plums, blueberries, almonds, peanuts, strawberries, apples | White and black grapes, peach, walnuts, currant berries, pears, apricots, raspberries, nectarines, red wine, blackberries, cherries, dates, mangos | Buckwheat, green tea, quinces, black tea, bananas, kiwifruit, cashew nuts | |
Carotenoids | 5–20 | 2.5–5 | 1–2.5 |
Spinach, carrots, parsley, kale, red chicory, basil, squash, yams, cress, lettuce, coriander (cilantro) | Arugula, watermelon, pistachio nuts, chives, leeks, thyme, tomatoes, persimmons, olives, peas | Red bell peppers (capsicum), grapefruit, apricots, melon, Brussels sprouts, broccoli, fennel, asparagus, flat beans, red cabbage, avocados | |
Sulfur compounds | >1000 | 100–250 | 10–100 |
Onions, leeks | Brussels sprouts, garlic, black radishes, kale | Red radishes, red cabbage, broccoli, green cabbage, white cabbage, cauliflower | |
Caffeine | 50–100 | 10–50 | <10 |
Espresso, filter coffee | Energy drinks, black tea, green tea | Cola drinks | |
Phytosterols | >200 | 50–200 | 3–50 |
Vegetable oils (corn, sunflower, soybean) | Almonds, peanuts, corn (maize), oats, wheat | Cauliflower, broccoli, carrots, tomatoes, apples, bananas, grapes, oranges |
Food Category | Examples | Portions per Week | Amounts per Day (g) | ||
---|---|---|---|---|---|
Summer Menu | Winter Menu | Summer Menu | Winter Menu | ||
Grains, beans, nuts, and seeds | |||||
Starchy foods | Corn, buckwheat, Jerusalem artichokes, oats, potatoes, quinoa, rice (white and whole), rye, wheat (refined and whole) | 16 | 18 | 274.3 | 308.6 |
Pulses | Chickpeas, flageolet beans, lentils, red beans, split peas, white beans | 2 | 2 | 34.3 | 34.3 |
Nuts and seeds | Almonds, cashew nuts, chia seeds, coconut, flax seeds, hazelnuts, macadamia nuts, peanuts, pecan nuts, pistachio nuts, sesame seeds, sunflower seeds, walnuts | 0 | 1 | 0 | 2.9 |
Fruits, vegetables, spices, and herbs | |||||
White | Apples, endive, mushrooms, quinces, parsnips, pears, salsify, turnips, white grapes | 2 | 13 | 35.7 | 232.1 |
White/green | Celery, fennel, leek, shallots | 2 | 3 | 35.7 | 53.6 |
Green | Avocados, asparagus, artichokes, courgettes, cress, cucumbers, flat beans, green beans, green bell peppers (capsicum), kiwifruit, lettuce, olives, peas, rocket, spinach | 10 | 7.5 | 178.6 | 133.9 |
Yellow | Bananas, lemons, pineapple, yellow bell peppers (capsicum) | 3 | 5 | 53.6 | 89.3 |
Orange | Carrots, mandarins, oranges, squash, yams | 10 | 6 | 178.6 | 107.2 |
Red | Beetroot, cherries, cranberries, redcurrants, dates, figs, grapefruit, plums, raspberries, red bell peppers (capsicum), strawberries, tomatoes, watermelon | 13 | 2 | 232.1 | 35.7 |
Purple | Plums, blackcurrants, blackberries, blueberries, eggplants, black grapes, red chicory | 5 | 3 | 89.3 | 53.6 |
Cruciferous vegetables | Brussels sprouts, broccoli, cauliflower, green cabbage, kale, red cabbage, white cabbage | 0 | 2 | 0 | 35.0 |
Radishes | Black radishes, red radishes | 2 | 0 | 35.0 | 0 |
Allium spp. | Garlic, onions, chives | 2 | 2 | 5.6 | 5.6 |
Herbs | Basil, coriander (cilantro), dill, mint, parsley, thyme | 10 | 9 | 14.3 | 12.9 |
Beverages | |||||
Coffee (filter) | 3 | 3 | 85.7 | 85.7 | |
Coffee (espresso) | 7 | 7 | 60.0 | 60.0 | |
Tea | Black tea, green tea | 4 | 4 | 114.3 | 114.3 |
Wine | Red wine | 2 | 2 | 34.3 | 34.3 |
Other | Sodas, energy drinks | 1 | 1 | 28.0 | 28.0 |
Plant-derived sweets | |||||
Chocolate | Dark chocolate (70–85% cocoa) | 7 | 7 | 19.6 | 19.6 |
Food or Beverage Category | Phytochemical Content (Summer) [mg/Day] | Phytochemical Content (Winter) [mg/Day] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA | F | A | T | Car | OS | Caf | PA | F | A | T | Car | OS | Caf | |
Grains, beans, nuts, and seeds | ||||||||||||||
Starchy foods | 136.0 | 4.2 | 0.0 | 2.5 | 0.2 | 0.0 | 0.0 | 153.0 | 4.7 | 0.0 | 2.8 | 0.3 | 0.0 | 0.0 |
Pulses | 14.8 | 0.8 | 0.8 | 61.9 | 0.0 | 0.0 | 0.0 | 14.8 | 0.8 | 0.8 | 61.9 | 0.0 | 0.0 | 0.0 |
Nuts and seeds | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.3 | 0.2 | 0.1 | 4.9 | 0.0 | 0.0 | 0.0 |
Fruits, vegetables, spices, and herbs | ||||||||||||||
White | 21.0 | 1.7 | 0.2 | 12.2 | 0.0 | 0.0 | 0.0 | 136.6 | 11.2 | 1.1 | 79.0 | 0.1 | 0.0 | 0.0 |
White/green | 0.2 | 18.2 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.3 | 27.3 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
Green | 106.3 | 25.3 | 0.0 | 0.4 | 5.9 | 0.0 | 0.0 | 79.7 | 18.9 | 0.0 | 0.3 | 4.5 | 0.0 | 0.0 |
Yellow | 17.2 | 1.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 5.7 | 22.8 | 0.0 | 0.2 | 0.3 | 0.0 | 0.0 |
Orange | 98.1 | 6.7 | 0.8 | 25.7 | 5.3 | 0.0 | 0.0 | 100.0 | 1.5 | 0.2 | 3.2 | 8.9 | 0.0 | 0.0 |
Red | 94.2 | 24.8 | 38.8 | 132.4 | 2.3 | 0.0 | 0.0 | 14.5 | 3.8 | 6.0 | 20.4 | 0.4 | 0.0 | 0.0 |
Purple | 46.2 | 25.4 | 96.5 | 154.2 | 1.4 | 0.0 | 0.0 | 27.7 | 15.3 | 57.9 | 92.5 | 0.8 | 0.0 | 0.0 |
Cruciferous vegetables | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.9 | 2.8 | 10.5 | 24.5 | 0.7 | 28.7 | 0.0 |
Radishes | 0.5 | 0.0 | 0.0 | 11.0 | 0.0 | 30.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Allium spp. | 0.1 | 0.8 | 0.0 | 0.0 | 0.0 | 39.0 | 0.0 | 0.1 | 0.8 | 0.0 | 0.0 | 0.0 | 39.0 | 0.0 |
Herbs | 4.2 | 9.9 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 3.8 | 8.9 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
Beverages | ||||||||||||||
Coffee (filter) | 181.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44.0 | 181.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44.0 |
Coffee (espresso) | 60.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.8 | 60.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.8 |
Tea | 17.9 | 110.6 | 0.0 | 4.5 | 0.0 | 0.0 | 18.3 | 17.9 | 110.6 | 0.0 | 4.5 | 0.0 | 0.0 | 18.3 |
Wine | 4.2 | 16.6 | 7.5 | 7.7 | 0.0 | 0.0 | 0.0 | 4.2 | 16.6 | 7.5 | 7.7 | 0.0 | 0.0 | 0.0 |
Soda | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 |
Plant-derived sweets | ||||||||||||||
Chocolate (dark, 70–85% cocoa) | 15.9 | 51.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.9 | 51.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Total (mg) | 802.8 | 247.0 | 155.7 | 401.9 | 16.4 | 69.8 | 111.6 | 809.0 | 246.2 | 83.9 | 301.9 | 17.1 | 67.7 | 111.6 |
Total polyphenols (PA + F + A + T) | 1607.4 | 1441.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiot, M.-J.; Latgé, C.; Plumey, L.; Raynal, S. Intake Estimation of Phytochemicals in a French Well-Balanced Diet. Nutrients 2021, 13, 3628. https://doi.org/10.3390/nu13103628
Amiot M-J, Latgé C, Plumey L, Raynal S. Intake Estimation of Phytochemicals in a French Well-Balanced Diet. Nutrients. 2021; 13(10):3628. https://doi.org/10.3390/nu13103628
Chicago/Turabian StyleAmiot, Marie-Josèphe, Christian Latgé, Laurence Plumey, and Sylvie Raynal. 2021. "Intake Estimation of Phytochemicals in a French Well-Balanced Diet" Nutrients 13, no. 10: 3628. https://doi.org/10.3390/nu13103628
APA StyleAmiot, M. -J., Latgé, C., Plumey, L., & Raynal, S. (2021). Intake Estimation of Phytochemicals in a French Well-Balanced Diet. Nutrients, 13(10), 3628. https://doi.org/10.3390/nu13103628