Synergistic Interaction of Dietary Pattern and Concordance Lifestyle with Abnormal Liver Function among Young Adults in Taiwan: A Population-Based Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort and Design
2.2. Socio-Demographic Characteristics and Lifestyle Factors
2.3. Anthropometric, Biochemical, and Clinical Data
2.4. Dietary Assessment
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Liver-Associated Dietary Pattern and Liver Function Biomarkers
3.3. Interactive Association of Dietary Pattern, Lifestyles, and Liver Function Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsai, P.-Y.; Yen, C.-J.; Li, Y.-C.; Chiu, T.-Y.; Chen, C.-Y.; Jan, C.-F. Association between abnormal liver function and risk factors for metabolic syndrome among freshmen. J. Adolesc. Health 2007, 41, 132–137. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef]
- Moshayedi, H.; Ahrabi, R.; Mardani, A.; Sadigetegad, S.; Farhudi, M. Association between non-alcoholic fatty liver disease and ischemic stroke. Iran. J. Neurol. 2014, 13, 144–148. [Google Scholar]
- Schindhelm, R.K.; Dekker, J.M.; Nijpels, G.; Bouter, L.M.; Stehouwer, C.D.; Heine, R.J.; Diamant, M. Alanine aminotransferase predicts coronary heart disease events: A 10-year follow-up of the Hoorn Study. Atherosclerosis 2007, 191, 391–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, Z.; Ahmed, U.; Walayat, S.; Ren, J.; Martin, D.K.; Moole, H.; Koppe, S.; Yong, S.; Dhillon, S. Liver function tests in identifying patients with liver disease. Clin. Exp. Gastroenterol. 2018, 11, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, K.S.; Zakai, N.A.; Lidofsky, S.D.; Callas, P.W.; Judd, S.E.; Tracy, R.P.; Cushman, M. Non-alcoholic fatty liver disease, liver biomarkers and stroke risk: The reasons for geographic and racial differences in stroke cohort. PLoS ONE 2018, 13, e0194153. [Google Scholar] [CrossRef]
- Hsieh, M.-H.; Lin, W.-Y.; Chien, H.-H.; Chien, L.-H.; Huang, C.-K.; Yang, J.-F.; Chang, N.-C.; Huang, C.-F.; Wang, C.-L.; Chuang, W.-L.; et al. Waist circumference, body mass index, serum uric acid, blood sugar, and triglyceride levels are important risk factors for abnormal liver function tests in the Taiwanese population. Kaohsiung J. Med. Sci. 2012, 28, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Estes, C.; Chan, H.L.Y.; Chien, R.N.; Chuang, W.-L.; Fung, J.; Goh, G.B.-B.; Hu, T.H.; Huang, J.-F.; Jang, B.K.; Jun, D.W.; et al. Modelling NAFLD disease burden in four Asian regions-2019–2030. Aliment. Pharmacol. Ther. 2020, 51, 801–811. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.; Huang, M.-H.; Yang, J.-C.; Nien, C.-K.; Yang, C.-C.; Yeh, Y.-H.; Yueh, S.-K. Prevalence and risk factors of nonalcoholic fatty liver disease in an adult population of Taiwan: Metabolic significance of nonalcoholic fatty liver disease in nonobese adults. J. Clin. Gastroenterol. 2006, 40, 745–752. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Hsu, C.-Y.; Chiou, H.-Y.; Lee, H.-A.; Hsu, L.-M.; Chang, P.-Y.; Kurniawan, A.L.; Chao, J.C.-J. Association between dietary patterns and serum hepatic enzyme levels in adults with dyslipidemia and impaired fasting plasma glucose. Nutrients 2021, 13, 987. [Google Scholar] [CrossRef]
- Salehi-sahlabadi, A.; Sadat, S.; Beigrezaei, S.; Pourmasomi, M.; Feizi, A.; Ghiasvand, R.; Hadi, A.; Clark, C.C.T.; Miraghajani, M. Dietary patterns and risk of non-alcoholic fatty liver disease. BMC Gastroenetrol. 2021, 21, 41. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Goldsmith, R.; Webb, M.; Zvibel, I.; Goldiner, I.; Blendis, L.; Halpern, Z.; Oren, R. Role of leisure-time physical activity in nonalcoholic fatty liver disease: A population-based study. Hepatology 2008, 48, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Rezayat, A.A.; Moghadam, M.D.; Nour, M.G.; Shirazinia, M.; Ghodsi, H.; Zahmatkesh, M.R.R.; Noghabi, M.T.; Hoseini, B.; Rezayat, K.A. Association between smoking and non-alcoholic fatty liver disease: A systematic review and meta-analysis. SAGE Open Med. 2018, 6, 2050312117745223. [Google Scholar] [CrossRef] [Green Version]
- Muga, M.A.; Owili, P.O.; Hsu, C.-Y.; Rau, H.-H.; Chao, J.C.-J. Association between dietary patterns and cardiovascular risk factors among middle-aged and elderly adults in Taiwan: A population-based study from 2003 to 2012. PLoS ONE 2016, 11, e0157745. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-Y.; Chou, Y.-C.; Chao, J.C.-J.; Hsu, C.-Y.; Cha, T.-L.; Tsao, C.-W. The association between dietary patterns and semen quality in a general asian population of 7282 males. PLoS ONE 2015, 10, e0134224. [Google Scholar] [CrossRef]
- Paramastri, R.; Hsu, C.-Y.; Lee, H.-A.; Lin, L.-Y.; Kurniawan, A.L.; Chao, J.C.-J. Association between dietary pattern, lifestyle, anthropometric status, and anemia-related biomarkers among adults: A population-based study from 2001 to 2015. Int. J. Environ. Res. 2021, 18, 3438. [Google Scholar] [CrossRef]
- Chin, C.-C.; Kuo, Y.-H.; Yeh, C.-Y.; Chen, J.-S.; Tang, R.; Changchien, C.-R.; Wang, J.-Y.; Huang, W.-S. Role of body mass index in colon cancer patients in Taiwan. World J. Gastroenterol. 2012, 18, 4191–4198. [Google Scholar] [CrossRef]
- MJ Group. MJ Health Screening Center Questionnaire QR-121-1 MJ2011.06-1104TW. Available online: https://www.mjlife.com/index.aspx?lang=chi&fn=index (accessed on 5 April 2021).
- Meyer, K.A.; Sijtsma, F.P.; Nettleton, J.A.; Steffen, L.M.; Van Horn, L.; Shikany, J.M.; Gross, M.D.; Mursu, J.; Traber, M.G.; Jacobs, D.R., Jr. Dietary patterns are associated with plasma F2-isoprostanes in an observational cohort study of adults. Free Radic. Biol. Med. 2013, 57, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.; Schulze, M.B.; Schienkiewitz, A.; Nöthlings, U.; Boeing, H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am. J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef]
- Kurniawan, A.L.; Hsu, C.-Y.; Lee, H.-A.; Rau, H.-H.; Paramastri, R.; Syauqy, A.; Chao, J.C.-J. Comparing two methods for deriving dietary patterns associated with risk of metabolic syndrome among middle-aged and elderly Taiwanese adults with impaired kidney function. BMC Med. Res. Methodol. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Batis, C.; Mendez, M.A.; Gordon-Larsen, P.; Sotres-Alvarez, D.; Adair, L.; Popkin, B. Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr. 2016, 19, 195–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, J.; Massey, J.R. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 253, 68–78. [Google Scholar]
- Jonquet, C.; Cerri, S. The Strobe model: Dynamic service generation on the grid. Appl. Artif. Intell. 2005, 19, 967–1013. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-W.; Yun, K.E.; Jung, H.-S.; Chang, Y.; Choi, E.-S.; Kwon, M.-J.; Lee, E.-H.; Woo, E.J.; Kim, N.H.; Shin, H.; et al. Sleep duration and quality in relation to non-alcoholic fatty liver disease in middle-aged workers and their spouses. J. Hepatol. 2013, 59, 351–357. [Google Scholar] [CrossRef]
- Marin-Alejandre, B.A.; Abete, I.; Cantero, I.; Riezu-Boj, J.I.; Milagro, F.I.; Monreal, J.I.; Elorz, M.; Herrero, J.I.; Benito-Boillos, A.; Quiroga, J.; et al. Association between sleep disturbances and liver status in obese subjects with nonalcoholic fatty liver disease: A comparison with healthy controls. Nutrients 2019, 11, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallsworth, K.; Thoma, C.; Moore, S.; Ploetz, T.; Anstee, Q.M.; Taylor, R.; Day, C.P.; Trenell, M.I. Non-alcoholic fatty liver disease is associated with higher levels of objectively measured sedentary behaviour and lower levels of physical activity than matched healthy controls. Frontline Gastroenterol. 2015, 6, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Lee, J.E.; Chang, Y.; Kim, M.K.; Sung, E.; Shin, H.; Ryu, S. Dietary sodium and potassium intake in relation to non-alcoholic fatty liver disease. Br. J. Nutr. 2016, 116, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Elevated serum levels of aminotransferases in relation to unhealthy foods intake: Tehran lipid and glucose study. BMC Endocr. Disord. 2019, 19, 100. [Google Scholar] [CrossRef] [Green Version]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Shim, P.; Choi, D.; Park, Y. Association of blood fatty acid composition and dietary pattern with the risk of non-alcoholic fatty liver disease in patients who underwent cholecystectomy. Ann. Nutr. Metab. 2017, 70, 303–311. [Google Scholar] [CrossRef]
- Fonseca-Alaniz, M.H.; Takada, J.; Andreotti, S.; De Campos, T.B.; Campaña, A.B.; Borges-Silva, C.N.; Lima, F.B. High sodium intake enhances insulin-stimulated glucose uptake in rat epididymal adipose tissue. Obesity 2008, 16, 1186–1192. [Google Scholar] [CrossRef]
- Lee, E.-Y.; Choi, H.Y.; Cho, H.; Kim, B.H.; Ki, M. Health behavior associated with liver enzymes among obese Korean adolescents, 2009–2014. PLoS ONE 2018, 13, e0190535. [Google Scholar] [CrossRef] [Green Version]
- Maersk, M.; Belza, A.; Stødkilde-Jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2011, 95, 283–289. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Thongprayoon, C.; Edmonds, P.; Cheungpasitporn, W. Associations of sugar-and artificially sweetened soda with nonalcoholic fatty liver disease: A systematic review and meta-analysis. QJM Int. J. Med. 2016, 109, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Softic, S.; Cohen, D.E.; Kahn, C.R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 2016, 61, 1282–1293. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dai, M.; Bi, Y.; Xu, M.; Xu, Y.; Li, M.; Wang, T.; Huang, F.; Xu, B.; Zhang, J. Active smoking, passive smoking, and risk of nonalcoholic fatty liver disease (NAFLD): A population-based study in China. J. Epidemiol. 2013, 23, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitling, L.P.; Raum, E.; Müller, H.; Rothenbacher, D.; Brenner, H. Synergism between smoking and alcohol consumption with respect to serum gamma-glutamyltransferase. Hepatology 2009, 49, 802–808. [Google Scholar] [CrossRef]
- Park, E.Y.; Lim, M.K.; Oh, J.-K.; Cho, H.; Bae, M.J.; Yun, E.H.; Kim, D.-I.; Shin, H.-R. Independent and supra-additive effects of alcohol consumption, cigarette smoking, and metabolic syndrome on the elevation of serum liver enzyme levels. PLoS ONE 2013, 8, e63439. [Google Scholar] [CrossRef]
- Husain, K.; Scott, B.R.; Reddy, S.K.; Somani, S.M. Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system. Alcohol 2001, 25, 89–97. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Thongprayoon, C.; Panjawatanan, P.; Ungprasert, P. Short sleep duration and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2016, 31, 1802–1807. [Google Scholar] [CrossRef]
- Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. Short sleep duration is a risk of incident nonalcoholic fatty liver disease: A population-based longitudinal study. J. Gastrointest. Liver Dis. 2019, 28, 73–81. [Google Scholar] [CrossRef]
- Stern, J.H.; Grant, A.S.; Thomson, C.A.; Tinker, L.; Hale, L.; Brennan, K.M.; Woods, N.F.; Chen, Z. Short sleep duration is associated with decreased serum leptin, increased energy intake and decreased diet quality in postmenopausal women. Obesity 2014, 22, E55–E61. [Google Scholar] [CrossRef]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Dashti, H.S.; Scheer, F.A.; Jacques, P.F.; Lamon-Fava, S.; Ordovás, J.M. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef]
- Ryu, S.; Chang, Y.; Jung, H.-S.; Yun, K.E.; Kwon, M.-J.; Choi, Y.; Kim, C.-W.; Cho, J.; Suh, B.-S.; Cho, Y.K.; et al. Relationship of sitting time and physical activity with non-alcoholic fatty liver disease. J. Hepatol. 2015, 63, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef] [Green Version]
- Trovato, F.M.; Martines, G.F.; Brischetto, D.; Trovato, G.; Catalano, D. Neglected features of lifestyle: Their relevance in non-alcoholic fatty liver disease. World J. Hepatol. 2016, 8, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Oddy, W.H.; Herbison, C.E.; Jacoby, P.; Ambrosini, G.L.; O’Sullivan, T.A.; Ayonrinde, O.T.; Olynyk, J.K.; Black, L.J.; Beilin, L.J.; Mori, T.A.; et al. The Western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescene. Am. J. Gastroenterol. 2013, 108, 778–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalafati, I.-P.; Borsa, D.; Dimitriou, M.; Revenas, K.; Kokkinos, A.; Dedoussis, G.V. Dietary patterns and non-alcoholic fatty liver disease in a Greek case-control study. Nutrition 2019, 61, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Joy, D.; Thava, V.R.; Scott, B.B. Diagnosis of fatty liver disease: Is biopsy necessary? Eur. J. Gastroenterol. Hepatol. 2003, 15, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Cheng, E.; Um, C.Y.; Prizment, A.E.; Lazovich, D.; Bostick, R.M. Evolutionary-concordance lifestyle and diet and Mediterranean diet pattern scores and risk of incident colorectal cancer in Iowa women. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1195–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Baseline b | Follow-Up b | ||
---|---|---|---|---|
Total (n = 62,645) | Normal Liver Function (n = 51,139) | Abnormal Liver Function c (n = 11,506) | p-Value | |
Age (years) | 37.6 ± 12.6 | 38.0 ± 13.5 | 42.5 ± 13.4 | <0.0001 |
Sex | <0.0001 | |||
Male | 13,189 (21.1%) | 9223 (18.0%) | 3966 (34.5%) | |
Female | 49,456 (78.8%) | 41,916 (82.0%) | 7540 (65.5%) | |
Observational period (years) | 4.8 ± 3.2 | 4.1 ± 2.7 | <0.0001 | |
Marital status | <0.0001 | |||
No | 23,519 (37.5%) | 19,705 (38.5%) | 3814 (33.1%) | |
Married | 39,126 (62.5%) | 31,434 (61.5%) | 7692 (66.9%) | |
Education | <0.0001 | |||
<High school | 10,277 (16.4%) | 8144 (15.9%) | 2133 (18.5%) | |
≥High school | 52,368 (83.6%) | 42,995 (84.1%) | 9373 (81.5%) | |
Family income | 0.247 | |||
<800,000 NTD | 41,417 (60.4%) | 33,863 (66.2%) | 7554 (65.7%) | |
≥800,000 NTD | 21,228 (39.6%) | 17,276 (33.8%) | 3952 (34.3%) | |
Smoking status | <0.0001 | |||
Non-smoker | 51,948 (82.9%) | 42,857 (83.8%) | 9091 (79.0%) | |
Second-hand smoker | 3635 (5.8%) | 2982 (5.8%) | 653 (5.7%) | |
Past smoker | 1470 (2.4%) | 1147 (2.2%) | 323 (2.8%) | |
Smoke occasionally | 1339 (2.1%) | 915 (1.8%) | 424 (3.7%) | |
Smoke daily | 4253 (6.8%) | 3238 (6.4%) | 1015 (8.8%) | |
Drinking status | <0.0001 | |||
Non-drinker | 57,871 (92.4%) | 47,591 (93.1%) | 10,280 (89.3%) | |
Past drinker | 570 (0.9%) | 444 (0.9%) | 126 (1.1%) | |
1–2 times/week | 3096 (4.9%) | 2295 (4.5%) | 801 (6.9%) | |
3–4 times/week | 768 (1.2%) | 551 (1.1%) | 217 (1.9%) | |
Drank daily | 340 (0.6%) | 258 (0.4%) | 82 (0.8%) | |
Sleep duration | <0.0001 | |||
Short (<6 h) | 12,767 (20.4%) | 10,255 (20.1%) | 2512 (21.8%) | |
Normal (6–8 h) | 44,562 (71.1%) | 36,455 (71.3%) | 8107 (70.5%) | |
Long (>8 h) | 5316 (8.5%) | 4429 (8.6%) | 887 (7.7%) | |
Physical activity | <0.0001 | |||
Less active (≤2 h/week) | 48,404 (77.3%) | 40,006 (78.2%) | 8398 (72.9%) | |
Active (>2 h/week) | 14,241 (22.7%) | 11,133 (21.8%) | 3108 (27.1%) |
Variables | Baseline b | Follow-Up b | ||
---|---|---|---|---|
Total (n = 62,645) | Normal Liver Function (n = 51,139) | Abnormal Liver Function c (n = 11,506) | p-Value | |
Body mass index (kg/m2) d | <0.0001 | |||
Underweight | 8463 (13.5%) | 7658 (14.9%) | 805 (6.9%) | |
Normal weight | 40,536 (64.7%) | 33,619 (65.7%) | 6917 (60.1%) | |
Overweight | 9642 (15.4%) | 7070 (13.8%) | 2572 (22.3%) | |
Obese | 4004 (6.4%) | 2792 (5.6%) | 1212 (10.7%) | |
Body fat (%) | 26.6 ± 6.7 | 26.6 ± 6.9 | 29.6 ± 7.8 | <0.0001 |
Systolic pressure (mmHg) | 113.4 ± 7.4 | 113.9 ± 6.9 | 122.8 ± 7.6 | <0.0001 |
Diastolic pressure (mmHg) | 69.4 ± 1.8 | 68.0 ± 1.3 | 74.8 ± 1.9 | <0.0001 |
Liver function biomarkers | ||||
ALT (U/L) | 24.3 ± 2.6 | 17.6 ± 7.0 | 50.6 ± 4.6 | <0.0001 |
AST (U/L) | 22.3 ± 4.6 | 19.3 ± 4.2 | 34.0 ± 8.5 | <0.0001 |
γ-GT (U/L) | 21.5 ± 2.5 | 14.6 ± 5.6 | 48.7 ± 4.5 | <0.0001 |
ALP (U/L) | 94.27 ± 6.4 | 93.07 ± 6.3 | 99.0 ± 4.7 | <0.0001 |
LDH (U/L) | 209.4 ± 7.9 | 207.5 ± 7.7 | 216.9 ± 8.7 | <0.0001 |
albumin (g/dL) | 4.5 ± 0.2 | 4.4 ± 0.2 | 4.5 ± 0.3 | <0.0001 |
Total bilirubin (mg/dL) | 0.8 ± 0.3 | 0.8 ± 0.3 | 0.9 ± 0.3 | <0.0001 |
Iron biomarkers | ||||
RBC (×106/μL) | 4.7 ± 0.5 | 4.7 ± 0.4 | 4.9 ± 0.4 | <0.0001 |
Hemoglobin (mmol/L) | 8.6 ± 0.9 | 8.5 ± 0.8 | 9.0 ± 0.9 | <0.0001 |
Hematocrit (%) | 41.1 ± 4.1 | 40.6 ± 4.0 | 43.3 ± 4.2 | <0.0001 |
MCV (fL) | 87.9 ± 6.7 | 87.7 ± 6.8 | 88.6 ± 6.2 | <0.0001 |
MCH (pg) | 29.5 ± 2.7 | 29.4 ± 2.7 | 29.8 ± 2.5 | <0.0001 |
MCHC (g/dL) | 33.6 ± 0.8 | 33.5 ± 0.8 | 33.6 ± 0.8 | <0.0001 |
Iron (μg/dL) | 92.9 ± 3.7 | 90.8 ± 3.7 | 101.4 ± 3.7 | <0.0001 |
Ferritin (ng/mL) | 125.6 ± 1.1 | 107.7 ± 1.4 | 214.6 ± 1.6 | <0.0001 |
Food Items | Explained Variation (%) | Factor Loading |
---|---|---|
Soy sauce or other dips | 45.9 | 0.47 |
Sugar-sweetened beverages | 8.19 | 0.46 |
Preserved and processed foods | 7.34 | 0.22 |
Seafood | 0.57 | −0.31 |
Fruits | 1.43 | −0.30 |
Eggs | 1.51 | −0.30 |
Dark-colored vegetables | 1.08 | −0.24 |
Honey/jam | 0.04 | −0.19 |
Light-colored vegetables | 0.47 | −0.17 |
Sweet bread | 7.76 | −0.15 |
Whole grains | 0.19 | −0.12 |
Milk | 5.59 | −0.10 |
Fried rice/flour products | 2.78 | −0.09 |
Instant noodles | 0.81 | −0.07 |
Legumes/soy products | 1.14 | −0.07 |
Root crops | 0.06 | −0.04 |
Rice/flour products | 0.02 | −0.01 |
Dairy products | 5.14 | 0.14 |
Organ meats | 0.25 | 0.14 |
Meats | 1.19 | 0.07 |
Vegetables with added oil/fats | <0.0001 | 0.07 |
Deep-fried foods | 0.18 | 0.03 |
Quartile | Dietary Pattern | Concordance Lifestyle a | ||
---|---|---|---|---|
Model 1 b | Model 2 c | Model 1 b | Model 2 c | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
1 | 1.00 (Ref) | 1.00 (Ref) | ||
2 | 1.02 (0.99, 1.04) | 1.03 (0.99, 1.07) | 1.40 (1.30, 1.50) | 1.23 (1.14, 1.32) |
3 | 1.06 (1.03, 1.09) | 1.07 (1.03, 1.11) | 1.64 (1.53, 1.75) | 1.29 (1.21, 1.39) |
4 | 1.09 (1.06, 1.13) | 1.08 (1.04, 1.12) | 1.83 (1.70, 1.96) | 1.42 (1.31, 1.53) |
p for Trend | <0.001 | 0.001 | <0.001 | <0.001 |
Quartiles of Dietary Pattern | Quartiles of Concordance Lifestyle | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
1 | 1.00 (Ref) | 1.25 (1.18, 1.32) | 1.53 (1.46,1.61) | 2.10 (1.99, 2.21) |
2 | 1.08 (1.02, 1.14) | 1.26 (1.19, 1.33) | 1.56 (1.48, 1.65) | 2.10 (1.99, 2.22) |
3 | 1.09 (1.03, 1.15) | 1.28 (1.21, 1.36) | 1.61 (1.53, 1.70) | 2.11 (1.98, 2.23) |
4 | 1.21 (1.14, 1.28) | 1.33 (1.26, 1.41) | 1.63 (1.55, 1.72) | 2.14 (2.02, 2.26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramastri, R.; Hsu, C.-Y.; Chuang, Y.-K.; Lee, H.-A.; Wiratama, B.S.; Chao, J.C.-J. Synergistic Interaction of Dietary Pattern and Concordance Lifestyle with Abnormal Liver Function among Young Adults in Taiwan: A Population-Based Longitudinal Study. Nutrients 2021, 13, 3591. https://doi.org/10.3390/nu13103591
Paramastri R, Hsu C-Y, Chuang Y-K, Lee H-A, Wiratama BS, Chao JC-J. Synergistic Interaction of Dietary Pattern and Concordance Lifestyle with Abnormal Liver Function among Young Adults in Taiwan: A Population-Based Longitudinal Study. Nutrients. 2021; 13(10):3591. https://doi.org/10.3390/nu13103591
Chicago/Turabian StyleParamastri, Rathi, Chien-Yeh Hsu, Yung-Kun Chuang, Hsiu-An Lee, Bayu Satria Wiratama, and Jane C.-J. Chao. 2021. "Synergistic Interaction of Dietary Pattern and Concordance Lifestyle with Abnormal Liver Function among Young Adults in Taiwan: A Population-Based Longitudinal Study" Nutrients 13, no. 10: 3591. https://doi.org/10.3390/nu13103591
APA StyleParamastri, R., Hsu, C. -Y., Chuang, Y. -K., Lee, H. -A., Wiratama, B. S., & Chao, J. C. -J. (2021). Synergistic Interaction of Dietary Pattern and Concordance Lifestyle with Abnormal Liver Function among Young Adults in Taiwan: A Population-Based Longitudinal Study. Nutrients, 13(10), 3591. https://doi.org/10.3390/nu13103591