The Impact of Multispecies Probiotics on Calcium and Magnesium Status in Healthy Male Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multispecies Probiotic Preparation
2.2. Ethical Clearance
2.3. Animals’ Habituation
2.4. Experimental Design
2.5. Organ Sampling
2.6. Minerals (Calcium and Magnesium) Concentration in Organs
2.7. Statistical Analysis
3. Results
3.1. The Daily Intake of Diet, Ca, and Mg in Rats
3.2. The Concentration of Minerals (Ca and Mg) and Their Molar Ratio (Ca/Mg) in Tissues
3.3. The Correlation of Ca and Mg in Tissues
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timmerman, H.M.; Koning, C.J.M.; Mulder, L.; Rombouts, F.M.; Beynen, A.C. Monostrain, multistrain and multispecies probiotics—A comparison of functionality and efficacy. Int. J. Food Microbiol. 2004, 96, 219–233. [Google Scholar] [CrossRef]
- Yoon, J.S.; Sohn, W.; Lee, O.Y.; Lee, S.P.; Lee, K.N.; Jun, D.W.; Lee, H.L.; Yoon, B.C.; Choi, H.S.; Chung, W.S.; et al. Effect of multispecies probiotics on irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial. J. Gastroenterol. Hepatol. 2014, 29, 52–59. [Google Scholar] [CrossRef]
- Asemi, Z.; Bahmani, S.; Shakeri, H.; Jamal, A.; Faraji, A.M. Effect of multispecies probiotic supplements on serum minerals, liver enzymes and blood pressure in patients with type 2 diabetes. Int. J. Diabetes Dev. Ctries. 2015, 35, 90–95. [Google Scholar] [CrossRef]
- Ahn, S.B.; Jun, D.W.; Kang, B.K.; Lim, J.H.; Lim, S.; Chung, M.J. Randomized, Double-blind, Placebo-controlled Study of a Multispecies Probiotic Mixture in Nonalcoholic Fatty Liver Disease. Sci. Rep. 2019, 9, 5688. [Google Scholar] [CrossRef] [Green Version]
- Satokari, R.; Grönroos, T.; Laitinen, K.; Salminen, S.; Isolauri, E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett. Appl. Microbiol. 2009, 48, 8–12. [Google Scholar] [CrossRef]
- Parvaneh, K.; Jamaluddin, R.; Karimi, G.; Erfani, R. Effect of probiotics supplementation on bone mineral content and bone mass density. Sci. World J. 2014, 2014, 595962. [Google Scholar] [CrossRef] [Green Version]
- Martín-Tereso, J.; Martens, H. Calcium and Magnesium Physiology and Nutrition in Relation to the Prevention of Milk Fever and Tetany (Dietary Management of Macrominerals in Preventing Disease). Vet. Clin. N. Am.-Food Anim. Pract. 2014, 30, 643–670. [Google Scholar] [CrossRef] [PubMed]
- Villa-Bellosta, R. Impact of magnesium: Calcium ratio on calcification of the aortic wall. PLoS ONE 2017, 12, e0178872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. CKJ Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [Green Version]
- Drynda, A.; Hassel, T.; Hoehn, R.; Perz, A.; Bach, F.W.; Peuster, M. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. J. Biomed. Mater. Res.-Part A 2010, 93, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Herron, T.J.; Lee, P.; Jalife, J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ. Res. 2012, 110, 609–623. [Google Scholar]
- Bommala, V.K.; Krishna, M.G.; Rao, C.T. Magnesium matrix composites for biomedical applications: A review. J. Magnes. Alloy 2019, 7, 72–79. [Google Scholar] [CrossRef]
- Diaz-Tocados, J.M.; Peralta-Ramirez, A.; Rodríguez-Ortiz, M.E.; Raya, A.I.; Lopez, I.; Pineda, C.; Herencia, C.; de Montes Oca, A.; Vergara, N.; Steppan, S.; et al. Dietary magnesium supplementation prevents and reverses vascular and soft tissue calcifications in uremic rats. Kidney Int. 2017, 92, 1084–1099. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S. Magnesium: Are we consuming enough? Nutrients 2018, 10, 1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [Green Version]
- Perez-Conesa, D.; Lopez, G.; Abellan, P.; Ros, G. Bioavailability of calcium, magnesium and phosphorus in rats fed probiotic, prebiotic and synbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J. Sci. Food Agric. 2006, 86, 2327–2336. [Google Scholar] [CrossRef]
- Skrypnik, K.; Bogdański, P.; Schmidt, M.; Suliburska, J. The Effect of Multispecies Probiotic Supplementation on Iron Status in Rats. Biol. Trace Elem. Res. 2019, 192, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Szulińska, M.; Łoniewski, I.; van Hemert, S.; Sobieska, M.; Bogdański, P. Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients 2018, 10, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noël, L.; Carl, M.; Vastel, C.; Guérin, T. Determination of sodium, potassium, calcium and magnesium content in milk products by flame atomic absorption spectrometry (FAAS): A joint ISO/IDF collaborative study. Int. Dairy J. 2008, 18, 899–904. [Google Scholar] [CrossRef]
- Gilman, J.; Cashman, K.D. The effect of probiotic bacteria on transepithelial calcium transport and calcium uptake in human intestinal-like caco-2 cells. Curr. Issues Intest. Microbiol. 2006, 7, 1–6. [Google Scholar]
- Bergillos-Meca, T.; Navarro-Alarcón, M.; Cabrera-Vique, C.; Artacho, R.; Olalla, M.; Giménez, R.; Moreno-Montoro, M.; Ruiz-Bravo, A.; Lasserrot, A.; Ruiz-López, M.D. The probiotic bacterial strain lactobacillus fermentum D3 increases in vitro the bioavailability of Ca, P, and Zn in fermented goat milk. Biol. Trace Elem. Res. 2013, 151, 307–314. [Google Scholar] [CrossRef]
- Ohlsson, C.; Engdahl, C.; Fak, F.; Andersson, A.; Windahl, S.H.; Farman, H.H.; Movérare-Skrtic, S.; Islander, U.; Sjögren, K. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS ONE 2014, 9, e92368. [Google Scholar] [CrossRef]
- Wawrzyniak, N.; Suliburska, J. Nutritional and health factors affecting the bioavailability of calcium: A narrative review. Nutr. Rev. 2021, nuaa138, 1–14. [Google Scholar] [CrossRef]
- Raveschot, C.; Coutte, F.; Frémont, M.; Vaeremans, M.; Dugersuren, J.; Demberel, S.; Drider, D.; Dhulster, P.; Flahaut, C.; Cudennec, B. Probiotic Lactobacillus strains from Mongolia improve calcium transport and uptake by intestinal cells in vitro. Food Res. Int. 2020, 133, 109201. [Google Scholar] [CrossRef] [PubMed]
- Dubey, M.R.; Patel, V.P. Probiotics: A Promising Tool for Calcium Absorption. Open Nutr. J. 2018, 12, 59–69. [Google Scholar] [CrossRef]
- Kruger, M.C.; Fear, A.; Chua, W.H.; Plimmer, G.G.; Schollum, L.M. The effect of Lactobacillus rhamnosus HN001 on mineral absorption and bone health in growing male and ovariectomised female rats. Dairy Sci. Technol. 2009, 89, 219–231. [Google Scholar] [CrossRef]
- Tribst, F.M.; Magalhães, R.L.; Silva, R.A.; dos Caetano, H.R.S.; de Weber, G.A.O.; Rufino, M.N.; Keller, R.; de Sanches, O.C.; Louzada, M.J.Q.; Bremer-Neto, H. Mineral composition, histomorphometry, and bone biomechanical properties are improved with probiotic, prebiotic, and symbiotic supplementation in rats chronically exposed to passive smoking: A randomized pre-clinical study. Cienc. Rural 2019, 49, 1–11. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Riva, A.; Petrangolini, G.; Peroni, G. An update on magnesium and bone health. BioMetals 2021, 34, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Song, C.H.; Barrett-Connor, E.; Chung, J.H.; Kim, S.H.; Kim, K.S. Associations of calcium and magnesium in serum and hair with bone mineral density in premenopausal women. Biol. Trace Elem. Res. 2007, 118, 1–9. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Zietse, R. Disorders of calcium and magnesium balance: A physiology-based approach. Pediatr. Nephrol. 2013, 28, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Laurentino, S.S.; Correia, S.; Cavaco, J.E.; Oliveira, P.F.; de Sousa, M.D.; Barros, A.; Socorro, S. Regucalcin, a calcium-binding protein with a role in male reproduction? Mol. Hum. Reprod. 2012, 18, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Lagos, L.V.; Lee, S.A.; Fondevila, G.; Walk, C.L.; Murphy, M.R.; Loor, J.J.; Stein, H.H. Influence of the concentration of dietary digestible calcium on growth performance, bone mineralization, plasma calcium, and abundance of genes involved in intestinal absorption of calcium in pigs from 11 to 22 kg fed diets with different concentrations of digestible phosphorus. J. Anim. Sci. Biotechnol. 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sales, C.H.; Pedrosa, L.F.C.; Lima, J.G.; Lemos, T.M.A.M.; Colli, C. Influence of magnesium status and magnesium intake on the blood glucose control in patients with type 2 diabetes. Clin. Nutr. 2011, 30, 359–364. [Google Scholar] [CrossRef] [PubMed]
Group | |||||||
---|---|---|---|---|---|---|---|
Parameter | C | LD | HD | ||||
Median | Range | Median | Range | Median | Range | ||
Diet intake | g/day/rat | 19.50 | 19.30–22.54 | 20.11 | 19.44–21.47 | 21.14 | 20.42–22.23 |
Calcium intake | mg/day/rat | 106.27 | 105.17–122.84 | 109.59 | 105.92–117.00 | 115.20 | 111.27–121.13 |
Magnesium intake | mg/day/rat | 11.14 | 11.02–12.88 | 11.49 | 11.10–12.26 | 12.08 | 11.66–12.70 |
Minerals | Ca | Mg | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | C | LD | HD | C | LD | HD | ||||||
Tissues | Median | Range | Median | Range | Median | Range | Median | Range | Median | Range | Median | Range |
Liver | 1.32 | 1.08– 2.10 | 1.67 | 0.96– 2.74 | 1.35 | 1.10– 1.87 | 28.29 | 24.48– 35.59 | 29.11 | 27.06– 32.36 | 29.23 | 27.43– 34.51 |
Heart | 1.36 | 1.15– 1.53 | 1.39 | 0.98– 1.62 | 1.37 | 0.81– 2.02 | 35.71 | 31.57– 37.47 | 36.88 | 29.91– 39.88 | 36.66 | 33.24– 40.48 |
Kidney | 2.20 | 1.96– 3.14 | 2.03 | 1.26– 2.38 | 2.31 | 1.02– 3.27 | 18.18 | 16.35– 20.86 | 19.43 | 14.90– 21.08 | 18.95 | 16.69– 22.55 |
Pancreas | 4.83 | 4.00– 5.21 | 4.56 | 3.56– 5.18 | 4.66 | 4.27– 5.35 | 28.22 | 24.07– 33.20 | 25.52 | 22.20– 30.33 | 28.66 | 23.45– 35.35 |
Femur bones | 8847.01 | 8220.85– 10,101.76 | 8761.76 | 7174.79– 9664.45 | 8835.18 | 7398.47– 10,239.20 | 258.96 a | 228.25– 279.61 | 271.71 a,b | 240.26– 289.58 | 281.87 b | 266.38– 295.98 |
Testicles | 3.38 | 3.24– 4.93 | 3.68 | 2.48– 4.41 | 4.06 | 3.08– 4.60 | 17.35 | 8.62– 23.97 | 22.45 | 13.82– 25.41 | 18.96 | 12.95– 24.30 |
Hair | 3.27 a | 2.42– 3.75 | 3.22 a | 2.80– 3.80 | 3.94 b | 3.19– 4.46 | 2.09 | 1.60– 2.72 | 2.15 | 1.62– 2.84 | 2.35 | 1.77– 3.24 |
Tissues | Group | |||||
---|---|---|---|---|---|---|
C | LD | HD | ||||
Median | Range | Median | Range | Median | Range | |
Liver | 0.05 | 0.03–0.07 | 0.05 | 0.05–0.05 | 0.05 | 0.04–0.06 |
Heart | 0.04 | 0.03–0.04 | 0.04 | 0.04–0.04 | 0.04 | 0.02–0.05 |
Kidney | 0.12 | 0.11–0.18 | 0.10 | 0.10–0.10 | 0.12 | 0.06–0.15 |
Pancreas | 0.16 | 0.14–0.20 | 0.18 | 0.18–0.18 | 0.18 | 0.13–0.20 |
Femur bones | 35.11 | 31.64–39.04 | 32.29 | 32.29–32.29 | 31.83 | 26.26–35.85 |
Testicles | 0.22 b | 0.17–0.39 | 0.15 a | 0.15–0.15 | 0.19 a,b | 0.17–0.21 |
Hair | 1.39 | 1.37–1.91 | 1.54 | 1.54–1.54 | 1.64 | 1.18–2.31 |
Mg Liver | Mg Heart | Mg Kidney | Mg Pancreas | Mg Bone | Mg Testicles | Mg Hair | |
---|---|---|---|---|---|---|---|
Ca liver | 0.11 | −0.13 | 0.00 | 0.22 | 0.23 | 0.11 | −0.22 |
Ca heart | −0.05 | 0.34 | −0.05 | −0.47 * | 0.24 | −0.12 | 0.11 |
Ca kidney | 0.31 | 0.24 | 0.13 | 0.13 | −0.13 | −0.10 | 0.16 |
Ca pancreas | 0.04 | 0.13 | −0.11 | 0.26 | −0.06 | −0.32 | 0.36 |
Ca bone | 0.22 | −0.02 | 0.31 | 0.26 | 0.27 | 0.25 | 0.35 |
Ca testicles | 0.37 | 0.17 | 0.33 | 0.35 | −0.10 | 0.36 | 0.01 |
Ca hair | 0.35 | 0.37 | 0.36 | 0.11 | 0.42* | −0.03 | 0.46 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suliburska, J.; Harahap, I.A.; Skrypnik, K.; Bogdański, P. The Impact of Multispecies Probiotics on Calcium and Magnesium Status in Healthy Male Rats. Nutrients 2021, 13, 3513. https://doi.org/10.3390/nu13103513
Suliburska J, Harahap IA, Skrypnik K, Bogdański P. The Impact of Multispecies Probiotics on Calcium and Magnesium Status in Healthy Male Rats. Nutrients. 2021; 13(10):3513. https://doi.org/10.3390/nu13103513
Chicago/Turabian StyleSuliburska, Joanna, Iskandar Azmy Harahap, Katarzyna Skrypnik, and Paweł Bogdański. 2021. "The Impact of Multispecies Probiotics on Calcium and Magnesium Status in Healthy Male Rats" Nutrients 13, no. 10: 3513. https://doi.org/10.3390/nu13103513
APA StyleSuliburska, J., Harahap, I. A., Skrypnik, K., & Bogdański, P. (2021). The Impact of Multispecies Probiotics on Calcium and Magnesium Status in Healthy Male Rats. Nutrients, 13(10), 3513. https://doi.org/10.3390/nu13103513