Composition of Coloured Gastric Residuals in Extremely Preterm Infants-A Nested Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Set-Up and Ethics Approval
2.2. Participants
2.3. Outcomes
2.4. GR Samples and Data
2.5. Preparation of GR Samples
2.6. Analysis of Nutrient Content of GRs
2.7. Feeding Protocol for EP Infants during Probiotic Trials
2.8. Statistical Methods
2.8.1. Nutrient Content Analysis
2.8.2. GRV Analysis
3. Results
3.1. GRs in SiMPro Trial Infants
3.2. Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schneider, J.; Fischer Fumeaux, C.J.; Duerden, E.G.; Guo, T.; Foong, J.; Graz, M.B.; Hagmann, P.; Mallar Chakravarty, M.; Hüppi, P.S.; Beauport, L.; et al. Nutrient Intake in the First Two Weeks of Life and Brain Growth in Preterm Neonates. Pediatrics 2018, 141, e20172169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; de Vires, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 2018, 83, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blesa, M.; Sullivan, G.; Anblagan, D.; Telford, E.J.; Quigley, A.J.; Sparrow, S.A.; Serag, A.; Semple, S.I.; Bastin, M.E.; James, P.; et al. Early breast milk exposure modifies brain connectivity in preterm infants. Neuroimage 2019, 184, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Cormack, B.E.; Harding, J.E.; Miller, S.P.; Bloomfield, F.H. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019, 11, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenzie, B.L.; Edmonds, L.; Thomson, R.; Haszard, J.J.; Houghton, L.A. Nutrition Practices and Predictors of Postnatal Growth in Preterm Infants During Hospitalization: A Longitudinal Study. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 312–317. [Google Scholar] [CrossRef]
- Su, B.H. Optimizing nutrition in preterm infants. Pediatr. Neonatol. 2014, 55, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Maas, C.; Franz, A.R.; von Krogh, S.; Arand, J.; Poets, C.F. Growth and morbidity of extremely preterm infants after early full enteral nutrition. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F79–F81. [Google Scholar] [CrossRef]
- Tyson, J.E.; Kennedy, K.A. Minimal enteral nutrition for promoting feeding tolerance and preventing morbidity in parenterally fed infants. Cochrane Database Syst. Rev. 2000, 2, CD000504. [Google Scholar]
- Malhotra, Y.; Nzegwu, N.; Harrington, J.; Ehrenkranz, R.A.; Hafler, J.P. Identifying Barriers to Initiating Minimal Enteral Feedings in Very Low-Birth-Weight Infants: A Mixed Methods Approach. Am. J. Perinatol. 2016, 33, 47–56. [Google Scholar]
- Mishra, S.; Agarwal, R.; Jeevasankar, M.; Deorari, A.K.; Paul, V.K. Minimal enteral nutrition. Indian J. Pediatr. 2008, 75, 267–269. [Google Scholar] [CrossRef]
- Riskin, A.; Cohen, K.; Kugelman, A.; Toropine, A.; Said, W.; Bader, D. The Impact of Routine Evaluation of Gastric Residual Volumes on the Time to Achieve Full Enteral Feeding in Preterm Infants. J. Pediatr. 2017, 189, 128–134. [Google Scholar] [CrossRef]
- Abiramalatha, T.; Thanigainathan, S.; Ninan, B. Routine monitoring of gastric residual for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2019, 7, CD012937. [Google Scholar] [CrossRef]
- Li, Y.F.; Lin, H.C.; Torrazza, R.M.; Parker, L.; Talaga, E.; Neu, J. Gastric residual evaluation in preterm neonates: A useful monitoring technique or a hindrance? Pediatr. Neonatol. 2014, 55, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Parker, L.; Torrazza, R.M.; Li, Y.; Talaga, E.; Shuster, J.; Neu, J. Aspiration and evaluation of gastric residuals in the neonatal intensive care unit: State of the science. J. Perinat. Neonatal. Nurs. 2015, 29, 51–59. [Google Scholar] [CrossRef]
- Parker, L.A.; Weaver, M.; Murgas Torrazza, R.J.; Shuster, J.; Li, N.; Krueger, C.; Neu, J. Effect of Gastric Residual Evaluation on Enteral Intake in Extremely Preterm Infants: A Randomized Clinical Trial. JAMA Pediatr. 2019, 173, 534–543. [Google Scholar] [CrossRef]
- Fanaro, S. Feeding intolerance in the preterm infant. Early Hum. Dev. 2013, 89, S13–S20. [Google Scholar] [CrossRef] [PubMed]
- Newborn Services Clinical Guideline. Available online: http://www.adhb.govt.nz/newborn/Guidelines/Nutrition/WithholdingFeeds.htm (accessed on 24 March 2020).
- Marin, J.J.; Macias, R.I.; Briz, O.; Banales, J.M.; Monte, M.J. Bile Acids in Physiology, Pathology and Pharmacology. Curr. Drug Metab. 2015, 17, 4–29. [Google Scholar] [CrossRef] [PubMed]
- Macierzanka, A.; Torcello-Gómez, A.; Jungnickel, C.; Maldonado-Valderrama, J. Bile salts in digestion and transport of lipids. Adv. Colloid Interface Sci. 2019, 274, 102045. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [PubMed] [Green Version]
- Hellström, P.M.; Nilsson, I.; Svenberg, T. Role of bile in regulation of gut motility. J. Intern. Med. 1995, 237, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Falconer, J.D.; Smith, A.N.; Eastwood, M.A. Effects of bile salts and prostaglandins on colonic motility in the rabbit. In Gastrointestinal Motility in Health and Disease; Duthie, H.L., Ed.; Springer: Dordrecht, The Netherland, 1978. [Google Scholar]
- Chen, M.L.; Takeda, K.; Sundrud, M.S. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal. Immunol. 2019, 12, 851–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Xie, S.; Chi, Z.; Zhang, J.; Liu, Y.; Zhang, L.; Zheng, M.; Zhang, X.; Xia, D.; Ke, Y.; et al. Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome. Immunity 2016, 45, 802–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biagioli, M.; Carino, A. Signaling from Intestine to the Host: How Bile Acids Regulate Intestinal and Liver Immunity. Handb. Exp. Pharmacol. 2019, 256, 95–108. [Google Scholar] [PubMed]
- Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile Acids Activated Receptors Regulate Innate Immunity. Front. Immunol. 2018, 9, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athalye-Jape, G.; Deshpande, G.; Rao, S.; Patole, S. Benefits of probiotics on enteral nutrition in preterm neonates: A systematic review. Am. J. Clin. Nutr. 2014, 100, 1508–1519. [Google Scholar] [CrossRef] [Green Version]
- Indrio, F.; Riezzo, G.; Raimondi, F.; Bisceglia, M.; Cavallo, L.; Francavilla, R. The effects of probiotics on feeding tolerance, bowel habits, and gastrointestinal motility in preterm newborns. J. Pediatr. 2008, 152, 801–806. [Google Scholar] [CrossRef]
- Indrio, F.; Riezzo, G.; Raimondi, F.; Bisceglia, M.; Cavallo, L.; Francavilla, R. Effects of probiotic and prebiotic on gastrointestinal motility in newborns. J. Physiol. Pharmacol. 2009, 60, 27–31. [Google Scholar] [PubMed]
- Patole, S.K.; Rao, S.C.; Keil, A.D.; Nathan, E.A.; Doherty, D.A.; Simmer, K.N. Benefits of Bifidobacterium breve M-16V Supplementation in Preterm Neonates—A Retrospective Cohort Study. PLoS ONE 2016, 11, e0150775. [Google Scholar] [CrossRef] [Green Version]
- Patole, S.; Keil, A.D.; Chang, A.; Nathan, E.; Doherty, D.; Simmer, K.; Esvaran, M.; Conway, P. Effect of Bifidobacterium breve M-16V supplementation on fecal bifidobacteria in preterm neonates—A randomised double blind placebo controlled trial. PLoS ONE 2014, 9, e89511. [Google Scholar] [CrossRef]
- Baethgen, W.E.; Alley, M.M. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun. Soil Sci. Plant Anal. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym. 2013, 97, 253–261. [Google Scholar] [CrossRef]
- Stern, I.; Shapiro, B. A rapid and simple method for the determination of esterified fatty acids and for total fatty acids in blood. J. Clin. Pathol. 1953, 6, 158–160. [Google Scholar] [CrossRef] [Green Version]
- Cormack, B.; Sinn, J.; Lui, K.; Tudehope, D. Australasian neonatal intensive care enteral nutrition survey: Implications for practice. J. Paediatr. Child Health 2013, 49, E340–E347. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, M.M.; Clancy, K.L.; Steward, D.K. Dilemmas Surrounding Interpretation of Gastric Residuals in the NICU Setting. ICAN Infant Child Adolesc. Nutr. 2014, 6, 286–294. [Google Scholar] [CrossRef]
- Mihatsch, W.A.; von Schoenaich, P.; Fahnenstich, H.; Dehne, N.; Ebbecke, H.; Plath, C.; von Stockhuason, H.-B.; Muche, R.; Franz, A.; Phlandt, A. The significance of gastric residuals in the early enteral feeding advancement of extremely low birth weight infant. Pediatrics 2002, 109, 457–459. [Google Scholar] [CrossRef]
- Bertino, E.; Giuliani, F.; Prandi, G.; Coscia, A.; Martano, C.; Fabris, C. Necrotizing enterocolitis: Risk factor analysis and role of gastric residuals in very low birth weight infants. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F.; Eckmann, L. How bile acids confer gut mucosal protection against bacteria. Proc. Natl. Acad. Sci. USA 2006, 103, 4333–4334. [Google Scholar] [CrossRef] [Green Version]
- Deutschmann, K.; Reich, M.; Klindt, C.; Dröge, C.; Spomer, L.; Häussinger, D.; Keitel, V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim. Biophys. Acta 2015, 1849, 196–200. [Google Scholar] [CrossRef]
- Fan, M.; Wang, X.; Xu, G.; Yan, Q.; Huang, W. Bile acid signaling and liver regeneration. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1319–1325. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, T.; Li, F.; Gonzalez, F.J. FXR signaling in the enterohepatic system. Mol. Cell Endocrinol. 2013, 368, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Di Ciaula, A.; Garruti, G.; Lunardi Baccetto, R.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.; Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16, S4–S14. [Google Scholar] [CrossRef]
- Alemi, F.; Poole, D.P.; Chiu, J.; Schoonjans, K.; Cattaruzza, F.; Grider, J.R.; Bunnett, N.W.; Corvera, C.U. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013, 144, 145–154. [Google Scholar] [CrossRef]
- Poole, D.P.; Godfrey, C.; Cattaruzza, F.; Cottrell, G.S.; Kirkland, J.G.; Pelayo, J.C.; Bunnet, N.W.; Corvera, C.U. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol. Motil. 2010, 22, 814–e228. [Google Scholar] [CrossRef] [Green Version]
- Radymska-Wawrzyniak, K.; Bobowiec, R.; Studziński, T. Effects of bile and bile acids on spontaneous motor activity of the small and large rabbit intestines in vitro. Pol. Arch. Weter. 1987, 27, 85–98. [Google Scholar]
- Emmelin, N. The Action of Bile Salts on Intestinal Peristalsis. Acta Physiol. Scand. 1941, 3, 91–96. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014, 30, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Gorbach, S.L.; Tabaqchali, S. Bacteria, bile, and the small bowel. Gut 1969, 10, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Urdaneta, V.; Casadesús, J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front. Med. Lausanne 2017, 4, 163. [Google Scholar] [CrossRef]
- Singh, B.; Rochow, N.; Chessell, L.; Wilson, J.; Cunningham, K.; Fusch, C.; Dutta, S.; Thomas, S. Gastric Residual Volume in Feeding Advancement in Preterm Infants (GRIP Study): A Randomized Trial. J. Pediatr. 2018, 200, 79–83. [Google Scholar] [CrossRef]
- Kaur, V.; Kaur, R.; Saini, S.S. Comparison of Three Nursing Positions for Reducing Gastric Residuals in Preterm Neonates: A Randomized Crossover Trial. Indian Pediatr. 2018, 55, 568–572. [Google Scholar] [CrossRef]
- Abiramalatha, T.; Thanigainathan, S.; Balakrishnan, U. Re-feeding versus discarding gastric residuals to improve growth in preterm infants. Cochrane Database Syst. Rev. 2019, 7, CD012940. [Google Scholar] [CrossRef]
- Salas, A.A.; Cuna, A.; Bhat, R.; McGwin, G., Jr.; Carlo, W.A.; Ambalavanan, N. A randomised trial of re-feeding gastric residuals in preterm infants. Arch. Dis. Child. 2015, 100, F224–F228. [Google Scholar] [CrossRef]
Characteristics | Control a n = 29 | Single-Strain b n = 75 | Three-Strain c n = 79 | p-Value |
---|---|---|---|---|
Gestational age (w) * | 26.1 (25.2–26.9) | 26.3 (24.7–27.3) | 26.6 (25.0–27.3) | 0.684 |
Male # | 13 (44.8%) | 42 (56.0%) | 40 (50.6%) | 0.566 |
Birthweight (g) * | 810 (685–970) | 870 (708–1010) | 920 (750–1070) | 0.145 |
IUGR # | 13 (44.8%) | 5 (6.7%) | 4 (5.1%) | <0.001 |
Caesarean section # | 13 (44.8%) | 48 (64.0%) | 43 (54.4%) | 0.117 |
Apgar < 7 at 5 min # | 9 (31.0%) | 21 (28.0%) | 20 (25.3%) | 0.828 |
CRIB score ^ | 10 (3–12) | 12 (9–14) | 10 (9–13) | 0.009 |
Outcomes | Control a | Single Strain b | Three-Strain c | p-Value |
---|---|---|---|---|
PN duration (days) * | 16 (13–22) | 10 (7–13) | 10 (8–16) | <0.001 |
Age probiotic/placebo started (days) * | 7 (5–10) | 3 (2–4) | 3 (2–4) | <0.001 |
Age MEF started (days) * | 4 (3–7) | 2 (2–3) | 2 (2–3) | <0.001 |
TFF (days) * | 14 (12–20) | 10 (8–15) | 10 (7–16) | 0.022 |
EBM # | 23 (79.3%) | 66 (88%) | 72 (91.1%) | 0.222 |
PDHM # | 6 (20.7%) | 28 (37.3%) | 25 (31.6%) | 0.263 |
NEC ≥ stage II # | 0 (-) | 1 (1.3%) | 0 (-) | 0.568 |
LOS # | 7 (24.1%) | 18 (24.0%) | 13 (16.5%) | 0.472 |
Weight z-score at discharge ^ | −0.64 (1.82) | −0.79 (0.90) | −0.71 (0.98) | 0.824 |
Length z-score at discharge ^ | −1.07 (2.33) | −1.27 (1.76) | −0.88 (1.36) | 0.390 |
HC z-score at discharge ^ | −0.32 (1.74) | 0.06 (1.48) | −0.15 (1.72) | 0.519 |
Nutrients in GR Title | Mean Estimates (95% CI) | Mean Difference (95% CI) | p-Value |
---|---|---|---|
Bile acid @ (µmole/L) | |||
Pale green | 338.10 (126.47–903.84) | reference | |
Dark green | 825.79 (469.84–1451.40) | 2.44 (0.78–7.62) | 0.120 |
pH | |||
Pale green | 3.83 (2.68–4.97) | reference | |
Dark green | 4.25 (3.49–5.02) | 0.43 (−0.94–1.80) | 0.532 |
Osmolality @ m(OsM) | |||
Pale green | 342.71 (318.78–368.41) | reference | |
Dark green | 357.71 (338.24–378.29) | 1.04 (0.95–1.15) | 0.356 |
Fat content @ (g/L) | |||
Pale green | 14.02 (7.52–26.13) | reference | |
Dark green | 13.03 (8.96–18.95) | 0.93 (0.47–1.83) | 0.829 |
Overall loss (g) | 0.02 (0.01–0.03) | ||
Total nitrogen @(g/L) | |||
Pale green | 7.08 (5.63–8.90) | reference | |
Dark green | 8.49 (7.20–10.01) | 1.19 (0.93–1.55) | 0.161 |
Overall loss (g) | 0.011 (0.009–0.013) | ||
CHO @ (g/L) | |||
Pale green | 34.19 (25.35–46.12) | reference | |
Dark green | 36.80 (28.42–47.65) | 1.08 (0.72–1.60) | 0.711 |
Overall loss (g) | 0.05 (0.04–0.06) |
GRV, FV and Coloured/ Hemorrhagic GRs | Control a n = 29 | Single-Strain b n = 75 | Three-Strain c n = 79 | p-Value |
---|---|---|---|---|
GRV as a % of FV | ||||
Median | 4.4 (3.0–7.4) | 4.9 (2.1–6.9) | 4.5 (2.0–9.6) | 0.899 |
Maximum | 67.5 (26.6–159) | 50.5 (25.0–100.0) | 70.0 (23.3–160.0) | 0.324 |
Total | 168.5 (111.8–372.9) | 152.0 (72.5–249.8) | 240.7 (57.2–358.5) | 0.267 |
GRV (mL) | ||||
Median | 1.5 (0.9–2.1) | 2.3 (0.8–3.5) | 2.0 (1.2–4.0) | 0.122 |
Maximum | 7.5 (5.7–13.3) | 10.5 (7.0–16.7) | 11.0 (6.9–17.0) | 0.160 |
Total | 38.0 (21.8–51.6) | 34.8 (19.5–70.9) | 37.5 (21.8–76.0) | 0.857 |
FV (mL) | ||||
Median | 22.7 (13.9–50.0) | 54.8 (34.0–76.0) | 50.9 (28.0–72.0) | <0.001 |
Maximum | 138.0 (110.5–156.5) | 144.0 (114.5–163.0) | 155.0 (121.0–176.0) | 0.009 |
Total | 696.5 (489.5–935.5) | 620.0 (471.9–1001.8) | 660.0 (514.0–1106.5) | 0.746 |
Any haemorrhagic residuals | 26 (89.7%) | 24 (32.0%) | 26 (32.9%) | <0.001 |
Number of haemorrhagic residuals | 3 (1.5–5.5) | 0 (0–1) | 0 (0–1) | <0.001 |
Any coloured residual | 25 (86.2%) | 57 (76.0%) | 62 (78.5%) | 0.521 |
Number of coloured residuals | 4 (1.5–6) | 3 (1–4) | 2 (1–5) | 0.238 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athalye-Jape, G.; Nettleton, M.; Lai, C.-T.; Nathan, E.; Geddes, D.; Simmer, K.; Patole, S. Composition of Coloured Gastric Residuals in Extremely Preterm Infants-A Nested Prospective Observational Study. Nutrients 2020, 12, 2585. https://doi.org/10.3390/nu12092585
Athalye-Jape G, Nettleton M, Lai C-T, Nathan E, Geddes D, Simmer K, Patole S. Composition of Coloured Gastric Residuals in Extremely Preterm Infants-A Nested Prospective Observational Study. Nutrients. 2020; 12(9):2585. https://doi.org/10.3390/nu12092585
Chicago/Turabian StyleAthalye-Jape, Gayatri, Megan Nettleton, Ching-Tat Lai, Elizabeth Nathan, Donna Geddes, Karen Simmer, and Sanjay Patole. 2020. "Composition of Coloured Gastric Residuals in Extremely Preterm Infants-A Nested Prospective Observational Study" Nutrients 12, no. 9: 2585. https://doi.org/10.3390/nu12092585
APA StyleAthalye-Jape, G., Nettleton, M., Lai, C.-T., Nathan, E., Geddes, D., Simmer, K., & Patole, S. (2020). Composition of Coloured Gastric Residuals in Extremely Preterm Infants-A Nested Prospective Observational Study. Nutrients, 12(9), 2585. https://doi.org/10.3390/nu12092585