The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk
Abstract
:1. Introduction
1.1. The Level of Fat in Milk and its Significance
1.2. The Cholesterol Concentration in Milk and Its Significance
1.3. Fatty Acids Composition in Mammals’ Milk
1.4. Minerals in Human Milk
2. Materials and Methods
2.1. Milk Samples
2.2. Experimental Design and Research Methods
2.2.1. Ethical Considerations
2.2.2. Experimental Design
2.2.3. Lipid Extraction and Milk Fat Content Determination
2.2.4. Sample Pre-Treatment for Cholesterol Concentration Quantification by IDF Standard Method
2.2.5. Fatty Acids Profile Determination
2.2.6. The Lipid Quality Indices
2.2.7. Mineral Analysis
2.2.8. Statistical Analyses
3. Results and Discussion
3.1. Fat Content and its Significance in Nutrition
3.2. Nutritional Value and Health-Promoting Properties of Cholesterol Concentration in Milk
3.3. The Comparison of Health-Promoting Properties of Fatty Acids in Selected Mammals’ Milk
3.4. Lipid Quality Indices
3.5. The Minerals in Milk
3.6. Summary
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Composition of Milk from Different Animals. Available online: https://www.coursehero.com/file/p2o078d/Table-1-Composition-of-milk-from-different-animals-Species-Water-Fat-Protein/ (accessed on 17 March 2020).
- Rutkowska, J.; Adamska, A.; Białek, M. The comparison of fatty acids composition in mare’s and cow’s milk fat. Żywn Nauka Technol. Jakość 2011, 74, 28–38, Original Title: Porównanie składu kwasów tłuszczowych w tłuszczu mleka klaczy i mleka krowiego. [Google Scholar] [CrossRef]
- Pietrzak-Fiećko, R. The correlation between chlorinated hydrocarbons and the fatty acids composition in milk fat. J. Vet. Res. 2018, 62, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, I.M.L.G.; Rangel, A.H.N.; Urbano, S.A.; Bezerra, J.S.; Oliveira, H.A.A. Equine milk and its potential use in the human diet. Food Sci. Technol. 2019, 39 (Suppl. 1), 1–7. [Google Scholar] [CrossRef] [Green Version]
- Blaško, A.; Kubinec, R.; Górová, R.; Fábry, I.; Lorenz, W.; Soják, L. Fatty acid composition of summer and winter cows’ milk and butter. J. Food Nutr. Res. 2010, 49, 169–177. [Google Scholar]
- Neville, M.C.; Keller, R.P.; Seacat, J.; Casey, C.E.; Allen, J.C.; Archer, P. Studies on human lactation. I. Within-feed and between-breast variation in selected components of human milk. Am. J. Clin. Nutr. 1984, 40, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Kamelska, A.M.; Pietrzak-Fiećko, R.; Bryl, K. Determination of cholesterol concentration in human milk samples using attenuated total reflectance Fourier transform infrared spectroscopy. J. Appl. Spectrosc. 2013, 80, 148–152. [Google Scholar] [CrossRef]
- Gantner, V.; Mijić, P.; Baban, M.; Škrtić, Z.; Turalija, A. The overall and fat composition of milk of various species. Mljekarstvo 2015, 65, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Thakore, V.; Jain, N.K. Protein and fat examination from the raw milk of different mammalian species (Cow, buffalo, goat, and human) with successive lactation days. Pharma Innov. 2018, 7, 506–510. [Google Scholar]
- Butts, C.A.; Hedderley, D.I.; Herath, T.D.; Paturi, G.; Glyn-Jones, S.; Wiens, F.; Stahl, B.; Gopal, P. Human milk composition and dietary intakes of breastfeeding women of different ethnicity from the Manawatu-Wanganui region of New Zealand. Nutrients 2018, 10, 1231. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, S.A.; Anderson, G.H.; Bryan, M.H. Human milk: Comparison of the nitrogen composition in milk from mothers of premature and full-term infants. Am. J. Clin. Nutr. 1980, 33, 811–815. [Google Scholar] [CrossRef] [Green Version]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Ferro, M.M.; Tedeschi, L.O.; Atzori, A.S. The comparison of the lactation and milk yield and composition of selected breeds of sheep and goats. Transl. Anim. Sci. 2017, 1, 498–506. [Google Scholar] [CrossRef]
- Oftedal, O.; Boness, D.; Bowen, W. The composition of hooded seal (Cystophora cristata) milk: An adaptation for postnatal fattening. Can. J. Zool. 2011, 66, 318–322. [Google Scholar] [CrossRef]
- Markiewicz-Kęszycka, M.; Wójtowski, J.; Czyżak-Runowska, G.; Kuczyńska, B.; Puppel, K.; Krzyżewski, J.; Strzałkowska, N.; Jóźwik, A.; Bagnicka, E. Concentration of selected fatty acids, fat-soluble vitamins and β-carotene in late lactation mares’ milk. Int. Dairy J. 2014, 38, 31–36. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep milk: Physicochemical characteristics and relevance for functional food development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Paszczyk, B.; Tońska, E.; Łuczyńska, J. Health-promoting values of cow, sheep and goat milk and yogurts. Mljekarstvo 2019, 69, 182–192. [Google Scholar] [CrossRef]
- Park, Y.W. Comparison of mineral and cholesterol composition of different commercial goat milk products manufactured in USA. Small Rumin. Res. 2000, 37, 115–124. [Google Scholar] [CrossRef]
- Jensen, R.G. The lipids of human milk. Prog. Lipid Res. 1996, 35, 53–92. [Google Scholar] [CrossRef]
- Nakamura, M.T.; Nara, T.Y. Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot. Essent. Fat. Acids 2003, 68, 145–150. [Google Scholar] [CrossRef]
- Ziemlański, Ś. The physiological role of n-6 and n-3 fatty acids in human body taking the metabolic lifestyle disease prophylaxis into account. In Proceedings of the III Syposion on Evening Primrose Oil and other Oils Containing n-6 and n-3 Fatty Acids in Prophylaxis and Therapy, Sulejów, Poland, 15–16 May 1998; Stołyhwo, A., Ed.; pp. 11–20, Original Title: Fizjologiczna rola kwasów tłuszczowych n-6 i n-3 w ustroju człowieka ze szczególnym uwzględnieniem profilaktyki cywilizacyjnych chorób metabolicznych. [Google Scholar]
- FAO Joint. Fats and oils in human nutrition. In Proceedings of the Report of Joint Expert Consultation FAO/WHO, Rome, Italy, 19–26 October 1993; FAO Food and Nutrition. p. 57. [Google Scholar]
- Park, Y.W. Bioactive Components in Milk and Dairy Products; Wiley-Blackwell: Ames, IA, USA, 2009; pp. 15–217. [Google Scholar]
- Tormo, R.; Pajaron, M.; Ros, L.; Moran, J. Human milk and infant formulas: Future aspects of development. In New Perspectives in Infant Nutrition; Graf, R., Falkner, F., Kleinman, R., Koletzko, B., Moran, J., Eds.; Ediciones Ergon S.A.: Madrid, Spain, 1994; pp. 69–87. [Google Scholar]
- Rodriges-Palmero, M.; Koletzko, B.; Kunz, C.; Jensen, R. Nutritional and biochemical properties of human milk: II. Lipids, micronutrients, and bioactive factors. Clin. Perinatol. 1999, 26, 335–359. [Google Scholar] [CrossRef]
- Kamelska-Sadowska, A. The cholesterol concentration in mammals milk—Is it a real content? APDV 2017, 2. [Google Scholar] [CrossRef]
- Grossmann, A.; Timmen, H.; Klostermeyer, H. Die enzymatische Bestimmung von Cholesterin in Milchfett—Eine Alternative zu den bisher gebrauchlichen Methoden. Milschwissenschaft 1976, 31, 721–724. [Google Scholar]
- Bonczar, G.; Pustkowiak, H.; Domagała, J.; Najgebauer-Lejko, D.; Sady, M.; Walczycka, M.; Wszołek, M. Cholesterol content and fatty acids profile in cream and sour cream obtained from three different cow breeds. Żywn Nauka Technol. Jakość 2016, 2, 81–94, Original Title: Zawartość cholesterolu i profil kwasów tłuszczowych w śmietance i śmietanie z mleka trzech ras krów. [Google Scholar]
- Litwińczuk, Z.; Kowal, M.; Barłowska, J. Basic chemical composition and fatty acids share and cholesterol content in milk of four cow breeds used in the intensive breeding technology. Żywn Nauka Technol. Jakość 2014, 4, 108–121, Original Title: Podstawowy skład chemiczny oraz udział kwasów tłuszczowych i zawartość cholesterolu w mleku krów czterech ras użytkowanych w intensywnych technologiach chowu. [Google Scholar]
- Cerutti, G.; Machado, M.A.; Ribolzi, L. The distribution of cholesterol in milk and milk products. Latte 1993, 18, 1102–1108. [Google Scholar]
- Fletouris, D.J.; Botsoglou, N.A.; Psomas, I.E.; Mantis, A.I. Rapid determination of cholesterol in milk and milk products by direct saponification and capillary gas chromatography. J. Dairy Sci. 1998, 81, 2833–2840. [Google Scholar] [CrossRef]
- Kamelska, A.M.; Jarmołowska, B.; Bryl, K. A simplified enzymatic method for total cholesterol determination in milk. Int. Dairy J. 2015, 50, 50–57. [Google Scholar] [CrossRef]
- Strzałkowska, N.; Jóźwik, A.; Bagnicka, E.; Krzyżewski, J.; Horbańczuk, J.O. Studies upon genetic and environmental factors affecting the cholesterol content of cow milk. I. Relationship between the polymorphic form of betalactoglobulin, somatic cell count, cow age and stage of lactation and cholesterol content of milk. Anim. Sci. Pap. Rep. 2009, 27, 95–103. [Google Scholar]
- Navrátilová, P.; Pospíšil, J.; Borkovcová, I.; Kaniová, L.; Dluhošová, S.; Horáková, S. Important components in mare milk fat. Mljekarstvo 2018, 68, 282–294. [Google Scholar] [CrossRef]
- Pandya, A.J.; Ghodke, K.M. Goat and sheep milk products other than cheeses and yoghurt. Small Rumin. Res. 2007, 68, 193–206. [Google Scholar] [CrossRef]
- Kostyra, E.; Kostyra, H.; Krawczuk, S.; Przybylska, M. Goat milk repository—Part IV. Przegl. Mlecz. 1996, 6, 140–142, Original Title: Repetytorium z mleka koziego—część IV. [Google Scholar]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control. 2014, 42, 188–201. [Google Scholar] [CrossRef]
- He, S.; Ma, Y.; Wang, J.; Li, Q.; Yang, X.; Tang, S.; Li, H. Milk fat chemical composition of yak breeds in China. J. Food Compos. Anal. 2011, 24, 223–230. [Google Scholar] [CrossRef]
- Park, S.W.; Addis, P.B. Further investigation of oxidized cholesterol derivatives in heated fats. J. Food Sci. 1986, 51, 1380–1381. [Google Scholar] [CrossRef]
- Scopesi, F.; Zunin, P.; Mazzella, M.; Testa, M.; Boggia, R.; Evangelisti, F.; Serra, G. 7-keto-cholesterol in human and adapted milk formulas. Clin. Nutr. 2002, 21, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Paradkar, M.M.; Irudayaraj, J.I. Determination of cholesterol in dairy products by infrared techniques: 2. FT-IR method. Int. J. Dairy Technol. 2002, 55, 133–138. [Google Scholar] [CrossRef]
- Kamelska, A.M.; Bryl, K. The assessment of cholesterol content in human milk collected during day and night. Humanist. Essays 2012, XII, 25–35. (In Polish)Original Title: Ocena zawartości cholesterolu w mleku kobiecym pobieranym w trakcie dnia oraz w nocy [Google Scholar]
- Bard, J.M.; Drouet, L.; Lairon, D.; Cazaubiel, M.; Marmonier, C.; Ninio, E.; Bal Dit Sollier, C.; Martin, J.C.; Boyer, C.; Bobin-Dubigeon, C.; et al. Effect of milk fat on LDL cholesterol and other cardiovascular risk markers in healthy humans: The INNOVALAIT project. Eur. J. Clin. Nutr. 2020, 74, 285–296. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in atherosclerosis:from pathophysiology to practice. J. Am. Coll. Cardiol. 2009, 54, 2129–2138. [Google Scholar] [CrossRef] [Green Version]
- Kaptoge, S.; Seshasai, S.R.; Gao, P.; Freitag, D.F.; Butterworth, A.S.; Borglykke, A.; Di Angelantonio, E.; Gudnason, V.; Rumley, A.; Lowe, G.D.; et al. Inflam-matory cytokines and risk of coronary heart disease: New prospectivestudy and updated meta-analysis. Eur. Heart J. 2014, 35, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Buckley, D.I.; Fu, R.; Freeman, M.; Rogers, K.; Helfand, M. C-reactive protein as a risk factor for coronary heart disease: A systematic review andmeta-analyses for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2009, 151, 483–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ras, R.T.; Streppel, M.T.; Draijer, R.; Zock, P.L. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int. J. Cardiol. 2013, 168, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA 2005, 294, 1799–1809. [Google Scholar] [PubMed]
- Erqou, S.; Thompson, A.; Di Angelantonio, E.; Saleheen, D.; Kaptoge, S.; Marcovina, S.; Danesh, J. Apolipoprotein (A) isoforms and the risk of vascular disease: Systematic review of 40 studies involving 58,000 participants. J. Am. Coll. Cardiol. 2010, 55, 2160–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xun, P.; Wu, Y.; He, Q.; He, K. Fasting insulin concentrations and incidence of hypertension, stroke, and coronary heart disease: A meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2013, 98, 1543–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, C.G.; Whincup, P.H.; Kaye, S.J.; Martin, R.M.; Smith, G.D.; Cook, D.G.; Bergstrom, E.; Black, S.; Wadsworth, M.E.J.; Fall, C.H.; et al. Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am. J. Clin. Nutr. 2008, 88, 305–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamelska, A.M.; Pietrzak-Fiećko, R.; Bryl, K. The analysis of selected infant formulas in the case of cholesterol content by FTIR-ATR method. In Quality and Health-Promoting Properties of Food Products; Wojtatowicz, M., Kawa-Rygielska, J., Eds.; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2010; pp. 87–99, Original Title: Analiza składu wybranych produktów mlekozastępczych dla niemowląt pod względem zawartości cholesterolu metodą FTIR-ATR. [Google Scholar]
- Hayat, L.; Al-Sughayer, M.; Afzal, M. A comparative study of fatty acids in human breast milk and breast milk substitutes in Kuwait. Nutr. Res. 1999, 19, 827–841. [Google Scholar] [CrossRef]
- Brasil, A.L.D.; Vitolo, M.R.; Lopez, F.A.; De No’brega, F.J. Fat and protein composition of mature milk in adolescents. J. Adolesc. Health 1991, 12, 365–371. [Google Scholar] [CrossRef]
- Boersma, E.R.; Offfringa, P.J.; Muskiet, F.A.J.; Chase, W.M.; Simmons, I.J.; Vitamin, E. Lipid fractions, and fatty acid composition of colostrum, transitional milk, and mature milk: An international comparative study. Am. J. Clin. Nutr. 1991, 53, 1197–1204. [Google Scholar] [CrossRef]
- Lukkainen, P.; Salo, M.K.; Nikkari, T. Changes in the fatty acid composition of preterm and term human milk from 1 week to 6 months of lactation. J. Pediatr. Gastroenterol. Nutr. 1994, 18, 355–360. [Google Scholar] [CrossRef]
- Lands, W.E.M. Renewed questions about polyunsaturated fatty acids. Nutr. Rev. 1986, 44, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Salem, N., Jr.; Van Dael, P. Arachidonic acid in human milk. Nutrients 2020, 12, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uauy, P.D.; Birch, D.G.; Birch, E.E.; Tyson, J.E.; Hoffmann, D.R. Effect of dietary fatty acids on retinal function of very-low-birth weight neonates. Pediatr. Res. 1990, 28, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.E.; Werman, S.H.; Rhodes, P.G.; Tolley, E. Visual acuity development in healthy preterm infants: Effect of marine oil supplementation. Am. J. Clin. Nutr. 1993, 58, 35–42. [Google Scholar] [CrossRef]
- Rogers, L.K.; Valentine, C.J.; Keim, S.A. DHA supplementation: Current implications in pregnancy and childhood. Pharmacol. Res. 2013, 70, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Barness, L.A.; Morrow, G.; Silverio, J.; Finnegan, L.P.; Heitman, S.E. Calcium and fat absorption from infant formulas with different fat blend. Pediatrics 1974, 54, 212–221. [Google Scholar]
- Lordan, R.; Zabetakis, I. Invited review: The anti-inflammatory properties of dairy lipids. J. Dairy Sci. 2017, 100, 4197–4212. [Google Scholar] [CrossRef]
- Huth, P.J.; Park, K.M. Influence of dairy product and milk fat consumption on cardiovascular disease risk: A review of the evidence. Adv. Nutr. 2012, 3, 266–285. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Thiel, I.; Abiodun, P.O. The fatty acid composition of human milk in Europe and Africa. J. Pediatr 1992, 120, S62–S70. [Google Scholar] [CrossRef]
- Pytasz, U. The Content of Fatty Acids and Triacylgycerols in Milk of Polish Mothers in Different Stages of Lactation and the Problem of This Content in the Case of Infant Formula Creation. Ph.D. Thesis, Gdańsk University of Technology, Gdańsk, Poland, 1999. Original Title: Skład KT I TAG Mleka Matek Polskich w Poszczególnych Stadiach Laktacji i Problem Tworzenia Tego Składu w Mleku Modyfikowanym Dla niemowląt. [Google Scholar]
- Campbell, T.C. A Comparison between Human Milk and Cow’s Milk. Available online: https://www.vivahealth.org.uk/resources/white-lies/comparison-between-human-milk-and-cow%E2%80%99s-milk-online (accessed on 12 May 2020).
- Zwierzchowski, G.; Ametaj, B.N. Mineral elements in the raw milk of several dairy farms in the Province of Alberta. Foods 2019, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Heiman, H.; Schanler, R.J. Benefits of maternal and donor human milk for premature infants. Early Hum. Dev. 2006, 82, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Wack, R.P.; Lien, E.L.; Taft, D.; Roscelli, J.D. Electrolyte composition of human breast milk beyond the early postpartum period. Nutrition 1997, 13, 774–777. [Google Scholar] [CrossRef]
- Dorea, J.G. Zinc in human milk. Nutr. Res. 2000, 20, 1645–1687. [Google Scholar] [CrossRef]
- Dorea, J.G. Is zinc a first limiting nutrient in human milk? Nutr. Res. 1993, 13, 659–666. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, R.; Ranvir, S.; Gandhi, K.; Mann, B. Profiling and distribution of minerals content in cow, buffalo and goat milk. Indian J. Dairy Sci 2019, 72, 480–488. [Google Scholar] [CrossRef]
- Mitoulas, L.R.; Kent, J.C.; Cox, D.B.; Owens, R.A.; Sherriff, J.L.; Hartmann, P.E. Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br. J. Nutr. 2002, 88, 29–37. [Google Scholar] [CrossRef] [PubMed]
- ISO. PN-EN ISO 1211:2011, Milk-Determination of Fat Content-Gravimetric Method (Reference Method); ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Kamelska, A.M.; Pietrzak-Fiećko, R.; Bryl, K. The cholesterol content as an infant food quality determinant. In Commodity in Ensuring of Food Quality and Consumer Safety; Małecka, M., Ed.; University of Economy in Poznan: Poznań, Poland, 2011; Volume 196, pp. 38–45, Original Title: Zawartość cholesterolu jako determinanta jakości żywności dla niemowląt. [Google Scholar]
- ISO. ISO 15884:2002 (IDF 182:2002) Milkfat: Preparation of Fatty Acid Methyl Esters; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Ulbricht, T.; Southgate, D. Coronary heart disease: Seven dietary factors. Lancet 1999, 338, 985–992. [Google Scholar] [CrossRef]
- Osmari, E.K.; Cecato, U.; Macedo, F.A.F.; Souza, N.E. Nutritional quality indices of milk fat from goats on diets supplemented with different roughages. Small Rumin. Res. 2011, 98, 128–132. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livest Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Whiteside, P.; Miner, B. Pye Unicam Atomic Absorption Data Book; Pye Unicam LTD: Cambridge, UK, 1984. [Google Scholar]
- Sachin, L.; Kishorkumar, A.; Bhavbhuti, M.; Suresh, V. Goat milk in human nutrition and health—A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1781–1792. [Google Scholar]
- Dimova, L.G.; Lohuis, M.A.M.; Bloks, V.W.; Tietge, U.J.F.; Verkade, H.J. Milk cholesterol concentration in mice is not affected by high cholesterol diet- or genetically-induced hypercholesterolaemia. Sci. Rep. 2018, 8, 8824. [Google Scholar] [CrossRef] [PubMed]
- Kamelska, A.M. Maternal diet and cholesterol concentration in breast milk: Pilot study. In Breast Milk: Consumption and Its Effects on Child Health; Carson, L., Ed.; Nova Science Publishers: New York, NY, USA, 2016; pp. 1–26. [Google Scholar]
- Šterna, V.; Jemeljanovs, A. Comparison of fatty acids and cholesterol content in the milk of Latvian cows. Vet. Zootech. 2003, 22, 95–98. [Google Scholar]
- Mayer, H.; Fiechter, G. Physical and chemical characteristics of sheep and goat milk in Austria. Int. Dairy J. 2012, 24, 57–63. [Google Scholar] [CrossRef]
- Strzałkowska, N.; Bagnicka, E.; Jóźwik, A.; Krzyżewski, J. Concentration of total cholesterol in milk of Polish White improved goats during whole lactation. Arch. Tierzucht. 2006, 49, 166–173. [Google Scholar]
- Zaharia, N.; Salamon, R.; Pascal, C.; Salamon, S.; Zaharia, R. Changes in fatty acid composition and cholesterol content of goat colostrum. Biotechnol. Anim. Husb. 2011, 27, 1201–1208. [Google Scholar] [CrossRef]
- Gorban, A.; Izzeldin, O. Study on cholesteryl ester fatty acids in camel and cow milk lipid. Int. J. Food Sci. Technol. 1999, 34, 229–234. [Google Scholar] [CrossRef]
- Pikul, J.; Wójtowski, J. Fat and cholesterol content and fatty acid composition of mares’ colostrums and milk during five lactation months. Livest. Sci. 2008, 113, 285–290. [Google Scholar] [CrossRef]
- Górová, R.; Pavlíková, E.; Blaško, J.; Meľuchová, B.; Kubinec, R.; Margetín, M.; Soják, L. Temporal variations in fatty acid composition of individual ewes during first colostrum day. Small Rumin. Res. 2011, 95, 104–112. [Google Scholar] [CrossRef]
- Marounek, M.; Pavlata, L.; Mišurová, L.; Volek, Z.; Dvořák, R. Changes in the composition of goat colostrum and milk fatty acids during the first month of lactation. Czech. J. Anim. Sci 2012, 57, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Givens, D.I. Saturated fats, dairy foods and health: A curious paradox? Nutr. Bull. 2017, 42, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Strzałkowska, N.; Józwik, A.; Bagnicka, E.; Polawska, E.; Krzyzewski, J.; Pyzel, B.; Horbanczuk, J.O. Fatty acid profile, cholesterol concentration and susceptibility to lipolysis of goat milk fat fraction. Med. Wet. 2012, 68, 40–44, Original Title: Profil kwasów tłuszczowych, koncentracja cholesterolu i podatność na lipolizę frakcji tłuszczowej mleka koziego. [Google Scholar]
- Chilliard, Y.; Rouel, J.; Leroux, C. Goats alpha-s1 casein genotype influence its milk fatty acid composition and delta-9 desaturation ratios. Anim. Feed Sci. Technol. 2006, 131, 474–487. [Google Scholar] [CrossRef]
- Renner, E. Importance of milk and its different components for human nutrition and health. Nutr. Res. 1995, 17, 1209–1228. [Google Scholar]
- López-Aliaga, I.; Alférez, M.J.; Nestares, M.T.; Ros, P.B.; Barrionuevo, M.; Campos, M.S. Goat milk feeding caused an increase in biliary secretion of cholesterol and a decrease in plasma cholesterol levels in rats. J. Dairy Sci. 2005, 88, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrzak–Fiećko, R.; Tomczyński, R.; Smoczyński, S. Effect of lactation period on the fatty acids composition in mares’ milk from different breeds. Arch. Tierzucht. 2013, 56, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Sinanoglou, V.J.; Koutsouli, P.; Fotakis, C.; Sotiropoulou, G.; Cavouras, D.; Bizelis, I. Assessment of lactation stage and breed effect on sheep milk fatty acid profile and lipid quality indices. Dairy Sci. Technol. 2015, 95, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Bolesławska, I.; Przysławski, J.; Schlegel-Zawadzka, M.; Grzymisławski, M. The mineral content in daily food rations in women and men following traditional and optimal diet. Żywn Nauka Technol. Jakość 2009, 4, 303–311, Original Title: Zawartość składników mineralnych w całodziennych racjach pokarmowych kobiet i mężczyzn stosujących dietę tradycyjną i optymalną—Analiza porównawcza. [Google Scholar]
- Blaszczyk, U.; Duda-Chodak, A. Magnesium: Its role in nutrition and carcinogenesis. Rocz. Panstw. Zakl. Hig. 2013, 64, 165–171. [Google Scholar]
- Majewski, M.; Kucharczyk, E. Dietary magnesium intake in the Polish population of oncological patients. J. Elem. 2018, 23, 85–93. [Google Scholar]
- Bilandžić, N.; Sedak, M.; Ðokić, M.; Varenina, I.; Kolanović, B.S.; Božić, D.; Končurat, A. Content of macro- and mi-croelements in the milk of Croatian Coldblood mares during lactation. Slov. Vet. Res. 2014, 51, 171–177. [Google Scholar]
- Raynal-Ljutovac, K.; Lagriffoul, G.; Paccard, P.; Guillet, I.; Chilliard, Y. Composition of goat and sheep milk products: An update. Small Rumin. Res. 2008, 79, 57–72. [Google Scholar] [CrossRef]
- Zamberlin, Š.; Antunac, N.; Havranek, J.; Samaržija, D. Mineral elements in milk and dairy products. Mljekarstvo 2011, 62, 111–125. [Google Scholar]
- Fišera, M.; Valášek, P.; Kráčmar, S.; Kubáň, V.; Burešová, P.; Velichová, H.; Fišerová, L. Influence of composition of feed and lactation period on mineral composition of mare’s. Potravin. Slovak J. Food Sci. 2018, 12, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Faye, B.; Bengoumi, M.; Al-Masaud, A.; Konuspayeva, G. Comparative milk and serum cholesterol content in dairy cow and camel. J. King Saud Univ. Sci. 2015, 27, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Kamelska, A.M.; Pietrzak-Fiećko, R.; Bryl, K. Variation of the cholesterol content in breast milk during 10 days collection at early stages of lactation. Acta Biochim. Pol. 2012, 59, 243–248. [Google Scholar] [CrossRef]
- Stuparu, A.A.; Oroian, T.; Strugariu, C.E. Pharmaceuticals and dietary supplements extracted from mare’s milk. Bull. Univ. Agric. Sci. Vet. Med. Anim. Sci. Biotechnol. 2016, 73, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Danków, R.; Wójtowski, J.; Pikul, J.; Niżnikowski, R.; Cais-Sokolińska, D. Effect of lactation on the hygiene quality and some milk physicochemical traits of the Wielkopolska mares. Arch. Anim. Breed. 2006, 49, 201–206. [Google Scholar]
- Stergiadis, S.; Nørskov, N.P.; Purup, S.; Givens, I.; Lee, M.R.F. Comparative nutrient profiling of retail goat and cow milk. Nutrients 2019, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente, M.A.; Montes, F.; Guerrero, G.; Juarez, M. Total and soluble contents of calcium, magnesium, phosphorus and zinc in yoghurts. Food Chem. 2003, 80, 573–578. [Google Scholar] [CrossRef]
Animal Species | Mean Fat Content [%] | Author, Date |
---|---|---|
Human | 3.64 | Malacarne et al., 2002 [12] |
3.72 | Butts et al., 2018 [10] | |
3.80 | Kamelska et al., 2013 [7] | |
3.90 | Thakore & Jain, 2018 [9] | |
Mare | 1.21 | Malacarne et al., 2002 [12] |
4.20 | Markiewicz-Kęszycka et al., 2014 [15] | |
Cow | 2.50 | Thakore & Jain, 2018 [9] |
3.30 | Gantner et al., 2015 [8] | |
3.30 | Balthazar et al., 2017 [16] | |
3.40 | Thakore & Jain, 2018 [9] | |
3.61 | Malacarne et al., 2002 [12] | |
3.80 | Paszczyk et al., 2019 [17] | |
Sheep | 5.90 | Balthazar et al., 2017 [16] |
6.90 | Ferro et al., 2017 [13] | |
Goat | 3.10 | Paszczyk et al., 2019 [17] |
3.40 | Park, 2000 [18] | |
3.80 | Balthazar et al., 2017 [16] | |
4.20 | Ferro et al., 2017 [13] | |
5.20 | Thakore & Jain, 2018 [9] | |
Buffalo | 6.00 | Thakore & Jain, 2018 [9] |
15.00 | Gantner et al., 2015 [8] |
Species | ChC (mg/dL) | Method | Author, Date |
---|---|---|---|
Cow (Bos taurus) | 10.23–14.31 (different breeds) | Enzymatic BioAnalysis [27] | Bonczar et al., 2016 [28] |
15.71–25.39 (different breeds) | Balice Animal Husbandry Institute | Litwińczuk et al., 2014 [29] | |
2.37–3.06 | Cerutti, Machado, & Ribolzi, 1993 | Cerutti et al., 1993 [30] | |
16.71 | direct saponification [31] & enzymatic method | Kamelska et al., (2015) [32] | |
20.58 | IDF & gas chromatography [31] | ||
Mare (Equus cabalus) | 2.04 | Strzałkowska et al., 2009 [33] | Markiewicz-Kęszycka et al., 2014 [15] |
2.74 | saponification and reverse phase liquid chromatography [34] | Navrátilová et al., 2018 [34] | |
Goat (Capra hircus) | 11.00 | no data | Pandya & Ghodke 2007 [35] |
9.00–13.00 | no data | Kostyra et al., 1996 [36] | |
10.70–18.10 | different methods | Claeys et al., 2014 [37] | |
Sheep (Ovis aries) | 14.00–29.00 | different mehods | Claeys et al., 2014 [37] |
Yak (Bos mutus) | 14.25 | Fletouris et al., 1998 [31] | He et al., 2011 [38] |
Human (Homo sapiens) | 12.00 | Park & Addis, 1986 [39] | Scopesi et al., 2002 [40] |
10.57 | Paradkar & Irudayaraj, 2002 [41] | Kamelska et al., 2013 [7] | |
9.88 | IDF Standard | Kamelska et al., 2013 [7] | |
7.05 | IDF Standard | Kamelska et al., 2012 [42] | |
5.38 | Kamelska et al., 2012 [42] | Kamelska et al., 2012 [42] |
Variable | Human | Cow | Mare | Goat | Sheep | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||
FAT | 3.53 | 1.02 | ab | 2.90 | 0.19 | bc | 1.21 | 0.85 | c | 4.14 | 1.29 | a | 7.10 | 3.21 | a |
ChC | 9.90 | 6.51 | bc | 20.58 | 4.21 | a | 6.30 | 1.08 | c | 11.64 | 1.09 | b | 17.07 | 1.18 | a |
C4:0 | 0.02 | 0.03 | c | 3.14 | 0.27 | a | 0.18 | 0.09 | b | 2.56 | 0.12 | a | 2.81 | 0.14 | a |
C6:0 | 0.09 | 0.05 | c | 2.17 | 0.25 | a | 0.28 | 0.26 | c | 2.79 | 0.04 | a | 2.54 | 0.13 | a |
C8:0 | 0.19 | 0.09 | d | 1.41 | 0.17 | c | 2.45 | 1.81 | ab | 3.32 | 0.15 | a | 2.60 | 0.13 | b |
C10:0 | 1.46 | 0.56 | c | 3.25 | 0.54 | b | 6.67 | 3.51 | b | 11.28 | 0.69 | a | 9.88 | 0.43 | a |
C12:0 | 5.53 | 2.33 | a | 3.63 | 0.50 | b | 5.83 | 3.40 | ab | 5.62 | 0.77 | a | 6.76 | 0.26 | a |
C13:0 | 0.05 | 0.03 | b | 0.29 | 0.02 | a | 0.09 | 0.04 | b | 0.20 | 0.02 | a | 0.27 | 0.05 | a |
C14:0 | 6.40 | 2.79 | c | 11.62 | 1.15 | b | 6.37 | 2.12 | c | 11.35 | 0.90 | b | 14.98 | 0.37 | a |
C15:0 | 0.67 | 0.20 | c | 3.43 | 0.12 | a | 0.26 | 0.18 | c | 1.42 | 0.19 | b | 2.02 | 0.16 | b |
C16:0 | 25.40 | 3.95 | a | 24.90 | 1.40 | a | 22.74 | 2.30 | a | 27.69 | 1.39 | a | 29.79 | 0.46 | a |
C17:0 | 0.49 | 0.13 | b | 0.93 | 0.03 | a | 0.31 | 0.19 | b | 0.83 | 0.07 | a | 0.92 | 0.02 | a |
C18:0 | 6.14 | 1.29 | b | 12.67 | 1.59 | b | 2.14 | 0.31 | c | 8.25 | 0.94 | a | 4.77 | 0.27 | b |
C20:0 | 0.17 | 0.06 | a | 0.21 | 0.09 | a | 0.09 | 0.07 | a | 0.20 | 0.04 | a | 0.15 | 0.01 | a |
C10:1 | 0.01 | 0.01 | b | 0.28 | 0.02 | a | 0.54 | 0.41 | a | 0.30 | 0.02 | a | 0.36 | 0.02 | a |
C12:1 | 0.02 | 0.02 | a | 0.10 | 0.02 | a | 0.05 | 0.04 | a | 0.03 | 0.01 | a | 0.02 | 0.01 | a |
C14:1 | 0.23 | 0.10 | c | 0.77 | 0.11 | a | 0.21 | 0.11 | c | 0.21 | 0.3 | c | 0.41 | 0.01 | b |
C16:1 | 2.24 | 0.81 | ab | 1.03 | 0.24 | b | 4.45 | 1.47 | a | 1.18 | 0.09 | b | 2.06 | 0.01 | b |
C17:1 | 0.29 | 0.37 | a | 0.23 | 0,06 | a | 0.25 | 0.08 | a | 0.30 | 0.06 | a | 0.38 | 0.01 | a |
C18:1 | 40.25 | 8,45 | a | 24.81 | 3.81 | b | 25.15 | 3.68 | b | 19.77 | 0.56 | b | 15.73 | 1.39 | c |
C20:1 | 0.52 | 0.27 | a | 0.15 | 0.04 | b | 0.49 | 0.25 | a | 0.05 | 0.02 | c | 0.04 | 0.02 | c |
C18:2 | 8.84 | 3.68 | b | 2.81 | 0.42 | c | 14.94 | 5.75 | a | 2.23 | 0.19 | c | 1.97 | 0.55 | c |
CLA 1 | 0.24 | 0.6 | b | 1.59 | 0.70 | a | 0.01 | 0.01 | c | 0.51 | 0.11 | b | 1.13 | 0.04 | a |
C18:3 | 0.78 | 0.48 | bc | 0.86 | 0.09 | b | 7.05 | 2.41 | a | 0.23 | 0.08 | c | 0.76 | 0.05 | b |
Σ SFA 2 | 46.60 | 7.88 | b | 67.73 | 5.33 | a | 47.40 | 11.57 | b | 75.50 | 0.69 | a | 77.50 | 0.92 | a |
Σ MUFA 3 | 43.55 | 8.33 | a | 27.30 | 4.22 | b | 31.14 | 4.93 | ab | 21.83 | 0.52 | c | 19.01 | 1.35 | c |
Σ PUFA 4 | 9.85 | 4.13 | b | 5.25 | 1.14 | b | 22.01 | 7.57 | a | 2.97 | 0.33 | c | 3.86 | 0.49 | b |
Variable/Species | Human | Cow | Goat | Mare | Sheep | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD 4 | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
AI 1 | 1.12 | 0.43 | 2.37 | 0.52 | 3.17 | 0.19 | 1.11 | 0.53 | 4.21 | 0.23 |
TI 2 | 0.84 | 0.23 | 1.63 | 0.33 | 2.06 | 0.10 | 0.58 | 0.19 | 2.30 | 0.13 |
HH 3 | 1.67 | 0.65 | 0.83 | 0.20 | 0.59 | 0.03 | 1.65 | 0.45 | 0.44 | 0.02 |
Variable/Species | Human | Cow | Mare | Goat | Sheep | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD 1 | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||
Ca 2 | 27.6 | 2.9 | d | 119.8 | 12.5 | b | 92.9 | 5.8 | c | 130.4 | 10.5 | b | 181.7 | 17.2 | a |
Mg 3 | 3.8 | 1.4 | c | 12.6 | 1.9 | b | 8.1 | 3.2 | bc | 17.3 | 2.7 | a | 12.5 | 3.1 | ab |
K 4 | 71.3 | 9.0 | b | 147.9 | 19.7 | a | 87.1 | 18.3 | b | 183.6 | 17.2 | a | 178.6 | 8.4 | a |
Na 5 | 15.9 | 1.5 | c | 49.3 | 5.3 | a | 17.4 | 3.2 | c | 35.9 | 2.4 | b | 52.1 | 3.2 | a |
Fe 6 | 0.20 | 0.10 | a | 0.08 | 0.02 | a | 0.19 | 0.10 | a | 0.07 | 0.02 | a | 0.08 | 0.02 | a |
Zn 7 | 0.46 | 0.20 | ab | 0.62 | 0.18 | a | 0.21 | 0.11 | b | 0.69 | 0.17 | a | 0.58 | 0.21 | a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak-Fiećko, R.; Kamelska-Sadowska, A.M. The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk. Nutrients 2020, 12, 1404. https://doi.org/10.3390/nu12051404
Pietrzak-Fiećko R, Kamelska-Sadowska AM. The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk. Nutrients. 2020; 12(5):1404. https://doi.org/10.3390/nu12051404
Chicago/Turabian StylePietrzak-Fiećko, Renata, and Anna M. Kamelska-Sadowska. 2020. "The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk" Nutrients 12, no. 5: 1404. https://doi.org/10.3390/nu12051404
APA StylePietrzak-Fiećko, R., & Kamelska-Sadowska, A. M. (2020). The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk. Nutrients, 12(5), 1404. https://doi.org/10.3390/nu12051404