Arachidonic Acid in Human Milk
Abstract
1. Introduction
2. Lipid Composition and Lipid Forms of Human Milk
3. The Effect of Dietary Factors on Arachidonic Acid Levels in Human Milk
3.1. Variation across Countries
3.2. Dietary Intervention Studies
4. Bioactive Metabolites of Arachidonic Acid in Human Milk
Eicosanoids
5. Endocannabinoids and Endocannabinoid-Like Metabolites in Human Milk
6. Advances in Arachidonic Acid Function: Infant Requirements
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Breast-feeding: A Commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar] [CrossRef]
- Jensen, R.G. Lipids in human milk. Lipids 1999, 34, 1243–1271. [Google Scholar] [CrossRef] [PubMed]
- Bitman, J.; Wood, L.; Hamosh, M.; Hamosh, P.; Mehta, N.R. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am. J. Clin. Nutr. 1983, 38, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, I.E.I.; Artegoitia, V.M.; Downey, E.; O’Mahoney, J.A.; O’Shea, C.A.; Ryan, C.A.; Kelley, A.L.; Bertram, H.C.; Sundekilde, U.K. Quantification of human milk phospholipids: The effect of gestational and lactational age on phospholipid composition. Nutrients 2019, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.C.; Bougnoux, P.; Antoine, J.M.; Lanson, M.; Couet, C. Triacylglcerol structure of human colostrum and mature milk. Lipids 1993, 28, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.W.; Patton, S. The milk lipid globule membrane. In The Handbook of Milk Composition; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Bourlieu, C.; Deglaire, A.; Cassia de Oliveira, S.; Menard, O.; Gouar, Y.L.; Carriere, F.; Dupont, D. Toward infant formula biomimetic of human milk structure and digestive behavior. Oilseeds Fats Crops Lipids 2017, 24, D206. [Google Scholar]
- Garcia, C.; Millet, V.; Coste, T.C.; Mimoun, M.; Ridet, A.; Antona, C.; Simeoni, U.; Armand, M. French mother’s milk deficient in DHA contains phospholipids species of potential interest for infant development. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 206–212. [Google Scholar] [CrossRef]
- Yuhas, R.; Pramuk, K.; Lien, E.L. Human milk fatty acid composition from nine countries varies most in DHA. Lipids 2006, 41, 851–858. [Google Scholar] [CrossRef]
- Brenna, J.T.; Varamini, B.; Jensen, R.G.; Diersen-Shady, D.A.; Beottcher, J.A.; Arterburn, L.M. Docosahexaenoic acid and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007, 85, 1457–1464. [Google Scholar] [CrossRef]
- Laryea, M.D.; Leichsenring, M.; Mrotzek, M.; El-Amin, E.O.; El Kharib, A.O.; Ahmed, H.M.; Bremer, H.J. Fatty acid composition of the milk of well-nourished Sudanese women. Int. J. Food Sci. Nutr. 1995, 46, 205–214. [Google Scholar] [CrossRef]
- Glew, R.H.; Omene, J.A.; Vignetti, S.; D’Amico, M.; Evans, R.W. Fatty acid composition of breast milk lipids of Nigerian women. Nutr. Res. 1995, 15, 477–489. [Google Scholar] [CrossRef]
- Harris, W.S.; Connor, W.E.; Lindsey, S. Will dietary ω-3 fatty acids change the composition of human milk? Am. J. Clin. Nutr. 1984, 40, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Di Villarosa do Amaral, Y.; Marano, D.; Lopes da Silva, L.; Carnevale Lia Dias Guimaraes, A.; Lopes Moreira, M. Are there changes in the fatty acid profile of breast milk with supplementation with omega-3 sources? A systematic review. Rev. Bras. Ginecol. Obstet. 2017, 39, 128–141. [Google Scholar]
- Makrides, M.; Neumann, M.A.; Gibson, R.A. Effect of maternal docosahexaenoic acid (DHA) supplementation on breast milk composition. Eur. J. Clin. Nutr. 1996, 50, 352–357. [Google Scholar]
- Helland, I.B.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Fatty acid composition in maternal milk and plasma during supplementation with cod liver oil. Eur. J. Clin. Nutr. 1998, 52, 839–845. [Google Scholar] [CrossRef]
- Hadley, K.B.; Guimont-Desrochers, F.; Bailey-Hall, E.; Salem, N., Jr.; Yurko-Mauro, K.; Field, C.J. Supplementing dams with both arachidonic and docosahexaenoic acid has beneficial effects on growth and immune development. PLEFA 2017, 126, 55–63. [Google Scholar] [CrossRef][Green Version]
- Weseler, A.R.; Dirix, C.E.H.; Bruins, M.J.; Hornstra, G. Dietary arachidonic acid dose-dependently increases the arachidonic acid concentration in human milk. J. Nutr. 2008, 138, 2190–2197. [Google Scholar] [CrossRef]
- Smit, E.N.; Koopmamm, M.; Boersma, E.R.; Muskiet, F.A.J. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition. PLEFA 2000, 62, 335–340. [Google Scholar] [CrossRef]
- Del Prado, M.; Villalpando, S.; Elizondo, A.; Rodriguez, M.; Demmelmair, H.; Koletzko, B. Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am. J. Clin. Nutr. 2001, 74, 242–247. [Google Scholar] [CrossRef]
- Finley, D.A.; Lonnerdal, B.; Dewey, K.G.; Grivetti, L.E. Breast milk composition: Fat content and fatty acid composition in vegetarians and non-vegetarians. Am. J. Clin. Nutr. 1985, 41, 787–800. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. Br. Med. J. 2014, 348, g2272. [Google Scholar] [CrossRef] [PubMed]
- Lands, W.E.M.; Libelt, B.; Morris, A.; Kramer, N.C.; Prewitt, T.E.; Bowen, P.; Schmeisser, D.; Davidson, M.H.; Burns, J.H. Maintenance of lower proportions of (n-6) eicosanoid precursors in phospholipids of human plasma to added dietary (n-3) fatty acids. Biochim. Biophys. Acta 1992, 1180, 147–162. [Google Scholar] [CrossRef]
- Lands, W.E.M. Diets could prevent many diseases. Lipids 2003, 38, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef]
- Bibus, D.; Lands, W.E.M. Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids. PLEFA 2015, 99, 19–23. [Google Scholar] [CrossRef]
- Reid, B.; Smith, H.; Friedman, Z. Prostaglandins in human milk. Pediatrics 1980, 66, 870–872. [Google Scholar]
- Wu, J.; Guoveia-Figueira, S.; Domellöf, M.; Zirkovic, A.M.; Nording, M.L. Oxylipins, endocannabinoids and related compounds in human milk: Levels and effects of storage conditions. Prostagl. Lipid Mediat. 2016, 122, 28–38. [Google Scholar] [CrossRef]
- Ying, C.; Wang, W.; Neu, J. Low levels of prostaglandins in human milk after purification by high performance liquid chromatography. Prostagl. Leuk Med. 1986, 24, 207–218. [Google Scholar]
- Robinson, D.T.; Palac, H.L.; Baillif, V.; Van Goethem, E.; Dubourdeau, M.; Van Horn, L.; Martin, C.R. Long chain fatty acid and related pro-inflammatory, specialized pro-resolving lipid mediators and their intermediates in preterm human milk during the first month of lactation. Prostagl. Leuk. Essent. Fatty Acids 2017, 121, 1–6. [Google Scholar] [CrossRef]
- Weiss, G.A.; Troxler, H.; Klinke, G.; Rogler, D.; Braegger, C.; Hersberger, M. High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. Lipids Health Dis. 2013, 12, 89. [Google Scholar] [CrossRef]
- Shimizu, T.; Yamashiro, Y.; Yabuta, K. Prostaglandins E1, E2, and F2α in human milk and plasma. Biol. Neonate 1992, 61, 22–225. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.; Ying, C.; Wang, W.; Measel, C.P.; Gimotty, P. Prostaglandin concentrations in human milk. Am. J. Clin. Nutr. 1988, 47, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Laiho, K.; Lampi, A.M.; Hämäläinen, M.; Moilanen, E.; Phronen, V.; Arvola, T.; Syrjänen, S.; Isolauri, E. Breast milk fatty acids, eicosanoids, and cytokines in mothers milk with and without allergic disease. Pediatr. Res. 2003, 53, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Alzina, V.; Puig, M.; de Echániz, L.; Villa, I.; da Cunha Ferreira, R. Prostaglandins in human milk. Biol. Neonate 1986, 50, 200–204. [Google Scholar] [CrossRef]
- Chandrasekharan, S.; Foley, N.A.; Jania, L.; Clark, P.; Audoly, L.P.; Koller, B.H. Coupling of COX-1 to mPGES1 for prostaglandin E2 biosynthesis in the murine mammary gland. J. Lipid Res. 2005, 46, 2636–2648. [Google Scholar] [CrossRef]
- Blau, H.; Passwell, J.H.; Levanon, M.; Davidson, J.; Kohen, F.; Ramot, B. Studies in human milk macrophages: Effect of activation on phagocytosis and secretion of prostaglandin E2 and lysozyme. Pediatr. Res. 1983, 17, 241–245. [Google Scholar] [CrossRef][Green Version]
- Bartal, L.; Padeh, S.; Passwell, J.H. Lactoferrin inhibits prostaglandin E2 secretion by breast milk macrophages. Pediatr. Res. 1987, 21, 54–57. [Google Scholar] [CrossRef]
- Le Diest, F.; de Saint-Basile, G.; Angeles-Cano, E.; Griscelli, C. Prostaglandin E2 and plasminogen activators in human milk and their secretion by milk macrophages. Am. J. Reprod. Immunol. Microbiol. 1986, 11, 6–10. [Google Scholar] [CrossRef]
- Chappell, J.G.; Clandinin, M.T.; Barbe, G.J.; Armstrong, D.T. Prostanoid content of human milk: Relationships to milk fatty acid content. Endocrinol. Exp. 1983, 17, 351–358. [Google Scholar]
- Craig-Schmidt, M.C.; Weete, J.D.; Faircloth, S.A.; Wickwire, M.A.; Livant, E.J. The effect of hydrogenated fat in the diet of nursing mothers on lipid composition nd prostaglandin content of human milk. Am. J. Clin. Nutr. 1984, 39, 778–786. [Google Scholar] [CrossRef]
- Takeuchi, K.; Kato, S.; Amagase, K. Prostaglandin EP receptors involved in modulating gastrointestinal mucosal integrity. J. Pharmacol. Sci. 2010, 114, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.; Nezamis, J.E.; Lancaster, C.; Hanchar, A.J. Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HC1, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 1979, 77, 433–443. [Google Scholar] [CrossRef]
- Larsen, R.; Hansen, M.B.; Bindslav, N. Duodenal secretion in humans mediated by the EP4 receptor subtype. Acta Physiol. Scand. 2005, 185, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, S.E.; Smith, J.E.; Borman, R.A.; Cox, H.M. EP4 receptors mediate prostaglandin E2, tumor necrosis alpha and interleukin 1beta-induced ion secretion in human and mouse colonic mucosa. Eur. J. Pharmacol. 2012, 694, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Bedrick, A.D.; Britton, J.R.; Johnson, S.; Koldovsky, O. Prostaglandin stability in human milk and infant gastric fluid. Biol. Neonate 1989, 56, 192–197. [Google Scholar] [CrossRef]
- Alexander, S.P.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; et al. CGTP Collaborators. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors. Br. J. Pharmacol. 2017, 17, S17–S129. [Google Scholar] [CrossRef]
- Biegon, A.; Kerman, I.A. Autoradiographic study of pre- and postnatal distribution of cannabinoid receptors in human brain. Neuroimage 2001, 14, 1463–1468. [Google Scholar] [CrossRef]
- Fride, E. The endocannabinoid-CB(1) receptor system in pre- and postnatal life. Eur. J. Pharmacol. 2004, 500, 289–297. [Google Scholar] [CrossRef]
- Di Marzo, V.; Sepe, N.; De Petrocellis, L.; Berger, A.; Crozier, G.; Fride, E.; Mechoulam, R. Trick or treat from food endocannabinoids? Nature 1998, 396, 636–637. [Google Scholar] [CrossRef]
- Battista, N.; Sergi, M.; Montesano, C.; Napoletano, S.; Compagnone, D.; Maccarrone, M. Analytical approaches for the determination of phytocannabinoids and endocannabinoids in human matrices. Drug Test. Anal. 2014, 6, 7–16. [Google Scholar] [CrossRef]
- Gaitán, A.V.; Wood, J.T.; Solomons, N.W.; Donohue, J.A.; Ji, L.; Liu, Y.; Nikas, S.P.; Zhang, F.; Allen, L.H.; Makriyannis, A.; et al. Endocannabinoid Metabolome Characterization of Milk from Guatemalan Women Living in the Western Highlands. Curr. Dev. Nutr. 2019, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Kevala, K.; Cunningham, B.; Rouse, C.; Hunt, C.E.; Kim, H.Y. N-docosahexaenoylethanolamine detected in human breast milk. Prostaglandins Leukot. Essent. Fat. Acids 2018, 137, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.M.; Marczylo, T.H.; Konje, J.C. Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 398, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- DiPatrizio, N.V.; Piomelli, D. Intestinal lipid-derived signals that sense dietary fat. J. Clin. Investig. 2015, 125, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Witkamp, R.F. The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol. Asp. Med. 2018, 64, 45–67. [Google Scholar] [CrossRef]
- Piomelli, D. A fatty gut feeling. Trends Endocrinol. Metab. 2013, 24, 332–341. [Google Scholar] [CrossRef]
- Lee, J.W.; Huang, B.X.; Kwon, H.; Rashid, M.A.; Kharebava, G.; Desai, A.; Patnaik, S.; Marugan, J.; Kim, H.Y. Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function. Nat. Commun. 2016, 7, 13123. [Google Scholar] [CrossRef]
- Park, T.; Chen, H.; Kevala, K.; Lee, J.W.; Kim, H.Y. N-Docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling. J. Neuroinflamm. 2016, 13, 284. [Google Scholar] [CrossRef]
- Park, T.; Chen, H.; Kim, H.Y. GPR110 (ADGRF1) mediates anti-inflammatory effects of N-docosahexaenoylethanolamine. J. Neuroinflam. 2019, in press. [Google Scholar] [CrossRef]
- Wright, K.L.; Duncan, M.; Sharkey, K.A. Cannabinoid CB2 receptors in the gastrointestinal tract: A regulatory system in states of inflammation. Br. J. Pharmacol. 2008, 153, 263–270. [Google Scholar] [CrossRef]
- Crawford, M.A.; Wang, Y.; Forsyth, S.; Brenna, J.T. New European food safety authority recommendation for infant formulae contradicts the physiology of human milk and infant development. Nutr. Health 2013, 22, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Hadley, K.B.; Ryan, A.S.; Forsyth, S.; Gautier, S.; Salem, N., Jr. The essentiality of arachidonic acid in infant development. Nutrients 2016, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Clandinin, M.T.; Chappell, J.E.; Leong, S.; Heim, T.; Swyer, P.R.; Chane, G.W. Extrauterine fatty acid accretion in infant brain: Implications for fatty acid requirements. Early Hum. Dev. 1980, 4, 131–138. [Google Scholar] [CrossRef]
- Martinez, M. Tissue levels of polyunsaturated fatty acids during early development. J. Pediatr. 1992, 120, S129–S138. [Google Scholar] [CrossRef]
- Grote, V.; Verduci, E.; Scaglioni, S.; Vecchi, F.; Contarini, G.; Giovannini, M.; Koletzko, B.; Agostoni, C. European Childhood Obesity Project. Breastmilk composition and infant nutrient intakes during the first 12 months of life. Eur. J. Clin. Nutr. 2016, 70, 250–256. [Google Scholar] [CrossRef]
- Koletzko, B. Human milk lipids. Ann. Nutr. Metab. 2016, 69, 28–40. [Google Scholar] [CrossRef]
- Carlson, S.E.; Colombo, J. Docosahexaenoic acid and arachidonic acid nutrition in early development. Adv. Pediatr. 2016, 63, 453–471. [Google Scholar] [CrossRef]
- Koletzko, B.; Bergmann, K.; Brenna, J.T.; Calder, P.C.; Campoy, C.; Clandinin, M.T.; Domellöf, M. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am. J. Clin. Nutr. 2020, 111, 10–16. [Google Scholar] [CrossRef]
- Birch, E.E.; Garfield, S.; Hoffman, D.R.; Uauy, R.; Birch, D.G. A randomized controlled trail of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev. Med. Child Neurol. 2000, 42, 174–181. [Google Scholar] [CrossRef]
- Alshweki, A.; Munuzuri, A.P.; Bana, A.M.; de Castro, M.J.; Andrade, F.; Aldamiz-Echevarria, L.; Saenz de Pipaon, M.; Couce, M.L. Effects of different arachidonic acid supplementation on psychomotor development in very preterm infants; a randomized controlled trial. Nutr. J. 2015, 14, 101. [Google Scholar] [CrossRef]
- Colombo, J.; Carlson, S.E.; Cheatham, C.L.; Shaddy, D.J.; Kerling, E.H.; Thodosoff, J.M.; Gustafson, K.M.; Brez, C. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am. J. Clin. Nutr. 2013, 98, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Columbo, J.; Shaddy, D.J.; Kerling, E.H.; Gustafson, K.M.; Carlson, S.E. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) balance in developmental outcomes. PLEFA 2017, 121, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, A.T.; Anthony, J.C.; Diersen-Shady, D.A.; Rumsey, S.C.; Lawrence, P.; Li, C.; Nathanielsz, P.W.; Brenna, J.T. The influence of moderate and high dietary long chain polyunsaturated fatty acids (LCPUFA) on baboon neonate tissue fatty acids. Pediatr. Res. 2007, 61, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Anderson, M.J. Pure linoleate deficiency in the rat: Influence on growth, accumulation of n-6 polyunsaturates, and [1-14C]linoleate oxidation. J. Lipid Res. 1997, 38, 805–812. [Google Scholar] [PubMed]
- Stroud, C.K.; Nara, T.Y.; Roqueta-Rivera, M.; Radlowski, E.C.; Lawrence, P.; Zhang, Y.; Cho, B.H.; Segre, M.; Hess, R.A.; Brenna, J.T.; et al. Disruption of FADS2 gene in mice impairs male reproduction and causes dermal and intestinal ulceration. J. Lipid Res. 2009, 50, 1870–1880. [Google Scholar] [CrossRef]
- Hatanaka, E.; Harauma, A.; Yasuda, H.; Watanabe, J.; Nakamura, M.T.; Salem, N., Jr.; Moriguchi, T. Essentiality of arachidonic acid intake in murine early development. PLEFA 2016, 108, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Harauma, A.; Yasuda, H.; Hatanaka, E.; Nakamura, M.T.; Salem, N., Jr.; Moriguchi, T. The essentiality of arachidonic acid in addition to docosahexaenoic acid for brain growth and function. PLEFA 2017, 116, 9–18. [Google Scholar] [CrossRef]
- Harauma, A.; Hatanaka, E.; Yasuda, H.; Nakamura, M.T.; Salem, N., Jr.; Moriguchi, T. Effects of arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on brain development using artificial rearing of delta-6-desaturase knockout mice. PLEFA 2017, 127, 32–39. [Google Scholar] [CrossRef]
- Willard, D.E.; Nwankwo, J.O.; Kaduce, T.L.; Harmon, S.D.; Irons, M.; Moser, H.W.; Raymond, G.V.; Spector, A.A. Identification of a fatty acid delta6-desaturase deficiency in human skin fibroblasts. J. Lipid Res. 2001, 42, 501–508. [Google Scholar]
- Zhang, J.Y.; Kothapalli, K.S.D.; Brenna, J.T. Desaturase and elongase limiting endogenous long chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 103–110. [Google Scholar] [CrossRef]
- Kothapalli, K.S.D.; Ye, K.; Gadgil, M.S.; Carlson, S.E.; O’Brien, K.O.; Zhang, J.Y.; Park, H.G.; Ojukwu, K.; Zou, J.; Hyon, S.S.; et al. Positive selection on a regulatory insertion-deletion polymorphism in FADS2 influences apparent endogenous synthesis of arachidonic acid. Mol. Biol. Evol. 2016, 33, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, L.; Gohlke, H.; Muller, M.; Heid, I.M.; Palmer, L.J.; Kompauer, I.; Demmelmair, H.; Lllig, T.; Koletzko, B.J. Common genetic variants of the FAD1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 2006, 15, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Barman, M.; Nilsson, S.; Torinsson Naluai, A.; Sandin, A.; Wold, A.E.; Sandberg, A.-S. Single nucleotide polymorphisms in the FADS gene cluster but not the ELOVL2 gene are associated with serum polyunsaturated fatty acid composition and development of allergy (in a Swedish birth cohort). Nutrients 2015, 7, 10100–10115. [Google Scholar] [CrossRef] [PubMed]
- Mychaleckyj, J.C.; Nayak, U.; Colgate, E.R.; Zhang, A.J.; Carstensen, T.; Ahmed, S.; Ahmed, T.; Mentzer, A.J.; Alam, M.; Kirkpatrick, B.D.; et al. Multiplex genomewide association analysis of breast milk fatty acid composition extends the phenotype association and potential selection of FADS1 variants to arachidonic acid, a critical infant micronutrient. J. Med. Genet. 2018, 55, 459–468. [Google Scholar] [CrossRef]
- Salas Lorenzo, S.; Chisaguano Tonato, A.M.; de la Garza Puentes, A.; Nieto, A.; Herrmann, F.; Dieguez, E.; Castellote, A.I.; Lopez-Sabater, M.C.; Rodriguez-Palmero, M.; Campoy, C. The effect of an infant formula supplemented with AA and DHA on fatty acid levels of infants with different FADS genotypes: The COGNIS study. Nutrients 2019, 11, 602. [Google Scholar] [CrossRef]
- Tanjung, C.; Rzehak, P.; Sudoyo, H.; Mansyur, M.; Munasir, Z.; Immanuel, S.; Irawan, R.; Reischl, E.; Demmelmair, H.; Hadinegoro, S.R.; et al. The association of fatty acid desaturase gene polymorphisms on long-chain polyunsaturated fatty acid composition in Indonesian Infants. Am. J. Clin. Nutr. 2018, 108, 1135–1144. [Google Scholar] [CrossRef]
- Gonzalez-Casanova, I.; Rzehak, P.; Stein, A.D.; Feregrino, R.G.; Dommarco, J.A.; Barraza-Villareal, A.; Demmelmair, H.; Romieu, I.; Villalpando, S.; Martorell, R.; et al. Maternal single nucleotide polymorphisms in the fatty acid desaturase 1 and 2 coding regions modify the impact of prenatal supplementation with DHA on birth weight. Am. J. Clin. Nutr. 2016, 103, 1171–1178. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, N., Jr.; Van Dael, P. Arachidonic Acid in Human Milk. Nutrients 2020, 12, 626. https://doi.org/10.3390/nu12030626
Salem N Jr., Van Dael P. Arachidonic Acid in Human Milk. Nutrients. 2020; 12(3):626. https://doi.org/10.3390/nu12030626
Chicago/Turabian StyleSalem, Norman, Jr., and Peter Van Dael. 2020. "Arachidonic Acid in Human Milk" Nutrients 12, no. 3: 626. https://doi.org/10.3390/nu12030626
APA StyleSalem, N., Jr., & Van Dael, P. (2020). Arachidonic Acid in Human Milk. Nutrients, 12(3), 626. https://doi.org/10.3390/nu12030626