The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep
Abstract
:1. Introduction
- (a)
- discuss the role of vitamin C and vitamins C and E in exercise metabolism, which has important implications in the primary and secondary prevention of insulin resistance, diabetes, metabolic syndrome, and obesity;
- (b)
- summarize the results of studies on antioxidant and anti-inflammatory properties of vitamin C and vitamins C and E in exercise;
- (c)
- address the influence of vitamin C and vitamins C and E on the regular exercise-induced increase in performance in athletes and recreationally active men;
- (d)
- compare the effects of vitamin C and vitamins C and E supplementation on exercise in two distinct groups: the young and the elderly;
- (e)
- discuss the association between vitamin C intake and sleep symptoms;
- (f)
- summarize the existing knowledge on the relationship of vitamin C and different physiological and psychological sleep disorders: insomnia, obstructive sleep apnea, and restless legs syndrome;
- (g)
- determine the benefits of vitamin C supplementation for sleep health.
2. Physical Activity
3. Antioxidant Defense
4. Effect of Vitamins C and E on Cellular Adaptations to Exercise
5. Antioxidant and Anti-Inflammatory Properties of Vitamin C and Vitamins C and E in Exercise
6. TheIinfluence of Vitamin C and Vitamins C and E on Regular Exercise-Induced Increase in Performance in Athletes and Recreationally Active Men
7. The Effects of Vitamin C and Vitamin C and E Supplementation during Exercise in Two Distinct Groups: The Young and the Elderly
8. Dietary Nutrients, Sleep and Sleep Disorders
9. The Association of Vitamin C with Sleep Duration
10. Vitamin C and Sleep Quality
11. Vitamin C and Obstructive Sleep Apnea
12. The Effect of Vitamin C on Restless Legs Syndrome
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burton, D.A.; Stokes, K.; Hall, G. Physiological effects of exercise. Contin. Educ. Anaesth. Crit. Care Pain 2004, 4, 185–188. [Google Scholar] [CrossRef]
- Dauvilliers, Y. The major physiological functions during sleep. In Sleep: Physiology, Investigations, and Medicine, 1st ed.; Billiard, M., Ed.; Springer Science+Business Media: New York, NY, USA, 2003; pp. 45–60. [Google Scholar] [CrossRef]
- Amici, R.; Cerri, M.; Parmeggiani, P.L. Overview of physiological processes during sleep. In The Encyclopedia of Sleep; Kushida, C., Ed.; Academic Press: Waltham, MA, USA, 2013; Volume 1, pp. 385–389. [Google Scholar] [CrossRef]
- Watson, A.M. Sleep and Athletic Performance. Curr. Sports Med. Rep. 2017, 16, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.J.; Baron, K.G.; Lu, B.; Naylor, E.; Wolfe, L.; Zee, P.C. Aerobic exercise improves self reported sleep and quality of life in older adults with insomnia. Sleep Med. 2010, 11, 934–940. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, F.; Boros, S. The effect of physical activity on sleep quality: A systematic review. Eur. J. Physiother. 2019. [Google Scholar] [CrossRef]
- Kline, C.E.; Ewing, G.B.; Burch, J.B.; Blair, S.N.; Durstine, J.L.; Davis, J.M.; Youngstedt, S.D. Exercise training improves selected aspects of daytime functioning in adults with obstructive sleep apnea. J. Clin. Sleep Med. 2012, 8, 357–365. [Google Scholar] [CrossRef]
- Iftikhar, I.H.; Kline, C.E.; Youngstedt, S.D. Effects of exercise training on sleep apnea: A meta-analysis. Lung 2014, 192, 175–184. [Google Scholar] [CrossRef][Green Version]
- Reimund, E. The free radical flux theory of sleep. Med. Hypotheses 1994, 43, 231–233. [Google Scholar] [CrossRef]
- Hill, V.M.; O’Connor, R.M.; Sissoko, G.B.; Irobunda, I.S.; Leong, S.; Canman, J.C.; Stavropoulos, N.; Shirasu-Hiza, M. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol. 2018, 16, e2005206. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P. Physical Activity Guidelines for Americans From the US Department of Health and Human Services. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e005263. [Google Scholar] [CrossRef]
- Sachdev, S.; Davies, K.J. Production, detection, and adaptive responses to free radicals in exercise. Free Radic. Biol. Med. 2008, 44, 215–223. [Google Scholar] [CrossRef]
- Powers, S.K.; Nelson, W.B.; Hudson, M.B. Exercise-induced oxidative stress in humans: Cause and consequences. Free Radic. Biol. Med. 2011, 51, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Dillard, C.J.; Litov, R.E.; Savin, W.M.; Dumelin, E.E.; Tappel, A.L. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1978, 45, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Otocka-Kmiecik, A.; Lewandowski, M.; Stolarek, R.; Szkudlarek, U.; Nowak, D.; Orlowska-Majdak, M. Effect of single bout of maximal exercise on plasma antioxidant status and paraoxonase activity in young sportsmen. Redox Rep. 2010, 15, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Ramana, K.V.; Srivastava, S.; Singhal, S.S. Lipid peroxidation products in human health and disease 2019. Oxid. Med. Cell Longev. 2019, 2019, 7147235. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Moflehi, D.; Kok, L.Y.; Tengku-Kamalden, T.F.; Amri, S. Effect of single-session aerobic exercise with varying intensities on lipid peroxidation and muscle-damage markers in sedentary males. Glob. J. Health Sci. 2012, 4, 48–54. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef][Green Version]
- Otocka-Kmiecik, A.; Orłowska-Majdak, M. The role of genetic (PON1 polymorphism) and environmental factors, especially physical activity, in antioxidant function of paraoxonase. Postepy Hig. Med. Dosw. 2009, 63, 668–677. [Google Scholar]
- Petróczi, A.; Naughton, D.P.; Mazanov, J.; Holloway, A.; Bingham, J. Performance enhancement with supplements: Incongruence between rationale and practice. J. Int. Soc. Sports Nutr. 2007, 4, 19. [Google Scholar] [CrossRef][Green Version]
- Shafat, A.; Butler, P.; Jensen, R.L.; Donnelly, A.E. Effects of dietary supplementation with vitamins C and E on muscle function during and after eccentric contractions in humans. Eur. J. Appl. Physiol. 2004, 93, 196–202. [Google Scholar] [CrossRef]
- Kaminski, M.; Boal, R. An effect of ascorbic acid on delayed-onset muscle soreness. Pain 1992, 50, 317–321. [Google Scholar] [CrossRef]
- Colbert, L.H.; Visser, M.; Simonsick, E.M.; Tracy, R.P.; Newman, A.B.; Kritchevsky, S.B.; Pahor, M.; Taaffe, D.R.; Brach, J.; Rubin, S.; et al. Physical activity, exercise, and inflammatory markers in older adults: Findings from the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2004, 52, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Taghiyar, M.; Darvishi, L.; Askari, G.; Feizi, A.; Hariri, M.; Mashhadi, N.S.; Ghiasvand, R. The effect of vitamin C and E supplementation on muscle damage and oxidative stress in female athletes: A clinical trial. Int. J. Prev. Med. 2013, 4 (Suppl. 1), S16–S23. [Google Scholar] [PubMed]
- Naziroğlu, M.; Kilinç, F.; Uğuz, A.C.; Celik, O.; Bal, R.; Butterworth, P.J.; Baydar, M.L. Oral vitamin C and E combination modulates blood lipid peroxidation and antioxidant vitamin levels in maximal exercising basketball players. Cell Biochem. Funct. 2010, 28, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.K.; et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L. Exercise and oxidative stress: Role of cellular antioxidant systems. Exerc. Sport Sci. Rev. 1995, 23, 135–166. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.C.; Domenech, E.; Romagnoli, M.; Arduini, A.; Borras, C.; Pallardo, F.V.; Sastre, J.; Viña, J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 2008, 87, 142–149. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bruns, D.R.; Ehrlicher, S.E.; Khademi, S.; Biela, L.M.; Peelor, F.F., 3rd; Miller, B.F.; Hamilton, K.L. Differential effects of vitamin C or protandim on skeletal muscle adaptation to exercise. J. Appl. Physiol. 2018, 125, 661–671. [Google Scholar] [CrossRef]
- Farag, H.A.M.; Hosseinzadeh-Attar, M.J.; Muhammad, B.A.; Esmaillzadeh, A.; Bilbeisi, A.H.E. Comparative effects of vitamin D and vitamin C supplementations with and without endurance physical activity on metabolic syndrome patients: A randomized controlled trial. Diabetol. Metab. Syndr. 2018, 10, 80. [Google Scholar] [CrossRef][Green Version]
- Roberts, L.A.; Beattie, K.; Close, G.L.; Morton, J.P. Vitamin C consumption does not impair training-induced improvements in exercise performance. Int J. Sports Physiol. Perform. 2011, 6, 58–69. [Google Scholar] [CrossRef]
- Thompson, D.; Williams, C.; Garcia-Roves, P.; McGregor, S.J.; McArdle, F.; Jackson, M.J. Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur. J. Appl. Physiol. 2003, 89, 393–400. [Google Scholar] [CrossRef]
- Ristow, M.; Zarse, K.; Oberbach, A.; Klöting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Blüher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Paulsen, G.; Cumming, K.T.; Holden, G.; Hallén, J.; Rønnestad, B.R.; Sveen, O.; Skaug, A.; Paur, I.; Bastani, N.E.; Østgaard, H.N.; et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: A double-blind, randomised, controlled trial. J. Physiol. 2014, 592, 1887–1901. [Google Scholar] [CrossRef]
- Morrison, D.; Hughes, J.; Della Gatta, P.A.; Mason, S.; Lamon, S.; Russell, A.P.; Wadley, G.D. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic. Biol. Med. 2015, 89, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Yfanti, C.; Fischer, C.P.; Nielsen, S.; Akerström, T.; Nielsen, A.R.; Veskoukis, A.S.; Kouretas, D.; Lykkesfeldt, J.; Pilegaard, H.; Pedersen, B.K. Role of vitamin C and E supplementation on IL-6 in response to training. J. Appl. Physiol. 2012, 112, 990–1000. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Theodorou, A.A.; Nikolaidis, M.G.; Paschalis, V.; Koutsias, S.; Panayiotou, G.; Fatouros, I.G.; Koutedakis, Y.; Jamurtas, A.Z. No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training. Am. J. Clin. Nutr. 2011, 93, 1373–1383. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Paulsen, G.; Cumming, K.T.; Hamarsland, H.; Børsheim, E.; Berntsen, S.; Raastad, T. Can supplementation with vitamin C and E alter physiological adaptations to strength training? BMC Sports Sci. Med. Rehabil. 2014, 6, 28. [Google Scholar] [CrossRef][Green Version]
- Dutra, M.T.; Alex, S.; Silva, A.F.; Brown, L.E.; Bottaro, M. Antioxidant Supplementation Impairs Changes in Body Composition Induced by Strength Training in Young Women. Int. J. Exerc. Sci. 2019, 12, 287–296. [Google Scholar]
- Stunes, A.K.; Syversen, U.; Berntsen, S.; Paulsen, G.; Stea, T.H.; Hetlelid, K.J.; Lohne-Seiler, H.; Mosti, M.P.; Bjørnsen, T.; Raastad, T.; et al. High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men. Eur. J. Appl. Physiol. 2017, 117, 1073–1084. [Google Scholar] [CrossRef]
- Bjørnsen, T.; Salvesen, S.; Berntsen, S.; Hetlelid, K.J.; Stea, T.H.; Lohne-Seiler, H.; Rohde, G.; Haraldstad, K.; Raastad, T.; Køpp, U.; et al. Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand. J. Med. Sci. Sports 2016, 26, 755–763. [Google Scholar] [CrossRef]
- Vidal, K.; Robinson, N.; Ives, S.J. Exercise performance and physiological responses: The potential role of redox imbalance. Physiol. Rep. 2017, 5, e13225. [Google Scholar] [CrossRef]
- Larsen, S.; Nielsen, J.; Hansen, C.N.; Nielsen, L.B.; Wibrand, F.; Stride, N.; Schroder, H.D.; Boushel, R.; Helge, J.W.; Dela, F.; et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 2012, 590, 3349–3360. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Vitamin C: Antioxidant or pro-oxidant in vivo? Free Radic. Res. 1996, 25, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Yfanti, C.; Akerström, T.; Nielsen, S.; Nielsen, A.R.; Mounier, R.; Mortensen, O.H.; Lykkesfeldt, J.; Rose, A.J.; Fischer, C.P.; Pedersen, B.K. Antioxidant supplementation does not alter endurance training adaptation. Med. Sci. Sports Exerc. 2010, 42, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Higashida, K.; Kim, S.H.; Higuchi, M.; Holloszy, J.O.; Han, D.H. Normal adaptations to exercise despite protection against oxidative stress. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E779–E784. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bloomer, R.J.; Falvo, M.J.; Schilling, B.K.; Smith, W.A. Prior exercise and antioxidant supplementation: Effect on oxidative stress and muscle injury. J. Int. Soc. Sports Nutr. 2007, 4, 9. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Asemi, Z.; Zare, Z.; Shakeri, H.; Sabihi, S.S.; Esmaillzadeh, A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann. Nutr. Metab. 2013, 63, 1–9. [Google Scholar] [CrossRef]
- Ryan, M.J.; Dudash, H.J.; Docherty, M.; Geronilla, K.B.; Baker, B.A.; Haff, G.G.; Cutlip, R.G.; Always, S.E. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp. Gerontol. 2010, 45, 882–895. [Google Scholar] [CrossRef][Green Version]
- Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
- Childs, A.; Jacobs, C.; Kaminski, T.; Halliwell, B.; Leeuwenburgh, C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic. Biol. Med. 2001, 31, 745–753. [Google Scholar] [CrossRef]
- Knez, W.L.; Jenkins, D.G.; Coombes, J.S. Oxidative stress in half and full Ironman triathletes. Med. Sci. Sports Exerc. 2007, 39, 283–288. [Google Scholar] [CrossRef]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Petersen, E.W.; Ostrowski, K.; Ibfelt, T.; Richelle, M.; Offord, E.; Halkjaer-Kristensen, J.; Pedersen, B.K. Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am. J. Physiol. Cell Physiol. 2001, 280, C1570–C1575. [Google Scholar] [CrossRef] [PubMed]
- Paschalis, V.; Theodorou, A.A.; Kyparos, A.; Dipla, K.; Zafeiridis, A.; Panayiotou, G.; Vrabas, I.S.; Nikolaidis, M.G. Low vitamin C values are linked with decreased physical performance and increased oxidative stress: Reversal by vitamin C supplementation. Eur. J. Nutr. 2016, 55, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef][Green Version]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef][Green Version]
- Levine, M.; Rumsey, S.C.; Daruwala, R.; Park, J.B.; Wang, Y. Criteria and Recommendations for Vitamin C Intake. JAMA 1999, 281, 1415–1423. [Google Scholar] [CrossRef]
- Takisawa, S.; Funakoshi, T.; Yatsu, T.; Nagata, K.; Aigaki, T.; Machida, S.; Ishigami, A. Vitamin C deficiency causes muscle atrophy and a deterioration in physical performance. Sci. Rep. 2019, 9, 4702. [Google Scholar] [CrossRef][Green Version]
- Zoppi, C.; Hohl, R.; Silva, F.; Lazarim, F.; Neto, J.; Stancanneli, M.; Macedo, D. Vitamin C and E Supplementation Effects in Professional Soccer Players Under Regular Training. J. Int. Soc. Sports Nutr. 2006, 3, 37–44. [Google Scholar] [CrossRef][Green Version]
- Morales-Alamo, D.; Guerra, B.; Ponce-González, J.G.; Guadalupe-Grau, A.; Santana, A.; Martin-Rincon, M.; Gelabert-Rebato, M.; Cadefau, J.A.; Cusso, R.; Dorado, C.; et al. Skeletal muscle signaling, metabolism, and performance during sprint exercise in severe acute hypoxia after the ingestion of antioxidants. J. Appl. Physiol. 2017, 123, 1235–1245. [Google Scholar] [CrossRef]
- Makanae, Y.; Kawada, S.; Sasaki, K.; Nakazato, K.; Ishii, N. Vitamin C administration attenuates overload-induced skeletal muscle hypertrophy in rats. Acta Physiol. 2013, 208, 57–65. [Google Scholar] [CrossRef]
- Koivisto, A.E.; Paulsen, G.; Paur, I.; Garthe, I.; Tønnessen, E.; Raastad, T.; Bastani, N.E.; Hallén, J.; Blomhoff, R.; Bøhn, S.K. Antioxidant-rich foods and response to altitude training: A randomized controlled trial in elite endurance athletes. Scand. J. Med. Sci. Sports 2018, 28, 1982–1995. [Google Scholar] [CrossRef] [PubMed]
- Aguiló, A.; Tauler, P.; Sureda, A.; Cases, N.; Tur, J.; Pons, A. Antioxidant diet supplementation enhances aerobic performance in amateur sportsmen. J. Sports Sci. 2007, 25, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Jourkesh, M.; Ostojic, S.M.; Azarbayjani, M.A. The effects of vitamin E and vitamin C supplementation on bioenergetics index. Res. Sports Med. 2007, 15, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Marco, L.; Valtueña, J.; Ortega, F.B.; Pérez-López, F.R.; Vicente-Rodríguez, G.; Breidenassel, C.; Ferrari, M.; Molnar, D.; Widhalm, K.; de Henauw, S.; et al. Iron and vitamin status biomarkers and its association with physical fitness in adolescents: The HELENA study. J. Appl. Physiol. 2012, 113, 566–573. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Suboticanec-Buzina, K.; Buzina, R.; Brubacher, G. Vitamin C status and physical working capacity in adolescents. Int. J. Vitam. Nutr. Res. 1984, 54, 55–60. [Google Scholar] [PubMed]
- Chawla, K.; Mishra, R.; Sachdeva, V.; Beenu. Correlation of antioxidants and fitness levels in undergraduate medical students. Indian J. Physiol. Pharmacol. 2007, 51, 293–295. [Google Scholar] [PubMed]
- Saito, K.; Yokoyama, T.; Yoshida, H.; Kim, H.; Shimada, H.; Yoshida, Y.; Iwasa, H.; Shimizu, Y.; Kondo, Y.; Handa, S.; et al. A significant relationship between plasma vitamin C concentration and physical performance among Japanese elderly women. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 295–301. [Google Scholar] [CrossRef]
- Mason, S.A.; Trewin, A.J.; Parker, L.; Wadley, G.D. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol. 2020, 35, 101471. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Ferrando, B.; Brioche, T.; Sanchis-Gomar, F.; Vina, J. Exercise and antioxidant supplements in the elderly. J. Sport Health Sci. 2013, 2, 94–100. [Google Scholar] [CrossRef][Green Version]
- Clarke, T.C.; Black, L.I.; Stussman, B.J.; Barnes, P.M.; Nahin, R.L. Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl. Health Stat. Reports 2015, 79, 1–16. [Google Scholar]
- Colten, H.R.; Altevogt, B.M.; Institute of Medicine (US) Committee on Sleep Medicine and Research (Eds.) Sleep Disorders and Sleep Deprivation: An. Unmet Public Health Problem; National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Buysse, D.J. Sleep health: Can we define it? Does it matter? Sleep 2014, 37, 9–17. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Sleep symptoms associated with intake of specific dietary nutrients. J. Sleep Res. 2014, 23, 22–34. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Phillips, F.; Chen, C.N.; Crisp, A.H.; Koval, J.; McGuinness, B.; Kalucy, R.S.; Kalucy, E.C.; Lacey, J.H. Isocaloric diet changes and electroencephalographic sleep. Lancet 1975, 2, 723–725. [Google Scholar] [CrossRef]
- St-Onge, M.; Roberts, A.; Shechter, A.; Choudhury, A.R. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. J. Clin. Sleep Med. 2016, 12, 19–24. [Google Scholar] [CrossRef][Green Version]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Grandner, M.; Mullington, J.M.; Hashmi, S.D.; Redeker, N.S.; Watson, N.F.; Morgenthaler, T.I. Sleep duration and hypertension: Analysis of > 700,000 adults by age and sex. J. Clin. Sleep Med. 2018, 14, 1031–1039. [Google Scholar] [CrossRef]
- Reutrakul, S.; Van Cauter, E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 2018, 84, 56–86. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Somers, V.K.; Punjabi, N.M.; Winkelman, J.W. Restless legs syndrome and cardiovascular disease: A research roadmap. Sleep Med. 2017, 31, 10–17. [Google Scholar] [CrossRef][Green Version]
- May, A.M.; Van Wagoner, D.R.; Mehra, R. OSA and cardiac arrhythmogenesis: Mechanistic insights. Chest 2017, 151, 225–241. [Google Scholar] [CrossRef]
- Watson, N.F.; Buchwald, D.; Delrow, J.J.; Altemeier, W.A.; Vitiello, M.V.; Pack, A.I.; Bamshad, M.; Noonan, C.; Gharib, S.A. Transcriptional Signatures of Sleep Duration Discordance in Monozygotic Twins. Sleep 2017, 40. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lyall, L.M.; Wyse, C.A.; Graham, N.; Ferguson, A.; Lyall, D.M.; Cullen, B.; Celis Morales, C.A.; Biello, S.M.; Mackay, D.; Ward, J.; et al. Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: A cross-sectional study of 91 105 participants from the UK Biobank. Lancet Psychiatry 2018, 5, 507–514. [Google Scholar] [CrossRef][Green Version]
- Sprecher, K.E.; Koscik, R.L.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Okonkwo, O.C.; Sager, M.A.; Asthana, S.; Johnson, S.C.; Benca, R.M.; et al. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 2017, 89, 445–453. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pillai, J.A.; Leverenz, J.B. Sleep and neurodegeneration: A critical appraisal. Chest 2017, 151, 1375–1386. [Google Scholar] [CrossRef]
- Tefft, B.C. Acute sleep deprivation and culpable motor vehicle crash involvement. Sleep 2018, 41. [Google Scholar] [CrossRef][Green Version]
- Karimi, M.; Hedner, J.; Häbel, H.; Nerman, O.; Grote, L. Sleep apnea-related risk of motor vehicle accidents is reduced by continuous positive airway pressure: Swedish Traffic Accident Registry data. Sleep 2015, 38, 341–349. [Google Scholar] [CrossRef]
- Ikonte, C.J.; Mun, J.G.; Reider, C.A.; Grant, R.W.; Mitmesser, S.H. Micronutrient Inadequacy in Short Sleep: Analysis of the NHANES 2005-2016. Nutrients 2019, 11, 2335. [Google Scholar] [CrossRef][Green Version]
- Kanagasabai, T.; Ardern, C.I. Contribution of inflammation, oxidative stress, and antioxidants to the relationship between sleep duration and cardiometabolic health. Sleep 2015, 38, 1905–1912. [Google Scholar] [CrossRef]
- Noorwali, E.A.; Cade, J.E.; Burley, V.J.; Hardie, L.J. The relationship between sleep duration and fruit/vegetable intakes in UK adults: A cross-sectional study from the National Diet and Nutrition Survey. BMJ Open 2018, 8, e020810. [Google Scholar] [CrossRef][Green Version]
- Matsuura, N.; Saito, A.; Takahashi, O.; Rahman, M.; Tajima, R.; Mabashi-Asazuma, H.; Iida, K. Associations between nutritional adequacy and insomnia symptoms in Japanese men and women aged 18-69 years: A cross-sectional study. Sleep Health 2020, 6, 197–204. [Google Scholar] [CrossRef]
- Yeom, C.H.; Jung, G.C.; Song, K.J. Changes of terminal cancer patients’ health-related quality of life after high dose vitamin C administration. J. Korean Med. Sci. 2007, 22, 7–11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vollbracht, C.; Schneider, B.; Leendert, V.; Weiss, G.; Auerbach, L.; Beuth, J. Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and after care: Results of a retrospective, multicentre, epidemiological cohort study in Germany. In Vivo 2011, 25, 983–990. [Google Scholar] [PubMed]
- Takahashi, H.; Mizuno, H.; Yanagisawa, A. High-dose intravenous vitamin C improves quality of life in cancer patients. Pers. Med. Universe 2012, 1, 49–53. [Google Scholar] [CrossRef]
- Carr, A.C.; Vissers, M.C.; Cook, J. Relief from cancer chemotherapy side effects with pharmacologic vitamin C. N. Z. Med. J. 2014, 127, 66–70. [Google Scholar]
- Carr, A.C.; Vissers, M.C.M.; Cook, J. Parenteral vitamin C for palliative care of terminal cancer patients. N. Z. Med. J. 2014, 127, 84–86. [Google Scholar]
- Grebe, M.; Eisele, H.J.; Weissmann, N.; Schaefer, C.; Tillmanns, H.; Seeger, W.; Schulz, R. Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2006, 173, 897–901. [Google Scholar] [CrossRef]
- Singh, T.D.; Patial, K.; Vijayan, V.K.; Ravi, K. Oxidative stress and obstructive sleep apnoea syndrome. Indian J. Chest Dis. Allied Sci. 2009, 51, 217–224. [Google Scholar]
- Büchner, N.J.; Quack, I.; Woznowski, M.; Stähle, C.; Wenzel, U.; Rump, L.C. Microvascular endothelial dysfunction in obstructive sleep apnea is caused by oxidative stress and improved by continuous positive airway pressure therapy. Respiration 2011, 82, 409–417. [Google Scholar] [CrossRef]
- Sagheb, M.M.; Dormanesh, B.; Fallahzadeh, M.K.; Akbari, H.; Sohrabi Nazari, S.; Heydari, S.T.; Behzadi, S. Efficacy of vitamins C, E, and their combination for treatment of restless legs syndrome in hemodialysis patients: A randomized, double-blind, placebo-controlled trial. Sleep Med. 2012, 13, 542–545. [Google Scholar] [CrossRef]
- Rafie, S.; Jafari, M. A comparative study on the effects of vitamin C and pramipexole on restless legs syndrome treatment in hemodialysis patients: A randomized, double blind, placebo-controlled trial. Int. J. Pharm. Res. Allied Sci. 2016, 5, 128–134. [Google Scholar]
- Dadashpour, S.; Hajmiri, M.S.; Roshani, D. Effect of intravenous vitamin C supplementation on the quality of sleep, itching and restless leg syndrome in patients undergoing hemodialysis; A double-blind randomized clinical trial. J. Nephropharmacol. 2018, 7, 131–136. [Google Scholar] [CrossRef]
- Biddle, J.E.; Hamermesh, D.S. Sleep and the allocation of time. J. Polit. Econ. 1990, 98, 922–943. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Jike, M.; Itani, O.; Watanabe, N.; Buysse, D.J.; Kaneita, Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Med. Rev. 2018, 39, 25–36. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Gamaldo, A.A.; Canas, J.A.; Beydoun, H.A.; Shah, M.T.; McNeely, J.M.; Zonderman, A.B. Serum Nutritional Biomarkers and Their Associations with Sleep among US Adults in Recent National Surveys. PLoS ONE 2014, 9, e103490. [Google Scholar] [CrossRef][Green Version]
- Johnston, C.S.; Beezhold, B.L.; Mostow, B.; Swan, P.D. Plasma vitamin C is inversely related to body mass index and waist circumference but not to plasma adiponectin in nonsmoking adults. J. Nutr. 2007, 137, 1757–1762. [Google Scholar] [CrossRef][Green Version]
- Beydoun, M.A.; Shroff, M.R.; Chen, X.; Beydoun, H.A.; Wang, Y.; Zonderman, A.B. Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J. Nutr. 2011, 141, 903–913. [Google Scholar] [CrossRef]
- Worley, S.L. The Extraordinary Importance of Sleep: The Detrimental Effects of Inadequate Sleep on Health and Public Safety Drive an Explosion of Sleep Research. Pharm. Ther. 2018, 43, 758–763. [Google Scholar]
- Dixit, V.M. Cause of depression in chronic scurvy. Lancet 1979, 314, 1077–1078. [Google Scholar] [CrossRef]
- Mann, J.; Truswell, A.S. Essentials of Human Nutrition, 2nd ed.; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 2008, 11, 851–876. [Google Scholar] [CrossRef][Green Version]
- Fedoce, A.D.G.; Ferreira, F.; Bota, R.G.; Bonet-Costa, V.; Sun, P.Y.; Davies, K.J.A. The role of oxidative stress in anxiety disorder: Cause or consequence? Free Radic. Res. 2018, 52, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Tsaluchidu, S.; Cocchi, M.; Tonello, L.; Puri, B.K. Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry 2008, 8, S5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Moritz, B.; Schmitz, A.E.; Rodrigues, A.L.S.; Dafre, A.L.; Cunha, M.P. The role of vitamin C in stress-related disorders. J. Nutr. Biochem. 2020, 85, 108459. [Google Scholar] [CrossRef] [PubMed]
- Burton, H.B.; Miller, L.A. Ascorbic acid excretion and insomnia. Proc. Okla. Acad. Sci. 1943, 24, 17–20. [Google Scholar]
- Lichstein, K.L.; Payne, K.L.; Soeffing, J.P.; Heith Durrence, H.; Taylor, D.J.; Riedel, B.W.; Bush, A.J. Vitamins and sleep: An exploratory study. Sleep Med. 2007, 9, 27–32. [Google Scholar] [CrossRef][Green Version]
- Mayland, C.R.; Bennett, M.I.; Allan, K. Vitamin C deficiency in cancer patients. Palliat. Med. 2005, 19, 17–20. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef]
- Chen, Q.; Espey, M.G.; Krishna, M.C.; Mitchell, J.B.; Corpe, C.P.; Buettner, G.R.; Shacter, E.; Levine, M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA 2005, 102, 13604–13609. [Google Scholar] [CrossRef][Green Version]
- Chen, Q.; Espey, M.G.; Sun, A.Y.; Pooput, C.; Kirk, K.L.; Krishna, M.C.; Khosh, D.B.; Drisko, J.; Levine, M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. USA 2008, 105, 11105–11109. [Google Scholar] [CrossRef][Green Version]
- Carr, A.C.; Vissers, M.D.; Cook, J.S. The effect of intravenous vitamin C on cancer- and chemotherapy-related fatigue and quality of life. Front. Oncol. 2014, 4. [Google Scholar] [CrossRef][Green Version]
- Balk, E.M.; Moorthy, D.; Obadan, N.O.; Patel, K.; Ip, S.; Chung, M.; Bannuru, R.R.; Kitsios, G.D.; Sen, S.; Iovin, R.C.; et al. Diagnosis and Treatment of Obstructive Sleep Apnea in Adults; Report No. 11-EHC052; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2011.
- Lavie, L. Obstructive sleep apnoea syndrome-an oxidative stress disorder. Sleep Med. Rev. 2003, 7, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Jordan, W.; Cohrs, S.; Degner, D.; Meier, A.; Rodenbeck, A.; Mayer, G.; Pilz, J.; Rüther, E.; Kornhuber, J.; Bleich, S. Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J. Neural Transm. 2006, 113, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Chin, K.; Nakamura, H.; Morita, S.; Sumi, K.; Oga, T.; Matsumoto, H.; Niimi, A.; Fukuhara, S.; Yodoi, J.; et al. Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid. Redox Signal. 2008, 10, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Cofta, S.; Wysocka, E.; Piorunek, T.; Rzymkowska, M.; Batura-Gabryel, H.; Torlinski, L. Oxidative stress markers in the blood of persons with different stages of obstructive sleep apnea syndrome. J. Physiol. Pharmacol. 2008, 59, 183–190. [Google Scholar] [PubMed]
- Volná, J.; Kemlink, D.; Kalousová, M.; Vávrová, J.; Majerová, V.; Mestek, O.; Svarcová, J.; Sonka, K.; Zima, T. Biochemical oxidative stress-related markers in patients with obstructive sleep apnea. Med. Sci. Monit. 2011, 17, 491–497. [Google Scholar] [CrossRef][Green Version]
- Katsoulis, K.; Kontakiotis, T.; Spanogiannis, D.; Vlachogiannis, E.; Kougioulis, M.; Gerou, S.; Daskalopoulou, E. Total antioxidant status in patients with obstructive sleep apnea without comorbidities: The role of the severity of the disease. Sleep Breath. 2011, 15, 861–866. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Li, Q.Y.; Li, M.; Wan, H.Y. Levels of thioredoxin are related to the severity of obstructive sleep apnea: Based on oxidative stress concept. Sleep Breath. 2012, 17, 311–316. [Google Scholar] [CrossRef]
- Mancuso, M.; Bonanni, E.; LoGerfo, A.; Orsucci, D.; Maestri, M.; Chico, L.; DiCoscio, E.; Fabbrini, M.; Siciliano, G.; Murri, L. Oxidative stress biomarkers in patients with untreated obstructive sleep apnea syndrome. Sleep Med. 2012, 13, 632–636. [Google Scholar] [CrossRef]
- Simiakakis, M.; Kapsimalis, F.; Chaligiannis, E.; Loukides, S.; Sitaras, N.; Alchanatis, M. Lack of effect of sleep apnea on oxidative stress in obstructive sleep apnea syndrome (OSAS) patients. PLoS ONE 2012, 7, e39172. [Google Scholar] [CrossRef]
- Ahiawodzi, P.D.; Kerber, R.A.; Taylor, K.C.; Groves, F.D.; O’Brien, E.; Ix, J.H.; Kizer, J.R.; Djoussé, L.; Tracy, R.P.; Newman, A.B.; et al. Sleep-disordered breathing is associated with higher carboxymethyllysine level in elderly women but not elderly men in the cardiovascular health study. Biomarkers 2017, 22, 361–366. [Google Scholar] [CrossRef][Green Version]
- Barcelo, A.; Barbe, F.; de la Pena, M.; Vila, M.; Perez, G.; Pierola, J.; Duran, J.; Agusti, A.G. Antioxidant status in patients with sleep apnea and impact of continuous positive airway pressure treatment. Eur. Respir. J. 2006, 27, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Alzoghaibi, M.A.; Bahammam, S.A. Lipid peroxides, superoxide dismutase and circulating Il-8 and GCP-2 in patients with severe obstructive sleep apnea: A pilot study. Sleep Breath. 2005, 9, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Ntalapascha, M.; Makris, D.; Kyparos, A.; Tsilioni, I.; Kostikas, K.; Gourgoulianis, K.; Kouretas, D.; Zakynthinos, E. Oxidative stress in patients with obstructive sleep apnea syndrome. Sleep Breath. 2013, 17, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Celec, P.; Jurkovičová, I.; Buchta, R.; Bartík, I.; Gardlík, R.; Pálffy, R.; Mucska, I.; Hodosy, J. Antioxidant vitamins prevent oxidative and carbonyl stress in an animal model of obstructive sleep apnea. Sleep Breath. 2013, 17, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Lira, A.B.; de Sousa Rodrigues, C.F. Evaluation of oxidative stress markers in obstructive sleep apnea syndrome and additional antioxidant therapy: A review article. Sleep Breath. 2016, 20, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Campos-Rodriguez, F.; Asensio-Cruz, M.I.; Cordero-Guevara, J.; Jurado-Gamez, B.; Carmona-Bernal, C.; Gonzalez-Martinez, M.; Troncoso, M.F.; Sanchez-Lopez, V.; Arellano-Orden, E.; Garcia-Sanchez, M.I.; et al. Effect of continuous positive airway pressure on inflammatory, antioxidant, and depression biomarkers in women with obstructive sleep apnea: A randomized controlled trial. Sleep 2019, 42. [Google Scholar] [CrossRef] [PubMed]
- May, J.M.; Harrison, F.E. Role of vitamin C in the function of the vascular endothelium. Antioxid. Redox Signal. 2013, 19, 2068–2083. [Google Scholar] [CrossRef][Green Version]
- Mortensen, A.; Lykkesfeldt, J. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies. Nitric Oxide 2014, 36, 51–57. [Google Scholar] [CrossRef][Green Version]
- Guo, S.; Huang, J.; Jiang, H.; Han, C.; Li, J.; Xu, X.; Zhang, G.; Lin, Z.; Xiong, N.; Wang, T. Restless Legs Syndrome: From Pathophysiology to Clinical Diagnosis and Management. Front. Aging Neurosci. 2017, 9, 171. [Google Scholar] [CrossRef][Green Version]
- Higuchi, T.; Abe, M.; Mizuno, M.; Yamazaki, T.; Suzuki, H.; Moriuchi, M.; Oikawa, O.; Okawa, E.; Ando, H.; Okada, K. Association of restless legs syndrome with oxidative stress and inflammation in patients undergoing hemodialysis. Sleep Med. 2015, 16, 941–948. [Google Scholar] [CrossRef]
Type of Training | Participants Age (years) | Training Program | Duration | Intervention | Performance | Metabolic Changes | Antioxidant Funcztion | Studies |
---|---|---|---|---|---|---|---|---|
Endurance training | IG: 5 vs. CG: 9 untrained men Age: IG: 28 ± 1, CG: 31 ± 6 | CAE; 3 × 40 min/wk | 8 weeks | Vitamin C (1000 mg/d) | Trend for smaller improvement in VO2max | Gomez-Cabrera et al. [28] | ||
IG: 4 vs. 4 male rats Age: 86 ± 17 days | Wheel running | 6 weeks | Vitamin C supplemented water (500 mg/kg for 3 weeks) | No change in DNA synthesis Decrease in protein synthesis rate | Decrease in mitochondrial biogenesis in the muscles | No difference in redox status and proteostasis | Bruns et al. [29] | |
IG: 30 vs. CG: 30 men and women with metabolic syndrome Age: IG: 41 ± 6, CG: 42 ± 6 | CAE: 30 min/d | 12 weeks | Vitamin C (500 mg/d) | No difference in weight Decrease in waist circumference | Decrease in TG Increase in HDL-C | No difference in MDA | Farag et al. [30] | |
IG: 8 vs. CG: 8 recreationally active men Age: IG: 21 ± 3, CG: 23 ± 2 | HIIT: 4 × 30 min/wk | 4 weeks | Vitamin C (1000 mg/d) vs. placebo | No difference in VO2max, running economy, and 10 km time trial | No difference in mean carbohydrate, fat oxidation rates | Roberts et al. [31] | ||
Single exercise test | IG: 8 men vs. CG: 8 men Age: IG: 24 ± 1, CG: 24 ± 1 | 1 × 90-min intermittent shuttle-running test | _ | Vitamin C (2 × 200 mg for 3 days after exercise) | No difference in muscle soreness, recovery of muscle function | No difference in CK activities and myoglobin | Thompson et al. [32] |
Type of Training | Participants Age (years) | Training Program | Duration | Intervention | Performance | Metabolic Changes | Antioxidant Function | Studies |
---|---|---|---|---|---|---|---|---|
Endurance training | IG: 20 vs. CG: 20 trained and untrained men Age: IG: 26 ± 3, CG: 26 ± 2 | CAE, circuit training; 5 × 20–45 min/wk | 4 weeks | Vitamin C (1000 mg/d) and vitamin E (400 IU/d) | Decreased PPARɤ, PGC-1a, PGC-1b, and insulin sensitivity | Decreased SOD, GPx | Ristow et al. [33] | |
IG: 27 vs. CG: 27 trained and recreationally active men and women Age: IG: 25 ± 5, CG: 24 ± 6 | CAE and HIIT: 5 × 30–60 min/wk | 10 weeks | Vitamin C (1000 mg/d) and vitamin E (235 IU/d) vs. placebo | No difference in VO2max, 20 m shuttle run test | Decreased PGC-1a, COX-IV | Decreased uric acid No difference in SOD, GPx, GSH, HSP70 | Paulsen, Cumming et al. [34] | |
IG: 6 vs. CG: 5 recreationally active men Age: IG: 23 ± 1, CG: 22 ± 2 | HIIT: 3 × 60 min/wk | 4 weeks | Vitamin C (1000 mg/d) and vitamin E (800 IU/d) vs. placebo | No difference in VO2peak | No difference in CS, COX-IV Decreased TFAM | Decreased SOD | Morrison et al. [35] | |
IG: 11 vs. CG: 10 recreationally active men Age: IG: 29 ± 5, CG: 31 ± 5 | CAE and HIIT: 5 × 30–120 min/wk | 12 weeks | Vitamin C (500 mg/d) and vitamin E (400 IU/d) vs. placebo | No difference in VO2max, LT | No difference in PPARɤ, PGC-1a, β-HAD, CS, glycogen concentration | No difference in SOD | Yfanti et al. [36] | |
Resistance training | IG: 14 vs. CG: 14 recreationally active men Age: IG: 26 ± 2, CG: 26 ± 1 | RT: 2 ×/wk | 4 weeks | Vitamin C (1000 mg/d) and vitamin E (400 IU/d) vs. placebo | No difference in muscle torque, muscle resistance to damage | Theodorou et al. [37] | ||
IG: 17 vs. CG: 15 recreationally active men and women Age: 20–45 | RT: 4 ×/wk | 10 weeks | Vitamin C (1000 mg/d) and vitamin E (235 IU/d) vs. placebo | No difference in lean mass. Decrease in strength increases (biceps curl) and protein synthesis | Paulsen, Cumming et al. [38] | |||
IG: 12 vs. CG: 11 untrained women Age: IG: 23 ± 2, CG: 23 ± 2 | RT: 2×/wk | 10 weeks | Vitamin C (1000 mg/d) and vitamin E (400 IU/d) vs. placebo | Decrease in total lean mass, deadlift strength, lunge strength | No difference in IL-6, MDA | Dutra et al. [39] | ||
IG: 17 vs. CG:18 men Age: 68 ± 6 year | RT: 3×/wk | 12 weeks | Vitamin C (1000 mg/d) and vitamin E (235 IU/d) vs. placebo | Decrease in total lean mass, aBMD No difference in 1 RM | Decrease in IGF-1, leptin, adiponectin, resistin No difference in TNF-α | Stunes et al. [40] | ||
IG: 17 vs. CG: 17 untrained men Age: IG: 69 ± 7, CG: 67 ± 5 | RT: 3×/wk | 12 weeks | Vitamin C (1000 mg/d) and vitamin E (400 IU/d) vs. placebo | Decrease in lean mass, thickness of m. rectus femoris No difference in 1 RM leg extension, 1 RM leg press, 1 RM bicep curl | Bjørnsen et al. [41] | |||
Single exercise test | 14 physically active men Age: 21 ± 0.3 | 1 × 5 km continuous cycling test | _ | Vitamin C (1000 mg/d), vitamin E (600 IU/d), α-lipolic acid (600 mg/d) | Decrease in power output, 5 km time, ventilation, economy, fatigue No difference in VO2 | Increased blood lactate | Vidal et al. [42] |
Sleep Outcome Variables | Study Design | Participants | Vitamin C Serum/Plasma Deficiency | Vitamin C Inadequate Intake | Vitamin C Intervention | Sleep Outcomes | Studies |
---|---|---|---|---|---|---|---|
Sleep duration: Short sleep | Cross–sectional study | n = 5587 adults aged 18+ | + | Geandner et. al. [78] | |||
Cross–sectional study | n = 26,211 adults aged 19+ | + female only | Ikonte et al. [90] | ||||
Cross–sectional study | n = 2079 adults aged 20+ | + | Kanagasabai et al. [91] | ||||
Cross–sectional study | n = 2612 adults aged 19–65 | Noorwali et al. [92] | |||||
Sleep disturbance: Non-restorative sleep | Cross–sectional study | n = 4552 adults aged 18+ | Grandner et al. [75] | ||||
Sleep disorders insomnia | Cross–sectional study | n = 1997 adults aged 18–69 | + men only | Matsuura et al. [93] | |||
Prospective study | n = 39 IG: terminal cancer patients | IV vitamin C (10 g 2×/week) Oral vitamin (4 g/d for one week) | insomnia | Yeom et al. [94] | |||
Retrospective study | n = 125 IG: 53 breast cancer patients CG: 72 patients | IV vitamin C (7.5 g 1×/week ≥4 weeks) vs. no vitamin C | Sleep disturbances | Vollbracht et al. [95] | |||
Prospective study | n = 60 IG: advanced cancer patients | IV vitamin C (25–100 g 2×/week for four weeks) Oral vitamin(2–4g/d) | insomnia | Takahashi et al. [96] | |||
Case study | n = 1 IG: breast cancer patients | IV vitamin C (50 g session 2×/week for four weeks) | insomnia | Carr et al. [97] | |||
Case study | n = 1 IG: terminal angiosaicoma patients | IV vitamin C (30 g/d for one week) | insomnia | Carr et al. [98] | |||
Single blind Randomnized Controled study | n = 20 IG: 10 OSA patients CG: 10 health subjects | IV vitamin C (0.5 g bolus injection) | Endothelial dysfunction | Grebe et al. [99] | |||
Sleep apnea | Randomnized Controled study | n = 30 males IG: 20 OSA patients CG: 10 health subjects | CAPA for 2 nights Oral vitamin C (100 IU BD) Oral vitamin E (400 IU BD) for 45 days | Better sleep epowrth scal sleep stages 3 and 4 CAPA pressure | Singh et al. [100] | ||
Randomnized Controled study | n = 20 males IG: 11 OSA patients CG: 9 subjects w/o OSA | IA vitmain C (25 ug/min) CAPA for 6months | Endothelial dysfunction | Buchner et al. [101] | |||
Restless legs syndrom | Randomized double-blinded placebo-controlled study | n = 60 IG: hemodialysis patients | Vitamin C tablets (200 mg) or Vitamin E capsules (400 mg) or Vitamin C tablets (200 mg) and Vitamin E capsules (400 mg) for 8 weeks | Severity of RLS | Sagheb et al. [102] | ||
Randomized double-blinded clinical trial | n = 45 IG: hemodialysis patients | Vitamin C tablets 250 mg for 8 weeks | Severity of RLS | Rafie et al. [103] | |||
Randomized double-blinded clinical trial | n = 90 IG: hemodialysis patients | IV Vitamin C (500 mg/ 5 cc 3×/week for 8 weeks ) | Severity of RLS Sleep quality Time of falling sleep Sleep latency Sleep dysfunction | Dadashpour et al. [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otocka-Kmiecik, A.; Król, A. The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep. Nutrients 2020, 12, 3908. https://doi.org/10.3390/nu12123908
Otocka-Kmiecik A, Król A. The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep. Nutrients. 2020; 12(12):3908. https://doi.org/10.3390/nu12123908
Chicago/Turabian StyleOtocka-Kmiecik, Aneta, and Aleksandra Król. 2020. "The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep" Nutrients 12, no. 12: 3908. https://doi.org/10.3390/nu12123908