Serum Vitamin D is Differentially Associated with Socioemotional Adjustment in Early School-Aged Ugandan Children According to Perinatal HIV Status and In Utero/Peripartum Antiretroviral Exposure History
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Eligibility/Exclusion Criteria
2.3. Statement of Ethical Approval
2.4. Vitamin D Measurement
2.5. Measures of Socioemotional Adjustment
2.6. Other Key Covariates—Confounders and Effect Modifiers
2.6.1. Early ART Exposure
2.6.2. Perinatal HIV Status
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mansueto, P.; Seidita, A.; Vitale, G.; Gangemi, S.; Iaria, C.; Cascio, A. Vitamin D Deficiency in Hiv Infection: Not Only a Bone Disorder. Biomed. Res. Int. 2015, 2015, 735615. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, D.; Ricca, S.; Curro, M.; Ientile, R. Health Risks of Hypovitaminosis D: A Review of New Molecular Insights. Int. J. Mol. Sci. 2018, 19, 892. [Google Scholar] [CrossRef] [PubMed]
- Kjaergaard, M.; Waterloo, K.; Wang, C.E.; Almas, B.; Figenschau, Y.; Hutchinson, M.S.; Svartberg, J.; Jorde, R. Effect of Vitamin D Supplement on Depression Scores in People with Low Levels of Serum 25-Hydroxyvitamin D: Nested Case-Control Study and Randomised Clinical Trial. Br. J. Psychiatry 2012, 201, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Maddock, J.; Berry, D.J.; Geoffroy, M.C.; Power, C.; Hypponen, E. Vitamin D and Common Mental Disorders in Mid-Life: Cross-Sectional and Prospective Findings. Clin. Nutr. 2013, 32, 758–764. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Lin, Z.; Robb, S.W.; Ezeamama, A.E. Serum Vitamin D Levels and Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2015, 7, 4555–4577. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhu, F.X.; Yu, H.F.; Liu, S.; Zhou, J.L. Low Serum Levels of Vitamin D Are Associated with Anxiety in Children and Adolescents with Dialysis. Sci. Rep. 2018, 8, 5956. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.; Sanders, A.F.; Beaton, E.A. Vitamin D Deficiency, Behavioral Atypicality, Anxiety and Depression in Children with Chromosome 22q11.2 Deletion Syndrome. J. Dev. Orig. Health Dis. 2016, 7, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Brewer, L.D.; Thibault, V.; Chen, K.C.; Langub, M.C.; Landfield, P.W.; Porter, N.M. Vitamin D Hormone Confers Neuroprotection in Parallel with Downregulation of L-Type Calcium Channel Expression in Hippocampal Neurons. J. Neurosci. 2001, 21, 98–108. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibi, M.; Sawada, H.; Nakanishi, M.; Kume, T.; Katsuki, H.; Kaneko, S.; Shimohama, S.; Akaike, A. Protective Effects of 1 Alpha,25-(Oh)(2)D(3) against the Neurotoxicity of Glutamate and Reactive Oxygen Species in Mesencephalic Culture. Neuropharmacology 2001, 40, 761–771. [Google Scholar] [CrossRef]
- Klassen, K.M.; Fairley, C.K.; Kimlin, M.G.; Hocking, J.; Kelsall, L.; Ebeling, P.R. Vitamin D Deficiency Is Common in Hiv-Infected Southern Australian Adults. Antivir. Ther. 2016, 21, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Pelekanos, M.; Liu, P.Y.; Burne, T.H.; McGrath, J.J.; Eyles, D.W. The Vitamin D Receptor in Dopamine Neurons; Its Presence in Human Substantia Nigra and Its Ontogenesis in Rat Midbrain. Neuroscience 2013, 236, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Eyles, D.W.; Liu, P.Y.; Josh, P.; Cui, X. Intracellular Distribution of the Vitamin D Receptor in the Brain: Comparison with Classic Target Tissues and Redistribution with Development. Neuroscience 2014, 268, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, V.; Mohandas, E. The Limbic System. Indian J. Psychiatry 2007, 49, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Zong, L.; Chu, P.; Huang, P.; Guo, Y.; Lv, Y. Effect of Vitamin D on the Learning and Memory Ability of Fgr Rat and Nmda Receptor Expression in Hippocampus. Exp. Ther. Med. 2017, 14, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Lardner, A.L. Vitamin D and Hippocampal Development-the Story So Far. Front. Mol. Neurosci. 2015, 8, 58. [Google Scholar] [CrossRef]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and Immune Function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef]
- Mehta, S.; Giovannucci, E.; Mugusi, F.M.; Spiegelman, D.; Aboud, S.; Hertzmark, E.; Msamanga, G.I.; Hunter, D.; Fawzi, W.W. Vitamin D Status of Hiv-Infected Women and Its Association with Hiv Disease Progression, Anemia, and Mortality. PLoS ONE 2010, 5, e8770. [Google Scholar] [CrossRef]
- Steenhoff, A.P.; Redwood, A.; Pettifor, J.M.; Hove, J.; Bisson, G.P.; Mosepele, M.; Pusoesele, P.; Thakur, R.; Kovarik, C.; Gross, R. Vitamin D Status in Hiv-Infected Patients with and without Tuberculosis: A Pilot Study. J. Acquir. Immune Defic. Syndr. 2012, 61, e21–e23. [Google Scholar] [CrossRef]
- Mehta, S.; Hunter, D.J.; Mugusi, F.M.; Spiegelman, D.; Manji, K.P.; Giovannucci, E.L.; Hertzmark, E.; Msamanga, G.I.; Fawzi, W.W. Perinatal Outcomes, Including Mother-to-Child Transmission of Hiv, and Child Mortality and Their Association with Maternal Vitamin D Status in Tanzania. J. Infect. Dis. 2009, 200, 1022–1030. [Google Scholar] [CrossRef]
- Steenhoff, A.P.; Schall, J.I.; Samuel, J.; Seme, B.; Marape, M.; Ratshaa, B.; Goercke, I.; Tolle, M.; Nnyepi, M.S.; Mazhani, L.; et al. Vitamin D(3)Supplementation in Batswana Children and Adults with Hiv: A Pilot Double Blind Randomized Controlled Trial. PLoS ONE 2015, 10, e0117123. [Google Scholar] [CrossRef] [PubMed]
- Ezeamama, A.E.; Guwatudde, D.; Wang, M.; Bagenda, D.; Kyeyune, R.; Sudfeld, C.; Manabe, Y.C.; Fawzi, W.W. Vitamin-D Deficiency Impairs Cd4+T-Cell Count Recovery Rate in Hiv-Positive Adults on Highly Active Antiretroviral Therapy: A Longitudinal Study. Clin. Nutr. 2016, 35, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Giordani, B.; Novak, B.; Sikorskii, A.; Bangirana, P.; Nakasujja, N.; Winn, B.M.; Boivin, M.J. Designing and Evaluating Brain Powered Games for Cognitive Training and Rehabilitation in at-Risk African Children. Glob. Ment. Health (Camb.) 2015, 2, e6. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.B.; Musoke, P.; Fleming, T.; Guay, L.A.; Bagenda, D.; Allen, M.; Nakabiito, C.; Sherman, J.; Bakaki, P.; Owor, M.; et al. Intrapartum and Neonatal Single-Dose Nevirapine Compared with Zidovudine for Prevention of Mother-to-Child Transmission of Hiv-1 in Kampala, Uganda: 18-Month Follow-up of the Hivnet 012 Randomised Trial. Lancet 2003, 362, 859–868. [Google Scholar] [CrossRef]
- Nhanes. 25-Hydroxyvitamin D in Serum Nhanes 2009–2010; CDC Environmental Health: Atlanta, GA, USA, 2010.
- Ezeamama, A.E.; Kizza, F.N.; Zalwango, S.K.; Nkwata, A.K.; Zhang, M.; Rivera, M.L.; Sekandi, J.N.; Kakaire, R.; Kiwanuka, N.; Whalen, C.C. Perinatal Hiv Status and Executive Function During School-Age and Adolescence: A Comparative Study of Long-Term Cognitive Capacity among Children from a High Hiv Prevalence Setting. Medicine (Baltimore) 2016, 95, e3438. [Google Scholar] [CrossRef] [PubMed]
- Ezeamama, A.E.; Guwatudde, D.; Wang, M.; Bagenda, D.; Brown, K.; Kyeyune, R.; Smith, E.; Wamani, H.; Manabe, Y.C.; Fawzi, W.W. High Perceived Social Standing Is Associated with Better Health in Hiv-Infected Ugandan Adults on Highly Active Antiretroviral Therapy. J. Behav. Med. 2016, 39, 453–464. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso: A Retrospective. J. R. Stat. Soc. Ser. B-Stat. Methodol. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Billaud, E.; Raffi, F.; Allavena, C.; Delpierre, C.; Cuzin, L.; Rey, D.; Viget, N.; Bernard, J.; Guillot, P.; Duvivier, C. High Frequency of Vitamin D Deficiency in Hiv-Infected Patients: Effects of Hiv-Related Factors and Antiretroviral Drugs. J. Antimicrob. Chemother. 2012, 67, 2222–2230. [Google Scholar] [CrossRef]
- Sudfeld, C.R.; Duggan, C.; Aboud, S.; Kupka, R.; Manji, K.P.; Kisenge, R.; Fawzi, W.W. Vitamin D Status Is Associated with Mortality, Morbidity, and Growth Failure among a Prospective Cohort of Hiv-Infected and Hiv-Exposed Tanzanian Infants. J. Nutr. 2015, 145, 121–127. [Google Scholar] [CrossRef]
- Rwebembera, A.; Sudfeld, C.R.; Manji, K.P.; Duggan, C.; Aboud, S.; Fawzi, W.W. Prevalence and Risk Factors for Vitamin D Deficiency among Tanzanian Hiv-Exposed Uninfected Infants. J. Trop. Pediatr. 2013, 59, 426–429. [Google Scholar] [CrossRef]
- Tolppanen, A.M.; Sayers, A.; Fraser, W.D.; Lewis, G.; Zammit, S.; Lawlor, D.A. The Association of Serum 25-Hydroxyvitamin D3 and D2 with Depressive Symptoms in Childhood--a Prospective Cohort Study. J. Child Psychol. Psychiatry 2012, 53, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Husmann, C.; Frank, M.; Schmidt, B.; Jockel, K.H.; Antel, J.; Reissner, V.; Libuda, L.; Hebebrand, J.; Focker, M. Low 25(Oh)-Vitamin D Concentrations Are Associated with Emotional and Behavioral Problems in German Children and Adolescents. PLoS ONE 2017, 12, e0183091. [Google Scholar] [CrossRef] [PubMed]
- Hogberg, G.; Gustafsson, S.A.; Hallstrom, T.; Gustafsson, T.; Klawitter, B.; Petersson, M. Depressed Adolescents in a Case-Series Were Low in Vitamin D and Depression Was Ameliorated by Vitamin D Supplementation. Acta Paediatr. 2012, 101, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Sanders, K.M.; Pasco, J.A.; Jacka, F.N.; Williams, L.J.; Hayles, A.L.; Dodd, S. Vitamin D Deficiency May Play a Role in Depression. Med. Hypotheses 2007, 69, 1316–1319. [Google Scholar] [CrossRef]
- Conesa-Botella, A.; Goovaerts, O.; Massinga-Loembe, M.; Worodria, W.; Mazakpwe, D.; Luzinda, K.; Mayanja-Kizza, H.; Colebunders, R.; Kestens, L.; Group, T.I.S. Low Prevalence of Vitamin D Deficiency in Ugandan Hiv-Infected Patients with and without Tuberculosis. Int. J. Tuberc. Lung Dis. 2012, 16, 1517–1521. [Google Scholar] [CrossRef] [PubMed]
- Conesa-Botella, A.; Florence, E.; Lynen, L.; Colebunders, R.; Menten, J.; Moreno-Reyes, R. Decrease of Vitamin D Concentration in Patients with Hiv Infection on a Non Nucleoside Reverse Transcriptase Inhibitor-Containing Regimen. AIDS Res. Ther. 2010, 7, 40. [Google Scholar] [CrossRef]
- Zapor, M.J.; Cozza, K.L.; Wynn, G.H.; Wortmann, G.W.; Armstrong, S.C. Antiretrovirals, Part Ii: Focus on Non-Protease Inhibitor Antiretrovirals (Nrtis, Nnrtis, and Fusion Inhibitors). Psychosomatics 2004, 45, 524–535. [Google Scholar] [CrossRef]
- Brown, T.T.; McComsey, G.A. Association between Initiation of Antiretroviral Therapy with Efavirenz and Decreases in 25-Hydroxyvitamin D. Antivir. Ther. 2010, 15, 425–429. [Google Scholar] [CrossRef]
- Pascussi, J.M.; Robert, A.; Nguyen, M.; Walrant-Debray, O.; Garabedian, M.; Martin, P.; Pineau, T.; Saric, J.; Navarro, F.; Maurel, P.; et al. Possible Involvement of Pregnane X Receptor-Enhanced Cyp24 Expression in Drug-Induced Osteomalacia. J. Clin. Investig. 2005, 115, 177–186. [Google Scholar] [CrossRef]
- Welz, T.; Childs, K.; Ibrahim, F.; Poulton, M.; Taylor, C.B.; Moniz, C.F.; Post, F.A. Efavirenz Is Associated with Severe Vitamin D Deficiency and Increased Alkaline Phosphatase. AIDS 2010, 24, 1923–1928. [Google Scholar] [CrossRef]
- Cozzolino, M.; Vidal, M.; Arcidiacono, M.V.; Tebas, P.; Yarasheski, K.E.; Dusso, A.S. Hiv-Protease Inhibitors Impair Vitamin D Bioactivation to 1,25-Dihydroxyvitamin D. AIDS 2003, 17, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Klassen, K.M.; Kimlin, M.G.; Fairley, C.K.; Emery, S.; Anderson, P.H.; Ebeling, P.R.; Group, S.S. Associations between Vitamin D Metabolites, Antiretroviral Therapy and Bone Mineral Density in People with Hiv. Osteoporos. Int. 2016, 27, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Filteau, S. The Hiv-Exposed, Uninfected African Child. Trop. Med. Int. Health 2009, 14, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Kirmse, B.; Baumgart, S.; Rakhmanina, N. Metabolic and Mitochondrial Effects of Antiretroviral Drug Exposure in Pregnancy and Postpartum: Implications for Fetal and Future Health. Semin. Fetal Neonatal Med. 2013, 18, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Blanche, S.; Tardieu, M.; Rustin, P.; Slama, A.; Barret, B.; Firtion, G.; Ciraru-Vigneron, N.; Lacroix, C.; Rouzioux, C.; Mandelbrot, L.; et al. Persistent Mitochondrial Dysfunction and Perinatal Exposure to Antiretroviral Nucleoside Analogues. Lancet 1999, 354, 1084–1089. [Google Scholar] [CrossRef]
- Poirier, M.C.; Olivero, O.A.; Walker, D.M.; Walker, V.E. Perinatal Genotoxicity and Carcinogenicity of Anti-Retroviral Nucleoside Analog Drugs. Toxicol. Appl. Pharmacol. 2004, 199, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Jao, J.; Powis, K.M.; Kirmse, B.; Yu, C.; Epie, F.; Nshom, E.; Abrams, E.J.; Sperling, R.S.; Leroith, D.; Geffner, M.E.; et al. Lower Mitochondrial DNA and Altered Mitochondrial Fuel Metabolism in Hiv-Exposed Uninfected Infants in Cameroon. AIDS 2017, 31, 2475–2481. [Google Scholar] [CrossRef] [PubMed]
- Poirier, M.C.; Divi, R.L.; Al-Harthi, L.; Olivero, O.A.; Nguyen, V.; Walker, B.; Landay, A.L.; Walker, V.E.; Charurat, M.; Blattner, W.A.; et al. Long-Term Mitochondrial Toxicity in Hiv-Uninfected Infants Born to Hiv-Infected Mothers. J. Acquir. Immune Defic. Syndr. 2003, 33, 175–183. [Google Scholar] [CrossRef]
- Stallings, V.A.; Schall, J.I.; Hediger, M.L.; Zemel, B.S.; Tuluc, F.; Dougherty, K.A.; Samuel, J.L.; Rutstein, R.M. High-Dose Vitamin D3 Supplementation in Children and Young Adults with Hiv: A Randomized, Placebo-Controlled Trial. Pediatr. Infect. Dis. J. 2015, 34, e32–e40. [Google Scholar] [CrossRef]
- Dougherty, K.A.; Schall, J.I.; Zemel, B.S.; Tuluc, F.; Hou, X.; Rutstein, R.M.; Stallings, V.A. Safety and Efficacy of High-Dose Daily Vitamin D3 Supplementation in Children and Young Adults Infected with Human Immunodeficiency Virus. J. Pediatr. Infect. Dis. Soc. 2014, 3, 294–303. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Status: Measurement, Interpretation, and Clinical Application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Overall (n = 254) | PHIV (n = 89) | HEU (n = 84) | HUU (n = 83) | p-Value ɤ | |
---|---|---|---|---|---|
Child Sociodemographic and Clinical Characteristics | |||||
Vitamin D (ng/mL) | 21.2 ± 7.1 | 21.7 ± 6.7 | 21.2 ± 7.2 | 20.6 ± 7.4 | 0.55 |
Low Vitamin D, n (%) | 130 (51.2) | 44 (49.4) | 41 (48.8) | 44 (53.0) | |
Medium Vitamin D, n (%) | 63 (24.8) | 23 (25.8) | 21 (25.0) | 19 (22.9) | |
High Vitamin D, n (%) | 61 (24.0) | 21 (23.6) | 21 (25.0) | 19 (22.9) | |
Female Child n (%) | 123 (48.4) | 41 (46.1) | 46 (54.8) | 38 (45.8) | |
Child Age (in years, mean ± SD) | 7.7 ± 1.4 | 7.9 ± 1.5 | 7.5 ± 1.4 | 7.6 ± 1.4 | 0.31 |
Height for age z-score (mean ± SD) | −0.25 ± 1.1 | −0.62 ± 0.9 | −0.14 ± 1.1 | 0.06 ± 1.0 | <0.001 |
Apgar Score (5 min post-delivery) | 7.6 ± 2.5 | 7.8 ± 2.2 | 7.6 ± 2.5 | 7.5 ± 2.7 | 0.41 |
Peripartum Antiretroviral therapy Exposure History | |||||
No early life ART Exposure | 192 (45.6) | 60 (68.8) | 50 (59.5) | 82 (100) | <0.001 |
sdNVP ± AZT ± 3TC | 52 (20.47) | 23 (26.1) | 29 (34.5) | 0 (0) | |
Combination ART | 10 (3.9) | 5 (5.7) | 5 (6.0) | 0 (0) | |
Caregiver Socio-demographics | |||||
Female caregiver, n (%) | 236 (92.9) | 83 (93.3) | 78 (92.8) | 77 (92.8) | 0.99 |
Married or living with a sexual partner | 102 (46.6) | ||||
Caregiver has own income | 183 (72.0) | 65 (73.0) | 61 (72.6) | 59 (71.1) | 0.99 |
Caregiver Depressed, n (%) | 86 (33.9) | 22 (27.4) | 39 (46.4) | 27 (32.5) | 0.005 |
Caregiver age (years, mean ± SD) | 34.8 ± 8.5 | 34.5 ± 8.7 | 36.6 ± 8.4 | 33.4 ± 8.3 | 0.05 |
Highest CG Quality (5th Quintile) | 43 (16.9) | 17 (19.1) | 16 (19.0) | 12 (14.4) | 0.68 |
Caregiver Reported Cognitive Scores * | |||||
Adaptive Skills Index (ASI) | −0.01 ± 1.0 | 0.03 ± 0.9 | −0.06 ± 1.0 | −0.01 ± 1.1 | 0.79 |
Behavioral Symptoms Index (BSI) | −0.03 ± 1.0 | −0.1 ± 0.9 | 0.05 ± 1.0 | −0.03 ± 1.0 | 0.60 |
Internalizing Problems Composite (IPC)) | 0.02 ± 1.0 | 0.02 ± 1.0 | 0.05 ± 1.0 | −0.02 ± 1.0 | 0.84 |
Externalizing Problems Composite (EPC) | −0.02 ± 1.0 | −0.08 ± 0.9 | 0.08 ± 1.1 | −0.05 ± 0.9 | 0.80 |
Perinatally HIV Infected | Perinatally HIV Exposed Uninfected | HIV Unexposed Uninfected | HIV Status × Vitamin D interaction | |
---|---|---|---|---|
Adjusted LSM ± SE | Adjusted LSM ± SE | Adjusted LSM ± SE | p-Value | |
ASI | 0.03 | |||
Low Vitamin D | −0.09 ± 0.14 | 0.08 ± 0.16 | 0.12 ± 0.17 | |
Medium Vitamin D | 0.37 ± 0.16 | −0.13 ± 0.19 | 0.01 ± 0.20 | |
High Vitamin D | 0.10 ± 0.17 | 0.20 ± 0.18 | 0.14 ± 0.21 | |
Partition Analysis ** | F-value (p-value) | F-value (p-value) | F-value (p-value) | |
F-test (2, 224) | 5.03 (0.007) | 1.14 (0.32) | 0.19 (0.83) | |
BSI | 0.04 | |||
Low Vitamin D | −0.13 ± 0.18 | 0.14 ± 0.18 | 0.12 ± 0.20 | |
Medium Vitamin D | 0.06 ± 0.20 | 0.02 ± 0.22 | −0.17 ± 0.26 | |
High Vitamin D | 0.03 ± 0.18 | 0.35 ± 0.22 | −0.46 ± 0.23 | |
Partition Analysis ** | F-value (p-value) | F-value (p-value) | F-value (p-value) | |
F-test (2, 224) | 0.64 (0.53) | 0.72 (0.49) | 3.70 (0.03) | |
EPC | 0.11 | |||
Low Vitamin D | −0.01 ± 0.17 | 0.27 ± 0.19 | 0.09 ± 0.22 | |
Medium Vitamin D | 0.15 ± 0.17 | −0.01 ± 0.22 | −0.03 ± 0.27 | |
High Vitamin D | 0.06 ± 0.17 | 0.58 ± 0.29 | −0.32 ± 0.24 | |
Partition Analysis ** | F-value (p-value) | F-value (p-value) | F-value (p-value) | |
F-test (2, 224) | 0.38 (0.68) | 2.03 (0.13) | 1.76 (0.17) | |
IPC | 0.05 | |||
Low Vitamin D | 0.01 ± 0.16 | 0.02 ± 0.16 | 0.17 ± 0.19 | |
Medium Vitamin D | 0.08 ± 0.19 | −0.03 ± 0.19 | −0.40 ± 0.21 | |
High Vitamin D | 0.15 ± 0.18 | 0.11 ± 0.19 | −0.31 ± 0.20 | |
Partition Analysis ** | F-value (p-value) | F-value (p-value) | F-value (p-value) | |
F-test (2, 224) | 0.37 (0.69) | 0.21 (0.81) | 4.47 (0.01) |
Outcome | Exposure | PHIV | HEU | HUU | HIV × Vitamin D Interaction | |||
---|---|---|---|---|---|---|---|---|
Difference (95% CI) | ES | Difference (95% CI) | ES | Difference (95% CI) | ES | p-Value | ||
Adaptive Skills Index | Vitamin D Level | 0.04 | ||||||
Per Unit increment | 0.14 (−0.02, 0.32) | 0.15 | 0.03 (−0.17, 0.21) | 0.03 | 0.00(−0.17, 0.21) | 0.00 | ||
Low | Ref | Ref | Ref | Ref | Ref | Ref | ||
Medium | 0.47 (0.18, 0.77) | 0.55 | −0.21 (−0.60, 0.17) | −0.25 | −0.11 (−0.54, 0.31) | −0.13 | ||
High | 0.19 (−0.16, 0.55) | 0.22 | 0.11 (−0.28, 0.51) | 0.13 | 0.02 (−0.39, 0.43) | 0.02 | ||
Behavioral Symptoms Index | Vitamin D Level | 0.04 | ||||||
Per Unit increment | 0.10 (−0.08, 0.27) | 0.11 | 0.11 (−0.14, 0.35) | 0.12 | −0.29 (−0.50, −0.08) | −0.31 | ||
Low | Ref | Ref | Ref | Ref | Ref | Ref | ||
Medium | 0.20 (−0.19, 0.58) | 0.21 | −0.09 (−0.51, 0.34) | −0.09 | −0.11 (−0.54, 0.31) | −0.12 | ||
High | 0.16 (−0.19, 0.52) | 0.17 | 0.25 (−0.27, 0.76) | 0.27 | 0.02 (−0.39, 0.43) | 0.02 | ||
Externalizing Problems Composite | Vitamin D Level | 0.11 | ||||||
Per Unit increment | 0.06 (−0.13, 0.24) | 0.07 | 0.12 (−0.16, 0.40) | 0.14 | −0.20 (−0.39, 0.02) | −0.23 | ||
Low | Ref | Ref | Ref | Ref | Ref | Ref | ||
Medium | 0.17 (−0.21, 0.56) | 0.19 | −0.28 (−0.71, 0.15) | −0.32 | −0.12 (−0.62, 0.37) | −0.14 | ||
High | 0.08 (−0.27, 0.43) | 0.09 | 0.31 (−0.27, 0.90) | 0.35 | −0.42 (−0.86, 0.02) | −0.47 | ||
Internalizing Problems Composite | Vitamin D Level | 0.05 | ||||||
Per Unit increment | 0.11(−0.08, 0.30) | 0.12 | 0.20(−0.07, 0.47) | 0.22 | −0.28 (−0.51, −0.06) | −0.31 | ||
Low | Ref | Ref | Ref | Ref | Ref | Ref | ||
Medium | 0.12 (−0.26, 0.49) | 0.13 | −0.05 (−0.42, 0.31) | −0.06 | −0.49 (−0.93, −0.04) | −0.55 | ||
High | 0.20 (−0.18, 0.58) | 0.22 | 0.45 (−0.12, 1.03) | 0.51 | −0.52 (−0.97, −0.08) | −0.59 |
Outcome | Exposure | Among HEU without Early ART Exposure (N = 50) * | Among HEU with Any early ART Exposure (N = 34) ** | Among HEU with Sub-Optimal ART Exposure (N = 29) *** | VD × Early ART | |||
---|---|---|---|---|---|---|---|---|
LSM ± SE | β (p-Value), ES | LSM ± SE | β (p-Value), ES | LSM ± SE | β (p-Value), ES | p-Value | ||
Adaptive Skills Index | Vitamin D Level | 0.31 | ||||||
Low | 0.31 ± 0.13 | Ref | −0.10 ±0.18 | Ref | −0.22± 0.19 | Ref | ||
Medium | −0.06 ± 0.19 | −0.37 (0.11), −0.42 | 0.01 ± 0.24 | 0.11 (0.71), 0.13 | 0.01 ± 0.24 | 0.22 (0.48), 0.25 | ||
High | 0.05 ± 0.28 | −0.25 (0.42), −0.29 | 0.17 ± 0.15 | 0.27 (0.24), 0.31 | 0.14 ± 0.18 | 0.36 (0.18), 0.42 | ||
Behavioral Symptoms Index | Vitamin D Level | 0.04 | ||||||
Low | 0.52 ± 0.18 | Ref | 0.58 ± 0.18 | Ref | 0.62± 0.20 | Ref | ||
Medium | −0.03 ± 0.15 | −0.56 (0.02), −0.54 | 1.10 ± 0.26 | 0.53 (0.09), 0.51 | 1.16 ± 0.26 | 0.54 (0.10), 0.52 | ||
High | 0.50 ± 0.18 | −0.03 (0.93), −0.03 | 0.72 ± 0.25 | 0.14 (0.64), 0.14 | 0.95± 0.24 | 0.32 (0.30), 0.31 | ||
Externalizing Problems Composite | Vitamin D Level | 0.01 | ||||||
Low | 0.62± 0.18 | Ref | 0.63± 0.21 | Ref | 0.65 ± 0.19 | Ref | ||
Medium | −0.08± 0.15 | −0.71 (0.003), −0.68 | 1.14 ± 0.22 | 0.51 (0.09), 0.49 | 1.19 ± 0.23 | 0.53 (0.07), 0.54 | ||
High | 0.55 ± 0.27 | −0.10 (0.83), −0.11 | 0.81± 0.25 | 0.18 (0.59), 0.17 | 1.01± 0.25 | 0.36 (0.27), 0.35 | ||
Internalizing Problems Composite | Vitamin D Level | 0.25 | ||||||
Low | 0.37± 0.15 | Ref | 0.43± 0.17 | Ref | 0.55± 0.19 | Ref | ||
Medium | −0.03 ± 0.16 | −0.40 (0.08), −0.40 | 0.84 ± 0.22 | 0.41 (0.12), 0.41 | 0.88 ± 0.21 | 0.32 (0.24), 0.32 | ||
High | 0.54 ± 0.27 | 0.18 (0.53), 0.18 | 0.77± 0.27 | 0.33 (0.30), 0.33 | 0.91± 0.29 | 0.36 (0.30), 0.36 |
Outcome | Exposure | Among PHIV without Early ART Exposure (n = 60) | Among PHIV with Any Early Exposure Any ART (n = 28) | Among PHIV with Sub-optimal Early ART Exposure (n = 23) | VD × Early ART | |||
---|---|---|---|---|---|---|---|---|
LSM ± SE | β (p-Value), ES | LSM ± SE | β (p-Value), ES | LSM ± SE | β (p-Value), ES | p-Value ** | ||
Adaptive Skills Index | Vitamin D Level | 0.01 | ||||||
Low | −0.16 ± 0.13 | Ref | 0.09 ± 0.15 | Ref | −0.02 ± 0.16 | Ref | ||
Medium | −0.36 ± 0.14 | 0.52 (0.002), 0.64 | 0.34 ± 0.30 | 0.26 (0.12), 0.32 | 0.37 ± 0.28 | 0.39 (0.20), 0.48 | ||
High | −0.02 ± 0.15 | 0.14 (0.49), 0.17 | 0.26 ± 0.22 | 0.18 (0.59), 0.22 | 0.39 ± 0.32 | 0.42 (0.25), 0.52 | ||
Behavioral Symptoms Index | Vitamin D Level | <0.001 | ||||||
Low | −0.15 ± 0.13 | Ref | −0.13 ± 0.20 | Ref | −0.01 ± 0.21 | Ref | ||
Medium | −0.16 ± 0.17 | 0.00 (0.99), 0.00 | 0.36 ± 0.35 | 0.49 (0.19), 0.54 | 0.65 ± 0.36 | 0.66 (0.09), 0.73 | ||
High | 0.29 ± 0.16 | 0.45 (0.02), 0.50 | −0.32 ± 0.18 | −0.19 (0.39), −0.21 | −0.45 ± 0.19 | −0.44 (0.08), −0.48 | ||
Externalizing Problems Composite | Vitamin D Level | 0.002 | ||||||
Low | −0.10 ± 0.11 | Ref | 0.01 ± 0.14 | Ref | 0.10 ± 0.14 | Ref | ||
Medium | −0.04 ± 0.17 | 0.05 (0.75), 0.06 | 0.56 ± 0.30 | 0.55 (0.09), 0.66 | 0.86 ± 0.29 | 0.77 (0.01), 0.93 | ||
High | 0.26 ± 0.14 | 0.36 (0.0495), 0.43 | −0.16 ± 0.15 | −0.17 (0.36), −0.21 | −0.23 ± 0.17 | −0.33 (0.13), −0.40 | ||
Internalizing Problems Composite | Vitamin D Level | 0.13 | ||||||
Low | −0.06 ± 0.14 | Ref | −0.04 ± 0.21 | Ref | 0.07 ± 0.29 | Ref | ||
Medium | −0.08 ± 0.17 | −0.02(0.89), −0.02 | 0.44 ± 0.33 | 0.42 (0.26), 0.47 | 0.57 ± 0.36 | 0.50 (0.22), 0.56 | ||
High | 0.42 ± 0.18 | 0.48 (0.01), 0.54 | −0.03 ± 0.26 | −0.06 (0.84), −0.07 | −0.09 ± 0.24 | −0.16 (0.62), −0.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakah, W.; Fenton, J.I.; Sikorskii, A.; Zalwango, S.K.; Tuke, R.; Musoke, P.; Boivin, M.J.; Giordani, B.; Ezeamama, A.E. Serum Vitamin D is Differentially Associated with Socioemotional Adjustment in Early School-Aged Ugandan Children According to Perinatal HIV Status and In Utero/Peripartum Antiretroviral Exposure History. Nutrients 2019, 11, 1570. https://doi.org/10.3390/nu11071570
Yakah W, Fenton JI, Sikorskii A, Zalwango SK, Tuke R, Musoke P, Boivin MJ, Giordani B, Ezeamama AE. Serum Vitamin D is Differentially Associated with Socioemotional Adjustment in Early School-Aged Ugandan Children According to Perinatal HIV Status and In Utero/Peripartum Antiretroviral Exposure History. Nutrients. 2019; 11(7):1570. https://doi.org/10.3390/nu11071570
Chicago/Turabian StyleYakah, William, Jenifer I. Fenton, Alla Sikorskii, Sarah K. Zalwango, Robert Tuke, Philippa Musoke, Michael J. Boivin, Bruno Giordani, and Amara E. Ezeamama. 2019. "Serum Vitamin D is Differentially Associated with Socioemotional Adjustment in Early School-Aged Ugandan Children According to Perinatal HIV Status and In Utero/Peripartum Antiretroviral Exposure History" Nutrients 11, no. 7: 1570. https://doi.org/10.3390/nu11071570
APA StyleYakah, W., Fenton, J. I., Sikorskii, A., Zalwango, S. K., Tuke, R., Musoke, P., Boivin, M. J., Giordani, B., & Ezeamama, A. E. (2019). Serum Vitamin D is Differentially Associated with Socioemotional Adjustment in Early School-Aged Ugandan Children According to Perinatal HIV Status and In Utero/Peripartum Antiretroviral Exposure History. Nutrients, 11(7), 1570. https://doi.org/10.3390/nu11071570