May Young Elite Cyclists Have Less Efficient Bone Metabolism?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Statement
2.3. Participants
2.4. Anthropometric Measurements
2.5. Blood Collection and Biochemical Analysis
2.6. Bone Turnover Markers
2.7. Vitamin D Status
2.8. Statistics
3. Results
3.1. Bone Metabolism Markers and Vitamin D
3.2. Changes within Group
3.3. Group-by-Time Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bailey, D.A.; Faulkner, R.A.; McKay, H.A. Growth, physical activity, and bone mineral acquisition. Exerc. Sport Sci. Rev. 1996, 24, 233–266. [Google Scholar] [CrossRef]
- Adachi, J.D.; Adami, S.; Gehlbach, S.; Anderson, F.A., Jr.; Boonen, S.; Chapurlat, R.D.; Compston, J.E.; Cooper, C.; Delmas, P.; Diez-Perez, A.; et al. Impact of prevalent fractures on quality of life: Baseline results from the global longitudinal study of osteoporosis in women. Mayo Clin. Proc. 2010, 85, 806–813. [Google Scholar] [CrossRef]
- Haentjens, P.; Magaziner, J.; Colon-Emeric, C.S.; Vanderschueren, D.; Milisen, K.; Velkeniers, B.; Boonen, S. Meta-analysis: Excess mortality after hip fracture among older women and men. Ann. Intern. Med. 2010, 152, 380–390. [Google Scholar] [CrossRef]
- Vlachopoulos, D.; Barker, A.R.; Williams, C.A.; Knapp, K.M.; Metcalf, B.S.; Gracia-Marco, L. Effect of a program of short bouts of exercise on bone health in adolescents involved in different sports: The PRO-BONE study protocol. BMC Public Health 2015, 15, 361. [Google Scholar] [CrossRef] [PubMed]
- Dyson, K.; Blimkie, C.J.; Davison, K.S.; Webber, C.E.; Adachi, J.D. Gymnastic training and bone density in pre-adolescent females. Med. Sci. Sports Exerc. 1997, 29, 443–450. [Google Scholar] [PubMed]
- Morris, F.L.; Naughton, G.A.; Gibbs, J.L.; Carlson, J.S.; Wark, J.D. Prospective ten-month exercise intervention in premenarcheal girls: Positive effects on bone and lean mass. J. Bone Miner. Res. 1997, 12, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Marco, L.; Vicente-Rodriguez, G.; Valtuena, J.; Rey-Lopez, J.P.; Diaz Martinez, A.E.; Mesana, M.I.; Widhalm, K.; Ruiz, J.R.; Gonzalez-Gross, M.; Castillo, M.J.; et al. Bone mass and bone metabolism markers during adolescence: The HELENA Study. Horm. Res. Paediatr. 2010, 74, 339–350. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bonjour, J.P. Determinants of peak bone mass and mechanisms of bone loss. Osteoporosis Int. 1999, 9 (Suppl. S2), S17–S23. [Google Scholar] [CrossRef]
- Grimston, S.K.; Willows, N.D.; Hanley, D.A. Mechanical loading regime and its relationship to bone mineral density in children. Med. Sci. Sports Exerc. 1993, 25, 1203–1210. [Google Scholar] [CrossRef]
- Olmedillas, H.; Gonzalez-Aguero, A.; Moreno, L.A.; Casajus, J.A.; Vicente-Rodriguez, G. Bone related health status in adolescent cyclists. PLoS ONE 2011, 6, e24841. [Google Scholar] [CrossRef]
- Medelli, J.; Lounana, J.; Menuet, J.J.; Shabani, M.; Cordero-MacIntyre, Z. Is osteopenia a health risk in professional cyclists? J. Clin. Densitom. 2009, 12, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.F.; Palmer, J.E.; Levy, S.S. Low bone mineral density in highly trained male master cyclists. Osteoporosis Int. 2003, 14, 644–649. [Google Scholar]
- Rector, R.S.; Rogers, R.; Ruebel, M.; Hinton, P.S. Participation in road cycling vs running is associated with lower bone mineral density in men. Metabolism 2008, 57, 226–232. [Google Scholar] [CrossRef]
- Seibel, M.J. Biochemical markers of bone turnover: Part I: Biochemistry and variability. Clin. Biochem. Rev. 2005, 26, 97–122. [Google Scholar] [PubMed]
- Brahm, H.; Strom, H.; Piehl-Aulin, K.; Mallmin, H.; Ljunghall, S. Bone metabolism in endurance trained athletes: A comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif. Tissue Int. 1997, 61, 448–454. [Google Scholar] [CrossRef]
- Maimoun, L.; Mariano-Goulart, D.; Couret, I.; Manetta, J.; Peruchon, E.; Micallef, J.P.; Verdier, R.; Rossi, M.; Leroux, J.L. Effects of physical activities that induce moderate external loading on bone metabolism in male athletes. J. Sports Sci. 2004, 22, 875–883. [Google Scholar] [CrossRef]
- Maimoun, L.; Galy, O.; Manetta, J.; Coste, O.; Peruchon, E.; Micallef, J.P.; Mariano-Goulart, D.; Couret, I.; Sultan, C.; Rossi, M. Competitive Season of Triathlon Does not Alter Bone Metabolism and Bone Mineral Status in Male Triathletes. Int. J. Sports Med. 2004, 25, 230–234. [Google Scholar]
- Slemenda, C.W.; Peacock, M.; Hui, S.; Zhou, L.; Johnston, C.C. Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J. Bone Miner. Res. 1997, 12, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Chaari, H.; Zouch, M.; Denguezli, M.; Bouajina, E.; Zaouali, M.; Tabka, Z. A high level of volleyball practice enhances bone formation markers and hormones in prepubescent boys. Biol. Sport 2012, 29, 303–309. [Google Scholar] [CrossRef]
- Lehtonen-Veromaa, M.; Mottonen, T.; Irjala, K.; Nuotio, I.; Leino, A.; Viikari, J. A 1-year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J. Clin. Endocrinol. Metab. 2000, 85, 3726–3732. [Google Scholar] [PubMed]
- Cashman, K.D. Calcium intake, calcium bioavailability and bone health. Br. J. Nutr. 2002, 87 (Suppl. S2), S169–S177. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80 (Suppl. S6), 1678S–1688S. [Google Scholar] [CrossRef]
- Cranney, A.; Weiler, H.A.; O’Donnell, S.; Puil, L. Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am. J. Clin. Nutr. 2008, 88, 513S–519S. [Google Scholar] [CrossRef] [PubMed]
- Valtuena, J.; Gracia-Marco, L.; Vicente-Rodriguez, G.; Gonzalez-Gross, M.; Huybrechts, I.; Rey-Lopez, J.P.; Mouratidou, T.; Sioen, I.; Mesana, M.I.; Martinez, A.E.; et al. Vitamin D status and physical activity interact to improve bone mass in adolescents. The HELENA Study. Osteoporosis Int. 2012, 23, 2227–2237. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Aguero, A.; Olmedillas, H.; Gomez-Cabello, A.; Casajus, J.A.; Vicente-Rodriguez, G. Bone Structure and Geometric Properties at the Radius and Tibia in Adolescent Endurance-Trained Cyclists. Clin. J. Sport Med. 2017, 27, 69–77. [Google Scholar] [CrossRef]
- Olmedillas, H.; Gonzalez-Aguero, A.; Moreno, L.A.; Casajus, J.A.; Vicente-Rodriguez, G. Cycling and bone health: A systematic review. BMC Med. 2012, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Rejnmark, L.; Lauridsen, A.L.; Vestergaard, P.; Heickendorff, L.; Andreasen, F.; Mosekilde, L. Diurnal rhythm of plasma 1,25-dihydroxyvitamin D and vitamin D-binding protein in postmenopausal women: Relationship to plasma parathyroid hormone and calcium and phosphate metabolism. Eur. J. Endocrinol. 2002, 146, 635–642. [Google Scholar] [CrossRef]
- Nickols-Richardson, S.M.; O’Connor, P.J.; Shapses, S.A.; Lewis, R.D. Longitudinal bone mineral density changes in female child artistic gymnasts. J. Bone Miner. Res. 1999, 14, 994–1002. [Google Scholar] [CrossRef]
- Maimoun, L.; Coste, O.; Mura, T.; Philibert, P.; Galtier, F.; Mariano-Goulart, D.; Paris, F.; Sultan, C. Specific bone mass acquisition in elite female athletes. J. Clin. Endocrinol. Metab. 2013, 98, 2844–2853. [Google Scholar] [CrossRef]
- Gracia-Marco, L.; Ortega, F.B.; Jimenez-Pavon, D.; Rodriguez, G.; Valtuena, J.; Diaz-Martinez, A.E.; Gonzalez-Gross, M.; Castillo, M.J.; Vicente-Rodriguez, G.; Moreno, L.A. Contribution of bone turnover markers to bone mass in pubertal boys and girls. J. Pediatr. Endocrinol. Metab. 2011, 24, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, G.; Chappard, D.; Audran, M. Evaluation of the bone status in high-level cyclists. J. Clin. Densitom. 2012, 15, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Eliakim, A.; Raisz, L.G.; Brasel, J.A.; Cooper, D.M. Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J. Bone Miner. Res. 1997, 12, 1708–1713. [Google Scholar] [CrossRef]
- Vicente-Rodriguez, G. How does exercise affect bone development during growth? Sports Med. 2006, 36, 561–569. [Google Scholar] [CrossRef]
- Julian-Almarcegui, C.; Gomez-Cabello, A.; Huybrechts, I.; Gonzalez-Aguero, A.; Kaufman, J.M.; Casajus, J.A.; Vicente-Rodriguez, G. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: A systematic review. Nutr. Rev. 2015, 73, 127–139. [Google Scholar] [CrossRef]
- Vicente-Rodriguez, G.; Ezquerra, J.; Mesana, M.I.; Fernandez-Alvira, J.M.; Rey-Lopez, J.P.; Casajus, J.A.; Moreno, L.A. Independent and combined effect of nutrition and exercise on bone mass development. J. Bone Miner. Metab. 2008, 26, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Gonzalez-Aguero, A.; Olmedillas, H.; Gomez-Cabello, A.; Matute-Llorente, A.; Julian-Almarcegui, C.; Casajus, J.A.; Vicente-Rodriguez, G. Do calcium and vitamin D intake influence the effect of cycling on bone mass through adolescence? Nutr. Hosp. 2013, 28, 1136–1139. [Google Scholar] [PubMed]
- Vlachopoulos, D.; Barker, A.R.; Ubago-Guisado, E.; Fatouros, I.G.; Knapp, K.M.; Williams, C.A.; Gracia-Marco, L. Longitudinal Adaptations of Bone Mass, Geometry, and Metabolism in Adolescent Male Athletes: The PRO-BONE Study. J. Bone Miner. Res. 2017, 32, 2269–2277. [Google Scholar] [CrossRef]
- Daly, R.M.; Rich, P.A.; Klein, R.; Bass, S. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: A prospective study in young male gymnasts. J. Bone Miner. Res. 1999, 14, 1222–1230. [Google Scholar] [CrossRef]
PRE | POST | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cyclists n = 7 | Controls n = 8 | Cyclists n = 7 | Controls n = 8 | |||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||
Age (years) | 16.3 | ± | 0.9 | 15.8 | ± | 1.5 | 17.6 | ± | 1.2 | 16.9 | ± | 1.5 |
Height (cm) | 171.1 | ± | 7.5 | 173.3 | ± | 8 | 173.6 | ± | 8 | 174.5 | ± | 6.6 |
Weight (kg) | 57 | ± | 5.8 | 66.1 | ± | 15.1 | 62.8 | ± | 6.6 | 67.1 | ± | 15.1 |
BMI (kg/m2) | 19.5 | ± | 1.7 | 22 | ± | 4.1 | 20.9 | ± | 1.8 | 22 | ± | 4.8 |
Years of cycling training (years) | 2.6 | ± | 2.8 | 3.6 | ± | 2.8 | ||||||
Hours of cycling training (h/week) | 10.5 | ± | 7 | 13.5 | ± | 5.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapún-López, M.; Olmedillas, H.; Gonzalez-Agüero, A.; Gomez-Cabello, A.; Pradas de la Fuente, F.; Moreno, L.A.; Casajús, J.A.; Vicente-Rodríguez, G. May Young Elite Cyclists Have Less Efficient Bone Metabolism? Nutrients 2019, 11, 1178. https://doi.org/10.3390/nu11051178
Rapún-López M, Olmedillas H, Gonzalez-Agüero A, Gomez-Cabello A, Pradas de la Fuente F, Moreno LA, Casajús JA, Vicente-Rodríguez G. May Young Elite Cyclists Have Less Efficient Bone Metabolism? Nutrients. 2019; 11(5):1178. https://doi.org/10.3390/nu11051178
Chicago/Turabian StyleRapún-López, Marta, Hugo Olmedillas, Alejandro Gonzalez-Agüero, Alba Gomez-Cabello, Francisco Pradas de la Fuente, Luis A. Moreno, José A. Casajús, and Germán Vicente-Rodríguez. 2019. "May Young Elite Cyclists Have Less Efficient Bone Metabolism?" Nutrients 11, no. 5: 1178. https://doi.org/10.3390/nu11051178
APA StyleRapún-López, M., Olmedillas, H., Gonzalez-Agüero, A., Gomez-Cabello, A., Pradas de la Fuente, F., Moreno, L. A., Casajús, J. A., & Vicente-Rodríguez, G. (2019). May Young Elite Cyclists Have Less Efficient Bone Metabolism? Nutrients, 11(5), 1178. https://doi.org/10.3390/nu11051178