Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Eat and Track Smartphone Application (EaT App)
2.3. Procedures
2.4. Data Cleaning
2.5. Data Analysis
3. Results
3.1. Comparing Intakes between 24-h Recalls and EaT App
3.2. Correlation Coefficients and Cross-Classification
3.3. Bland–Altman Plots for 24-h Recalls and EaT App
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allman-Farinelli, M.A.; Chey, T.; Bauman, A.E.; Gill, T.; James, W.P. Age, period and birth cohort effects on prevalence of overweight and obesity in Australian adults from 1990 to 2000. Eur. J. Clin. Nutr. 2008, 62, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.N.; Hearst, M.O.; Lust, K.; Lytle, L.A.; Story, M. How we eat what we eat: Identifying meal routines and practices most strongly associated with healthy and unhealthy dietary factors among young adults. Public Health Nutr. 2015, 18, 2135–2145. [Google Scholar] [CrossRef]
- Mohr, P.; Wilson, C.; Dunn, K.; Brindal, E.; Wittert, G. Personal and lifestyle characteristics predictive of the consumption of fast foods in Australia. Public Health Nutr. 2007, 10, 1456–1463. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 6530.0-Household Expenditure Survey, Australia: Summary of Results, 2015–16. Available online: http://www.webcitation.org/72AkC0CBc (accessed on 9 July 2018).
- Wellard-Cole, L.; Jung, J.; Kay, J.; Rangan, A.; Chapman, K.; Watson, W.L.; Hughes, C.; Ni Mhurchu, C.; Bauman, A.; Gemming, L.; et al. Examining the Frequency and Contribution of Foods Eaten Away from Home in the Diets of 18- to 30-Year-Old Australians Using Smartphone Dietary Assessment (MYMeals): Protocol for a Cross-Sectional Study. JMIR Res. Protoc. 2018, 7, e24. [Google Scholar] [CrossRef] [PubMed]
- Allman-Farinelli, M. Using digital media to measure diet. Cab Rev. 2018, 13. [Google Scholar] [CrossRef]
- Deloitte Australia. Smart Everything, Everywhere. Mobile Consumer Survey 2017. The Australian Cut; Deloitte Australia: Sydney, Australia, 2017. [Google Scholar]
- Rollo, M.E.; Williams, R.L.; Burrows, T.; Kirkpatrick, S.I.; Bucher, T.; Collins, C.E. What Are They Really Eating? A Review on New Approaches to Dietary Intake Assessment and Validation. Curr. Nutr. Rep. 2016, 5, 307–314. [Google Scholar] [CrossRef]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-Hour Dietary Recall (ASA24): A Resource for Researchers, Clinicians and Educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cade, J.E.; Allman-Farinelli, M. The Most Popular Smartphone Apps for Weight Loss: A Quality Assessment. JMIR Mhealth Uhealth 2015, 3, e104. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.; Harnack, L.; Pereira, M.A. Assessment of the accuracy of nutrient calculations of five popular nutrition tracking applications. Public Health Nutr. 2018, 21, 1495–1502. [Google Scholar] [CrossRef]
- Chen, J.; Berkman, W.; Bardouh, M.; Ng, C.Y.K.; Allman-Farinelli, M. The use of a food logging app in the naturalistic setting fails to provide accurate measurements of nutrients and poses usability challenges. Nutrition 2018. [Google Scholar] [CrossRef]
- Carter, M.C.; Burley, V.J.; Nykjaer, C.; Cade, J.E. ‘My Meal Mate’ (MMM): Validation of the diet measures captured on a smartphone application to facilitate weight loss. Br. J. Nutr. 2013, 109, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Rangan, A.M.; O’Connor, S.; Giannelli, V.; Yap, M.L.; Tang, L.M.; Roy, R.; Louie, J.C.; Hebden, L.; Kay, J.; Allman-Farinelli, M. Electronic Dietary Intake Assessment (e-DIA): Comparison of a Mobile Phone Digital Entry App for Dietary Data Collection With 24-Hour Dietary Recalls. JMIR Mhealth Uhealth 2015, 3, e98. [Google Scholar] [CrossRef] [PubMed]
- Rangan, A.M.; Tieleman, L.; Louie, J.C.; Tang, L.M.; Hebden, L.; Roy, R.; Kay, J.; Allman-Farinelli, M. Electronic Dietary Intake Assessment (e-DIA): Relative validity of a mobile phone application to measure intake of food groups. Br. J. Nutr. 2016, 12, 2219–2226. [Google Scholar] [CrossRef]
- Ambrosini, G.; Hurworth, M.; Giglia, R.; Trapp, G.; Strauss, P. Feasibility of a commercial smartphone application for dietary assessment in epidemiological research and comparison with 24-h dietary recalls. Nutr. J. 2018, 17. [Google Scholar] [CrossRef]
- Bucher Della Torre, S.; Carrard, I.; Farina, E.; Danuser, B.; Kruseman, M. Development and Evaluation of e-CA, an Electronic Mobile-Based Food Record. Nutrients 2017, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Wellard-Cole, L.; Potter, M.; Jung, J.; Chen, J.; Kay, J.; Allman-Farinelli, M. A Tool to Measure Young Adults’ Food Intake: Design and Development of an Australian Database of Foods for the Eat and Track Smartphone App. JMIR Mhealth Uhealth 2018, 6, e12136. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 2033.0.55.001-Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia, 2011. Available online: http://www.webcitation.org/6v9YcGNub (accessed on 25 July 2018).
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand. AUSNUT 2011–2013. Available online: http://www.webcitation.org/6v9Z4xkkv (accessed on 25 July 2018).
- Dunford, E.K.; Wu, J.H.Y.; Wellard-Cole, L.; Watson, W.; Crino, M.; Petersen, K.; Neal, B. A comparison of the Health Star Rating system when used for restaurant fast foods and packaged foods. Appetite 2017, 117, 1–8. [Google Scholar] [CrossRef]
- Wellard-Cole, L.; Goldsbury, D.; Havill, M.; Hughes, C.; Watson, W.L.; Dunford, E.K.; Chapman, K. Monitoring the changes to the nutrient composition of fast foods following the introduction of menu labelling in New South Wales, Australia: An observational study. Public Health Nutr. 2017, 21, 1194–1199. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Australian Health Survey Food Model. Booklet; Australian Bureau of Statistics: Canberra, Australia, 2010. [Google Scholar]
- National Cancer Institute. Epidemiology and Genomics Research Program. Available online: http://www.webcitation.org/6v9ZgmxyQ (accessed on 28 June 2017).
- National Cancer Institute. ASA24-Australia. Available online: https://epi.grants.cancer.gov/asa24/respondent/australia.html (accessed on 23 January 2019).
- National Cancer Institute. Dietary Assessment Primer. Learn More about Energy Adjustment. Available online: https://dietassessmentprimer.cancer.gov/learn/adjustment.html (accessed on 15 January 2019).
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. 1), 5–41. [Google Scholar]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Black, A.E. The sensitivity and specificity of the Goldberg cut-off for EI:BMR for identifying diet reports of poor validity. Eur. J. Clin. Nutr. 2000, 54, 395. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 2024.0-Census of Population and Housing: Australia Revealed, 2016. Available online: http://www.webcitation.org/6v9Y4HIWI (accessed on 28 June 2017).
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef]
- Pendergast, F.J.; Ridgers, N.D.; Worsley, A.; McNaughton, S.A. Evaluation of a smartphone food diary application using objectively measured energy expenditure. Int. J. Behav. Nutr. Phys. Act. 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Under-reporting in nutrition surveys. In 4363.0.55.001-Australian Health Survey: Users’ Guide, 2011–13; Australian Bureau of Statistics: Canberra, Australia, 2014. [Google Scholar]
- Carter, C.M.; Hancock, N.; Albar, A.S.; Brown, H.; Greenwood, C.D.; Hardie, J.L.; Frost, S.G.; Wark, A.P.; Cade, E.J. Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool. Nutrients 2016, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Resnicow, K.; Seymour, J.; Hoy, K.; Stewart, H.; Lyons, M.; Goldberg, J. How Major Restaurant Chains Plan Their Menus: The role of profit, demand, and health. Am. J. Prev. Med. 2007, 32, 383–388. [Google Scholar] [CrossRef]
Participant Characteristics | N (%) a | |
---|---|---|
Gender | Female | 102 (54) |
Male | 87 (46) | |
Age bracket | 18–24 years | 105 (56) |
25–30 years | 84 (44) | |
Body mass index | Underweight (≤18.49 kg/m2) | 4 (2) |
Healthy weight (18.5–24.9 kg/m2) | 116 (61) | |
Overweight (25–29.9 kg/m2) | 47 (25) | |
Obese (≥30 kg/m2) | 22 (12) | |
Highest education attained | Primary school or less | 2 (1) |
Secondary school | 64 (34) | |
Trade or diploma qualification | 31 (16) | |
University degree | 92 (49) | |
Socioeconomic status a | Higher | 114 (60) |
Lower | 75 (40) |
Energy and Nutrient Densities | Median 24-h Recall (IQR) c | Median EaT App (IQR) | pd |
---|---|---|---|
Entire Sample n = 189 | |||
Total energy, kJ a | 9611 (7947–11,764) | 8813 (7051–10,828) | <0.001 * |
Protein, % energy b | 18.3 (15.2–21.6) | 18.0 (15.1–21.7) | 0.14 |
Total fat, % energy a | 35.8 (32.0–40.5) | 35.6 (31.4–40.5) | 0.47 |
Saturated fat, % energy a | 12.8 (10.6–15.5) | 12.3 (10.5–15.1) | 0.21 |
Carbohydrate, % energy a | 40.4 (35.3–45.7) | 41.8 (35.0–47.4) | 0.03 * |
Sugars, % energy b | 15.4 (11.7–21.4) | 16.4 (11.8–19.2) | 0.81 |
Sodium, mg/1000 kJ b | 294.3 (239.5–349.3) | 294.5 (237.2–362.3) | 0.89 |
Females n = 102 | |||
Total energy, kJ a | 9001 (7752–11,122) | 8209 (6818–10,399) | <0.01 * |
Protein, % energy a | 17.5 (14.9–20.3) | 17.6 (14.8–21.0) | 0.14 |
Total fat, % energy a | 36.2 (32.0–41.1) | 36.6 (32.0–40.8) | 0.97 |
Saturated fat, % energy a | 12.9 (10.6–16.0) | 12.4 (10.6–15.6) | 0.39 |
Carbohydrate, % energy a | 41.3 (35.6–47.1) | 42.2 (34.6–47.6) | 0.57 |
Sugars, % energy a | 18.1 (12.9–22.4) | 17.2 (12.2–21.0) | 0.14 |
Sodium, mg/1000 kJ a | 282.8 (229.0–354.8) | 282.0 (225.3–363.9) | 0.56 |
Males n = 87 | |||
Total energy, kJ a | 10479 (8424–12985) | 9140 (7359–11740) | <0.001 * |
Protein, % energy a | 19.0 (15.5–22.7) | 19.2 (15.4–21.9) | 0.92 |
Total fat, % energy a | 34.9 (32.0–40.0) | 34.9 (30.6–39.8) | 0.29 |
Saturated fat, % energy a | 12.7 (10.5–14.7) | 12.3 (9.8–14.6) | 0.36 |
Carbohydrate, % energy a | 40.1 (35.1–43.7) | 40.6 (35.9–47.2) | 0.01 * |
Sugars, % energy b | 14.2 (11.0–18.1) | 15.0 (11.6–18.5) | 0.13 |
Sodium, mg/1000 kJ b | 297.1 (249.1–349.0) | 301.1 (245.0–362.1) | 0.91 |
Energy and Nutrient Densities | Correlation Coefficients c | Cross-Classification into Quartiles (%) | ||
---|---|---|---|---|
Same | Same or Adjacent | Extreme | ||
Entire Sample n = 189 | ||||
Total energy, kJ a | 0.67 | 50.3 | 90.5 | 2.1 |
Protein, % energy b | 0.73 | 53.4 | 93.7 | 2.1 |
Total fat, % energy a | 0.56 | 46.0 | 84.1 | 4.2 |
Saturated fat, % energy a | 0.59 | 49.2 | 84.7 | 3.7 |
Carbohydrate, % energy a | 0.79 | 52.4 | 95.2 | 0 |
Sugars, % energy b | 0.82 | 59.8 | 95.8 | 1.1 |
Sodium, mg/1000 kJ b | 0.56 | 43.3 | 84.7 | 3.2 |
Females n = 102 | ||||
Total energy, kJ a | 0.69 | 46.1 | 90.2 | 2.0 |
Protein, % energy a | 0.71 | 52.9 | 93.1 | 1.0 |
Total fat, % energy a | 0.61 | 48.0 | 86.3 | 2.9 |
Saturated fat, % energy a | 0.62 | 56.9 | 86.3 | 2.9 |
Carbohydrate, % energy a | 0.83 | 55.9 | 95.1 | 0 |
Sugars, % energy a | 0.82 | 53.9 | 88.2 | 0 |
Sodium, mg/1000 kJ a | 0.51 | 42.2 | 84.3 | 2.9 |
Males n = 87 | ||||
Total energy, kJ a | 0.64 | 54.0 | 85.1 | 2.3 |
Protein, % energy a | 0.72 | 56.3 | 90.8 | 2.3 |
Total fat, % energy a | 0.50 | 36.8 | 80.5 | 4.6 |
Saturated fat, % energy a | 0.53 | 43.7 | 85.1 | 4.6 |
Carbohydrate, % energy a | 0.75 | 50.6 | 93.1 | 1.1 |
Sugars, % energy b | 0.74 | 58.6 | 90.8 | 2.3 |
Sodium, mg/1000 kJ b | 0.56 | 40.2 | 85.1 | 4.6 |
Nutrient | EaT Mean (SD) | 24-h Recall Mean (SD) | Mean Difference (SD) | 95% LOA a |
---|---|---|---|---|
Total energy, kJ | 9071 (2908) | 9949 (2916) | −878 (2363) | (−5510, 3755) |
Protein, % energy | 18.8 (5.0) | 18.5 (4.5) | 0.3 (3.6) | (−6.8, 7.4) |
Total fat, % energy | 36.0 (7.0) | 36.3 (6.8) | −0.3 (6.5) | (−13.0, 12.3) |
Saturated fat, % energy | 12.7 (3.4) | 13.0 (3.4) | −0.3 (3.1) | (−6.3, 5.7) |
Carbohydrate, % energy | 41.3 (8.6) | 40.5 (7.6) | 0.9 (5.3) | (−9.5, 11.2) |
Sugars, % energy | 16.5 (6.5) | 16.7 (6.4) | −0.2 (4.1) | (−8.2, 7.9) |
Sodium, mg/1000 kJ | 299.9 (89.4) | 303.3 (102.5) | −3.4 (97.5) | (−194.5, 187.7) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wellard-Cole, L.; Chen, J.; Davies, A.; Wong, A.; Huynh, S.; Rangan, A.; Allman-Farinelli, M. Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds. Nutrients 2019, 11, 621. https://doi.org/10.3390/nu11030621
Wellard-Cole L, Chen J, Davies A, Wong A, Huynh S, Rangan A, Allman-Farinelli M. Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds. Nutrients. 2019; 11(3):621. https://doi.org/10.3390/nu11030621
Chicago/Turabian StyleWellard-Cole, Lyndal, Juliana Chen, Alyse Davies, Adele Wong, Sharon Huynh, Anna Rangan, and Margaret Allman-Farinelli. 2019. "Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds" Nutrients 11, no. 3: 621. https://doi.org/10.3390/nu11030621
APA StyleWellard-Cole, L., Chen, J., Davies, A., Wong, A., Huynh, S., Rangan, A., & Allman-Farinelli, M. (2019). Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds. Nutrients, 11(3), 621. https://doi.org/10.3390/nu11030621