Subjects’ Perception in Quantifying Printed and Digital Photos of Food Portions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photo Album of Food Portions and Foods Evaluated in the Study
2.2. Participants and Number of Evaluations
2.3. Study Protocol
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Souverein, O.W.; de Boer, W.J.; Geelen, A.; van der Voet, H.; de Vries, J.H.; Feinberg, M.; van’t Veer, P. Uncertainty in intake due to portion size estimation in 24-h recalls varies between food groups. J. Nutr. 2011, 141, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Bouchoucha, M.; Akrout, M.; Bellali, H.; Bouchoucha, R.; Tarhouni, F.; Mansour, A.B.; Zouari, B. Development and validation of a food photography manual, as a tool for estimation of food portion size in epidemiological dietary surveys in Tunisia. Libyan J. Med. 2016, 11, 32676. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Guthrie, H.A. Selection and quantification of typical food portions by young adults. J. Am. Diet. Assoc. 1984, 84, 1440–1444. [Google Scholar] [PubMed]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The automated self-administered 24-hour dietary recall (asa24): A resource for researchers, clinicians, and educators from the national cancer institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E., 4th; Godwin, S.L.; Vecchio, F.A. Cognitive strategies for reporting portion sizes using dietary recall procedures. J. Am. Diet. Assoc. 2000, 100, 891–897. [Google Scholar] [CrossRef]
- De Keyzer, W.; Huybrechts, I.; De Maeyer, M.; Ocke, M.; Slimani, N.; van ’t Veer, P.; De Henauw, S. Food photographs in nutritional surveillance: Errors in portion size estimation using drawings of bread and photographs of margarine and beverages consumption. Br. J. Nutr. 2011, 105, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Godwin, S.L.; Chambers, E., 4th; Cleveland, L. Accuracy of reporting dietary intake using various portion-size aids in-person and via telephone. J. Am. Diet. Assoc. 2004, 104, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.; Matthews, J.N.; Nelson, M.; Harris, J.M.; Mathers, J.C.; Adamson, A.J. Accuracy of estimates of food portion size using food photographs—The importance of using age-appropriate tools. Public Health Nutr. 2006, 9, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Frobisher, C.; Maxwell, S.M. The estimation of food portion sizes: A comparison between using descriptions of portion sizes and a photographic food atlas by children and adults. J. Hum. Nutr. Diet. 2003, 16, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Lucas, F.; Niravong, M.; Villeminot, S.; Kaaks, R.; Clavelchapelon, F. Estimation of food portion size using photographs—Validity, strengths, weaknesses and recommendations. J. Hum. Nutr. Diet. 1995, 8, 65–74. [Google Scholar] [CrossRef]
- Nelson, M.; Atkinson, M.; Darbyshire, S. Food photography. I: The perception of food portion size from photographs. Br. J. Nutr. 1994, 72, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Atkinson, M.; Darbyshire, S. Food photography II: Use of food photographs for estimating portion size and the nutrient content of meals. Br. J. Nutr. 1996, 76, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Trolle, E.; Vandevijvere, S.; Ruprich, J.; Ege, M.; Dofkova, M.; de Boer, E.; Ocke, M. Validation of a food quantification picture book targeting children of 0–10 years of age for pan-european and national dietary surveys. Br. J. Nutr. 2013, 110, 2298–2308. [Google Scholar] [CrossRef] [PubMed]
- Crispim, S.P.; Fisberg, R.M.; Almeida, C.C.B.; Nicolas, G.; Knaze, V.; Pereira, R.A.; Marchiori, D.M.L.; Santos, N.A.S.; Steluti, J.; Slimani, N. Manual Fotográfico De Quantificação Alimentar, 1st ed.; Universidade Federal do Paraná: Curitiba, Paraná, Brazil, 2017. [Google Scholar]
- Bel-Serrat, S.; Knaze, V.; Nicolas, G.; Marchioni, D.M.; Steluti, J.; Mendes, A.; Crispim, S.P.; Fisberg, R.M.; Pereira, R.A.; Araujo, M.C.; et al. Adapting the standardised computer- and interview-based 24 h dietary recall method (GloboDIET) for dietary monitoring in Latin America. Public Health Nutr. 2017, 20, 2847–2858. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Potischman, N.; Dodd, K.W.; Douglass, D.; Zimmerman, T.P.; Kahle, L.L.; Thompson, F.E.; George, S.M.; Subar, A.F. The use of digital images in 24-hour recalls may lead to less misestimation of portion size compared with traditional interviewer-administered recalls. J. Nutr. 2016, 146, 2567–2573. [Google Scholar] [CrossRef] [PubMed]
- Arens-Volland, A.G.; Spassova, L.; Bohn, T. Promising approaches of computer-supported dietary assessment and management-current research status and available applications. Int. J. Med. Inform. 2015, 84, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Stumbo, P.J. New technology in dietary assessment: A review of digital methods in improving food record accuracy. Proc. Nutr. Soc. 2013, 72, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Illner, A.K.; Freisling, H.; Boeing, H.; Huybrechts, I.; Crispim, S.P.; Slimani, N. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int. J. Epidemiol. 2012, 41, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, A.L.; Piernas, C.; Illner, A.K.; Gibney, M.J.; Gurinovic, M.A.; de Vries, J.H.M.; Cade, J.E. Evaluation of new technology-based tools for dietary intake assessment-an ilsi europe dietary intake and exposure task force evaluation. Nutrients 2019, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Timon, C.M.; Cooper, S.E.; Barker, M.E.; Astell, A.J.; Adlam, T.; Hwang, F.; Williams, E.A. A comparison of food portion size estimation by older adults, young adults and nutritionists. J. Nutr. Health Aging 2018, 22, 230–236. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Pesquisa De Orçamentos Familiares 2008–2009: Análise do Consumo Alimentar Pessoal No Brasil; Ministério do Planejamento, Orçamento e Gestão: Rio de Janeiro, Brazil, 2011; p. 150.
- Molag, M.L.; de Vries, J.H.; Duif, N.; Ocke, M.C.; Dagnelie, P.C.; Goldbohm, R.A.; van’t Veer, P. Selecting informative food items for compiling food-frequency questionnaires: Comparison of procedures. Br. J. Nutr. 2010, 104, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Haraldsdottir, J. Food photographs: Practical guidelines I. Design and analysis of studies to validate portion size estimates. Public Health Nutr. 1998, 1, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Epidata, D.K. 2000–2010, Version 3.1, Denmark, EpiData Association. Available online: http://www.epidata.dk/download/php. (accessed on 28 January 2008).
- IBM Corp. IBM SPSS Statistics for Windows, Version 22.0; IBM Corp.: Armonk, NY, USA, 2013. [Google Scholar]
- Naska, A.; Valanou, E.; Peppa, E.; Katsoulis, M.; Barbouni, A.; Trichopoulou, A. Evaluation of a digital food photography atlas used as portion size measurement aid in dietary surveys in Greece. Public Health Nutr. 2016, 19, 2369–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoradeniya, T.; de Silva, A.; Arambepola, C.; Atukorala, S.; Lanerolle, P. Portion size estimation aids for asian foods. J. Hum. Nutr. Diet. 2012, 25, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, C.; Dohogne, S.; Covents, M.; Maes, L. How accurate are adolescents in portion-size estimation using the computer tool young adolescents’ nutrition assessment on computer (yana-c)? Br. J. Nutr. 2010, 103, 1844–1850. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Orozco, M.F.; Vizmanos-Lamotte, B.; Rodriguez-Rocha, N.P.; Macedo-Ojeda, G.; Orozco-Valerio, M.; Roville-Sausse, F.; Leon-Estrada, S.; Marquez-Sandoval, F.; Fernandez-Ballart, J.D. Validation of a mexican food photograph album as a tool to visually estimate food amounts in adolescents. Br. J. Nutr. 2013, 109, 944–952. [Google Scholar] [CrossRef] [PubMed]
- López, B.L.; Longo, N.E.; Carballido, P.M.; Di Carlo, P. Validación del uso de modelos fotográficos para cuantificar em tamaño de las porciones de alimentos. Rev. Chil. Nutr. 2006, 33, 480–487. [Google Scholar] [CrossRef]
- Huybregts, L.; Roberfroid, D.; Lachat, C.; Van Camp, J.; Kolsteren, P. Validity of photographs for food portion estimation in a rural west african setting. Public Health Nutr. 2008, 11, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Szenczi-Cseh, J.; Horvath, Z.; Ambrus, A. Validation of a food quantification picture book and portion sizes estimation applying perception and memory methods. Int. J. Food Sci. Nutr. 2017, 68, 960–972. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.G.M.d.; Campos, M.I.V.A.M.; Cordeiro, M.d.M.; Monego, E.T.; Peixoto, M.d.R.G. Validação de fotografias de alimentos para estimativa do consumo alimentar. Rev. Nutr. 2016, 29, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Lillegaard, I.T.; Overby, N.C.; Andersen, L.F. Can children and adolescents use photographs of food to estimate portion sizes? Eur. J. Clin. Nutr. 2005, 59, 611–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilela, S.; Lopes, C.; Guiomar, S.; Severo, M.; Rangelova, L.; Petrova, S.; Horvath, Z.; Cseh, J.; Schweter, A.; Lindtner, O.; et al. Validation of a picture book to be used in a pan-european dietary survey. Public Health Nutr. 2018, 21, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
Printed Photos | Digital Photos | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
True Portion Size (g) | Estimated Portion Size (g) | Error (g) | % Error | True Portion Size (g) | Estimated Portion Size (g) | Error (g) | % Error | ||||||||||||||
Food | n | Mean | SD | Mean | SD | Mean | SD | p | Mean | r * | n | Mean | SD | Mean | SD | Mean | SD | p | Mean | r * | P |
Total | 631 | 172.6 | 151.9 | 170.6 | 149.5 | −2.1 | 47.2 | 0.27 | −1.1 | 0.95 | 535 | 173.0 | 152.5 | 166.6 | 145.6 | −6.4 | 53.7 | 0.01 | −3.6 | 0.95 | 0.17 |
Apple | 36 | 147.4 | 67.6 | 154.6 | 57.2 | 7.1 | 39.1 | 0.37 | 4.8 | 0.76 | 26 | 152.7 | 66.3 | 150.9 | 55.7 | −1.7 | 35.6 | 0.93 | −1.1 | 0.75 | 0.09 |
Beans | 33 | 188.7 | 118.1 | 191.1 | 127.9 | 2.4 | 32.9 | 0.43 | 1.2 | 0.93 | 28 | 201.0 | 122.8 | 200.7 | 126.4 | −0.2 | 86.2 | 0.48 | −0.09 | 0.74 | 0.48 |
Cabbage | 32 | 64.2 | 45.4 | 59.4 | 35.9 | −4.7 | 25.2 | 0.04 | −7.3 | 0.82 | 26 | 64.3 | 45.8 | 54.9 | 32.5 | −9.3 | 22.5 | 0.01 | −14.4 | 0.86 | 0.01 |
Carrot | 33 | 93.3 | 48.9 | 79.6 | 38.5 | −13.7 | 20.5 | 0.001 | −14.6 | 0.93 | 28 | 92.1 | 51.5 | 79.5 | 41.2 | −12.5 | 16.6 | 0.001 | −13.5 | 0.95 | 0.97 |
Cassava | 33 | 228.5 | 128.6 | 245 | 122.9 | 16.4 | 37.7 | 0.01 | 7.1 | 0.92 | 27 | 250.3 | 132.2 | 236.4 | 119.1 | −13.9 | 51.6 | 0.18 | −5.5 | 0.90 | 0.02 |
Chicken | 31 | 70.0 | 47.2 | 84.6 | 52.2 | 14.6 | 38.2 | 0.09 | 20.8 | 0.73 | 26 | 80.2 | 58.3 | 67.6 | 49.7 | −12.5 | 23.1 | 0.01 | −15.5 | 0.87 | 0.02 |
Feijoada | 30 | 363.3 | 100.8 | 322.5 | 126.7 | −40.8 | 93.3 | 0.02 | −11.2 | 0.75 | 25 | 358.2 | 102.4 | 294.9 | 95.7 | −63.2 | 98.2 | 0.01 | −17.6 | 0.51 | 0.39 |
Green salad leaves | 31 | 39.0 | 43.1 | 35.0 | 38.5 | −4.0 | 13.1 | 0.16 | −10.2 | 0.94 | 27 | 39.8 | 43.7 | 41.2 | 45.7 | 1.4 | 7.3 | 0.20 | 3.5 | 0.96 | 0.13 |
Ground beef | 33 | 270.0 | 117.6 | 273.6 | 113.1 | 3.6 | 37.6 | 0.73 | 1.3 | 0.94 | 27 | 270.0 | 118.0 | 281.0 | 111.6 | 11.0 | 29.5 | 0.07 | 4.0 | 0.95 | 0.01 |
Jello | 30 | 282.8 | 132.6 | 311.6 | 139.9 | 28.8 | 72.1 | 0.02 | 10.1 | 0.86 | 25 | 276.1 | 134.6 | 332.4 | 131.9 | 56.2 | 76.8 | 0.01 | 20.3 | 0.81 | 0.01 |
Kale | 31 | 78.8 | 43.9 | 66.1 | 24.6 | −12.7 | 24.4 | 0.02 | −16.1 | 0.92 | 26 | 78.6 | 43.3 | 66.4 | 23.8 | −12.2 | 24.4 | 0.03 | −15.5 | 0.90 | 0.73 |
Margarine | 30 | 15.8 | 11.4 | 12.9 | 9.03 | −2.9 | 5.2 | 0.01 | −18.5 | 0.90 | 29 | 15.8 | 11.6 | 12.6 | 8.8 | −3.2 | 6.8 | 0.01 | −20.2 | 0.81 | 0.60 |
Mortadella | 34 | 20.2 | 4.4 | 22.1 | 4.89 | 1.9 | 3.8 | 0.02 | 9.4 | 0.92 | 24 | 20.7 | 4.5 | 22.9 | 4.0 | 2.2 | 3.1 | 0.004 | 10.6 | 0.94 | 0.08 |
Papaya | 31 | 402.4 | 199.8 | 399.4 | 186.4 | −2.9 | 49.9 | 0.79 | −0.7 | 0.94 | 28 | 398.4 | 196.2 | 400.8 | 188.3 | 2.4 | 75.8 | 0.68 | 0.6 | 0.90 | 0.40 |
Pasta | 32 | 212.6 | 157.7 | 202.9 | 145.9 | −9.6 | 34.3 | 0.06 | −4.5 | 0.95 | 27 | 195.0 | 158.5 | 193.5 | 154.1 | −1.4 | 29.5 | 0.97 | −0.7 | 0.95 | 0.64 |
Popcorn | 28 | 45.4 | 25.7 | 54.9 | 24.2 | 9.4 | 7.4 | 0.001 | 16.2 | 0.95 | 29 | 44.0 | 24.5 | 61.2 | 22.0 | 17.2 | 11.6 | 0.001 | 39.0 | 0.90 | 0.09 |
Potato | 34 | 228.5 | 147.4 | 247.0 | 169.5 | 18.5 | 58.6 | 0.08 | 8.0 | 0.94 | 27 | 222.6 | 153.9 | 195.0 | 134.0 | −27.5 | 44.3 | 0.004 | −12.3 | 0.97 | 0.01 |
Rice | 29 | 256.2 | 108.3 | 235.1 | 89.8 | −21.0 | 40.9 | 0.01 | −5.2 | 0.91 | 28 | 260.4 | 108.0 | 230.2 | 74.9 | −30.2 | 77.8 | 0.03 | −4,2 | 0.64 | 0.07 |
Scrambled egg | 30 | 159.0 | 93.3 | 137.6 | 53.1 | −21.3 | 72.0 | 0.20 | −13.3 | 0.68 | 27 | 151.0 | 91.5 | 145.7 | 59.6 | −5.2 | 58.5 | 0.65 | −3.4 | 0.83 | 0.22 |
Soup vegetables | 30 | 306.2 | 117.1 | 290.0 | 114.8 | −16.0 | 69.2 | 0.13 | −5.2 | 0.68 | 25 | 302.7 | 117.1 | 275.6 | 125.6 | −27.0 | 44.6 | 0.004 | −8.9 | 0.80 | 0.97 |
Food | Agreement in the Photo Choice (%) | |||||||
---|---|---|---|---|---|---|---|---|
Printed | Digital | |||||||
n | 0 Correct | <+−1 Adjacent | >+−1 Distal | n | 0 Correct | <+−1 Adjacent | >+−1 Distal | |
Total | 631 | 36 | 55 | 9 | 535 | 36 | 54 | 10 |
Apple | 36 | 22 | 58 | 20 | 26 | 8 | 73 | 19 |
Beans | 33 | 30 | 67 | 3 | 28 | 57 | 32 | 11 |
Cabbage | 32 | 35 | 62 | 3 | 26 | 35 | 58 | 7 |
Carrot | 33 | 42 | 52 | 6 | 28 | 29 | 71 | 0 |
Cassava | 33 | 42 | 55 | 3 | 27 | 26 | 67 | 7 |
Chicken | 31 | 23 | 55 | 22 | 26 | 27 | 62 | 11 |
Feijoada | 30 | 20 | 63 | 17 | 25 | 16 | 56 | 28 |
Green salad leaves | 31 | 39 | 55 | 6 | 27 | 48 | 52 | 0 |
Ground beef | 33 | 58 | 39 | 3 | 27 | 59 | 41 | 0 |
Jello | 30 | 30 | 60 | 10 | 25 | 20 | 60 | 20 |
Kale | 31 | 29 | 68 | 3 | 26 | 36 | 62 | 4 |
Margarine | 30 | 37 | 57 | 6 | 29 | 28 | 62 | 10 |
Mortadella | 34 | 47 | 24 | 29 | 24 | 46 | 33 | 21 |
Papaya | 31 | 48 | 48 | 4 | 28 | 43 | 46 | 11 |
Pasta | 32 | 63 | 37 | 0 | 27 | 56 | 44 | 0 |
Popcorn | 28 | 25 | 71 | 4 | 29 | 17 | 52 | 31 |
Potato | 34 | 44 | 50 | 6 | 27 | 63 | 30 | 7 |
Rice | 29 | 24 | 76 | 0 | 28 | 32 | 54 | 14 |
Scrambled egg | 30 | 24 | 63 | 13 | 27 | 34 | 59 | 7 |
Soup vegetables | 30 | 37 | 57 | 6 | 25 | 36 | 60 | 4 |
Variables | Total | Printed Photos (n1 = 631) | Digital Photos: Computer-Screen (n1 = 296) | Digital Photos: Tablet (n1 = 239) | ||||
---|---|---|---|---|---|---|---|---|
Mean of Error (g) | SD | Mean of Error (g) | SD | Mean of Error (g) | SD | Mean of Error (g) | SD | |
Sex | ||||||||
Men | −4.3 | 55.1 | −2.7 | 51.9 | 1.0 | 46.3 | −17.1 | 72.5 |
Women | −3.7 | 44.8 | −1.3 | 41.8 | 0.7 | 48.5 | −14.1 | 46.4 |
p | 0.85 | 0.67 | 0.40 | 0.91 | ||||
Age | ||||||||
18–45 years old | −2.4 | 43.1 | −0.6 | 39.8 | 0.5 | 47.1 | −13.6 | 45.1 |
46–65 years old | −9.0 | 67.3 | −6.8 | 65.9 | 2.7 | 48.4 | −18.3 | 76.5 |
p | 0.62 | 0.94 | 0.51 | 0.82 | ||||
Years of education | ||||||||
≤12 years | −7.3 | 66.5 | −5.9 | 61.7 | 2.4 | 56.4 | −45.3 | 97.7 |
>12 years | −2.9 | 43.3 | −0.9 | 42 | −0.1 | 39.9 | 10.1 | 48.2 |
p | 0.40 | 0.42 | 0.27 | <0.001 | ||||
Portion size | ||||||||
Small | 11.2 a | 36.4 | 11.0 a | 33.1 | 12.2 a | 39 | 9.7 a | 42.6 |
Average | 1.5 b | 47.1 | 0.3 b | 47.3 | 4.6 a | 49.2 | 1.1 a | 45.0 |
Large | −25.2 c | 57.8 | −17.9 c | 54.3 | −21.6 b | 49.9 | −43.4 b | 66.9 |
p | 0.001 | 0.001 | <0.001 | 0.001 | ||||
Type of presentation | ||||||||
As the original portion | −0.7 | 46.1 | 3.3 | 41.2 | −2.8 a | 45.2 | −9.0 a | 57.6 |
Different format | −12.9 | 72.3 | −10.4 | 68.7 | 8.5 b | 54.5 | −81.3 b | 89.2 |
Different amount | −4.9 | 43.5 | −6.4 | 41.7 | 2.4 a | 44.8 | −7.7 a | 41.8 |
p | 0.99 | 0.61 | 0.05 | 0.001 | ||||
Food consumption | ||||||||
Yes | −3.6 | 49.2 | -1.9 | 47.3 | 0.2 | 47.4 | -12.8 | 56.1 |
No | −12.3 | 64.7 | −3.2 | 46.6 | 18.5 | 40.8 | −51.9 | 89.7 |
p | 0.94 | 0.32 | 0.21 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nichelle, P.G.; Almeida, C.C.B.; Camey, S.A.; Garmus, L.M.; Elias, V.C.M.; Marchioni, D.M.; da Silva, D.G.; Ocke, M.C.; Slimani, N.; Fisberg, R.M.; et al. Subjects’ Perception in Quantifying Printed and Digital Photos of Food Portions. Nutrients 2019, 11, 501. https://doi.org/10.3390/nu11030501
Nichelle PG, Almeida CCB, Camey SA, Garmus LM, Elias VCM, Marchioni DM, da Silva DG, Ocke MC, Slimani N, Fisberg RM, et al. Subjects’ Perception in Quantifying Printed and Digital Photos of Food Portions. Nutrients. 2019; 11(3):501. https://doi.org/10.3390/nu11030501
Chicago/Turabian StyleNichelle, Pryscila G., Claudia C. B. Almeida, Suzi A. Camey, Lenine M. Garmus, Vanessa C. M. Elias, Dirce M. Marchioni, Danielle G. da Silva, Marga C. Ocke, Nadia Slimani, Regina M. Fisberg, and et al. 2019. "Subjects’ Perception in Quantifying Printed and Digital Photos of Food Portions" Nutrients 11, no. 3: 501. https://doi.org/10.3390/nu11030501
APA StyleNichelle, P. G., Almeida, C. C. B., Camey, S. A., Garmus, L. M., Elias, V. C. M., Marchioni, D. M., da Silva, D. G., Ocke, M. C., Slimani, N., Fisberg, R. M., & Crispim, S. P. (2019). Subjects’ Perception in Quantifying Printed and Digital Photos of Food Portions. Nutrients, 11(3), 501. https://doi.org/10.3390/nu11030501