Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones
Abstract
:1. Introduction: Ancient, Heritage, and Modern Wheat Cultivars
2. Position of the Debate on Ancient, Heritage, and Modern Wheat Nutritional Proprieties
3. Differential Nutritional Aspects of Ancient and Modern Wheat Cultivars
3.1. Starch and Glycemic Index
3.2. Micronutrients
3.3. Polyphenols
3.4. Lipid Profiles
4. Different Food Processing for Different Wheats
5. Studies on Gluten Immune Toxicity
6. Whole Wheat Proteome Immunogenicity
7. Wheat Cultivars and the Microbiome
8. Ancient and Heritage Wheat in Clinical Study
9. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Harlan, J.R.; Zohary, D. Distribution of wild wheats and barley. Science 1966, 153, 1074−1080. [Google Scholar] [CrossRef] [PubMed]
- Ciaffi, M.; Dominici, L.; Lafiandra, D.; Porceddu, E. Seed storage proteins of wild wheat progenitors and their relationships with technological properties. Hereditas 1992, 116, 315−322. [Google Scholar] [CrossRef]
- Kihara, H. Origin of cultivated plants with special reference to wheat. Seiken Zihô Rep. Kihara Inst. Biol. Res. 1975, 25–26, 1–24. [Google Scholar]
- Van Herpen, T.W.J.M.; Goryunova, S.V.; van der Schoot, J.; Mitreva, M.; Salentijn, E.; Vorst, O.; Schenk, M.F.; Van Veelen, P.A.; Koning, F.; van Soest, L.J.M.; et al. α-Gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genom. 2006, 7, 1. [Google Scholar] [CrossRef]
- Kasarda, D.D. Letter to the editor: Triticum monococcum and celiac disease. Scand. J. Gastroenterol. 2007, 42, 1141−1142. [Google Scholar] [CrossRef]
- Vaccino, P.; Becker, H.A.; Brandolini, A.; Salamini, F.; Kilian, B. A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol. Genet. Genom. 2009, 281, 289−300. [Google Scholar] [CrossRef] [PubMed]
- Spisni, E.; Valerii, M.C.; De Fazio, L.; Rotondo, E.; Di Natale, M.; Giovanardi, E.; Posabella, G.; Bregola, V.; Stenico, V.; Sferrazza, R.E.; et al. A Khorasan wheat-based diet improves systemic inflammatory profile in semi-professional basketball players: A randomized crossover pilot study. J. Sci. Food Agric. 2019. [Google Scholar] [CrossRef]
- Ferrero-Serrano, Á.; Cantos, C.; Assmann, S.M. The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice. Cold Spring Harb. Perspect. Biol. 2019. [Google Scholar] [CrossRef]
- Mefleh, M.; Conte, P.; Fadda, C.; Giunta, F.; Piga, A.; Hassoun, G.; Motzo, R. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. J. Sci. Food Agric. 2019, 99, 2059–2067. [Google Scholar] [CrossRef]
- Kasarda, D.D. Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J. Agric. Food Chem. 2013, 61, 1155–1159. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Kyle, R.A.; Kaplan, E.L.; Johnson, D.R.; Page, W.; Erdtmann, F.; Brantner, T.L.; Kim, W.R.; Phelps, T.K.; Lahr, B.D.; et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 2009, 137, 88−93. [Google Scholar] [CrossRef] [PubMed]
- Lohi, S.; Mustalahti, K.; Kaukinen, K.; Laurila, K.; Collin, P.; Rissanen, H.; Lohi, O.; Bravi, E.; Gasparin, M.; Reunanen, A.; et al. Increasing prevalence of coeliac disease over time. Aliment. Pharmacol. Ther. 2007, 26, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Kryszak, D.; Bhatti, B.; Sturgeon, C.; Helzlsouer, K.; Clipp, S.L.; Gelfond, D.; Puppa, E.; Sferruzzan, A.; Fasano, A. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann. Med. 2010, 42, 530−538. [Google Scholar] [CrossRef] [PubMed]
- Biagi, F.; Raiteri, A.; Schiepatti, A.; Klersy, C.; Corazza, G.R. The Relationship between Child Mortality Rates and Prevalence of Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, F.; Spisni, E.; Giovanardi, E.; Imbesi, V.; Salice, M.; Alvisi, P.; Valerii, M.C.; Gionchetti, P. Implications of the Westernized Diet in the Onset and Progression of IBD. Nutrients 2019, 11, 1033. [Google Scholar] [CrossRef]
- Catassi, C.; Elli, L.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; Cellier, C.; Cristofori, F.; De Magistris, L.; Dolinsek, J.; et al. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients 2015, 7, 4966–4977. [Google Scholar] [CrossRef]
- Valerii, M.C.; Ricci, C.; Spisni, E.; Di Silvestro, R.; De Fazio, L.; Cavazza, E.; Lanzini, A.; Campieri, M.; Dalpiaz, A.; Pavan, B.; et al. Responses of peripheral blood mononucleated cells from non-celiac gluten sensitive patients to various cereal sources. Food Chem. 2015, 176, 167–174. [Google Scholar] [CrossRef]
- Pinto-Sanchez, M.I.; Verdu, E.F. Non-celiac gluten or wheat sensitivity: It’s complicated! Neurogastroenterol. Motil. 2018, 30, e13392. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Prandi, B.; Amaretti, A.; Anfelli, I.; Leonardi, A.; Raimondi, S.; Pecchioni, N.; De Vita, P.; Faccini, A.; Sforza, S.; et al. Comparison of gluten peptides and potential prebiotic carbohydrates in old and modern Triticum turgidum ssp. genotypes. Food Res. Int. 2019, 120, 568–576. [Google Scholar] [CrossRef]
- Leoncini, E.; Prata, C.; Malaguti, M.; Marotti, I.; Segura-Carretero, A.; Catizone, P.; Dinelli, G.; Hrelia, S. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars. PLoS ONE 2012, 7, e45997. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Youn, M.; Saari Csallany, A.; Gallaher, D.D. Whole grain consumption has a modest effect on the development of diabetes in the Goto-Kakisaki rat. Br. J. Nutr. 2012, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Thorup, A.C.; Gregersen, S.; Jeppesen, P.B. Ancient wheat diet delays diabetes development in a type 2 diabetes animal model. Rev. Diabet. Stud. 2014, 114, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Whittaker, A.; Cesari, F.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Marotti, I.; Dinelli, G.; Casini, A.; Abbate, R.; et al. Characterization of Khorasan wheat (Kamut) and impact of a replacement diet on cardiovascular risk factors: cross-over dietary intervention study. Eur. J. Clin. Nutr. 2013, 67, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, A.; Sofi, F.; Luisi, M.L.; Rafanelli, E.; Fiorillo, C.; Becatti, M.; Abbate, R.; Casini, A.; Gensini, G.F.; Benedettelli, S. An organic khorasan wheat-based replacement diet improves risk profile of patients with acute coronary syndrome: a randomized crossover trial. Nutrients 2015, 7, 3401–3415. [Google Scholar] [CrossRef] [PubMed]
- Sereni, A.; Cesari, F.; Gori, A.M.; Maggini, N.; Marcucci, R.; Casini, A.; Sofi, F. Cardiovascular benefits from ancient grain bread consumption: findings from a double-blinded randomized crossover intervention trial. Int. J. Food Sci. Nutr. 2017, 68, 97–103. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 1–9. [Google Scholar] [CrossRef]
- Boers, H.M.; Seijen Ten Hoorn, J.; Mela, D.J. A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses. Br. J. Nutr. 2015, 114, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Stamataki, N.S.; Yanni, A.E.; Karathanos, V.T. Bread making technology influences postprandial glucose response: A review of the clinical evidence. Br. J. Nutr. 2017, 117, 1001–1012. [Google Scholar] [CrossRef]
- Di Loreto, A.; Di Silvestro, R.; Dinelli, G.; Bregola, V.; Stenico, V.; Sferrazza, R.E.; Marotti, I.; Quinn, R.; Bosi, S. Nutritional and nutraceutical aspects of KAMUT® khorasan wheat grown during the last two decades. J. Agric. Sci. 2017, 155, 954–965. [Google Scholar] [CrossRef]
- Migliorinia, P.; Spagnolo, S.; Torri, L.; Arnoulet, M.; Lazzerini, G.; Ceccarelli, S. Agronomic and quality characteristics of old, modern and mixture wheat varieties and landraces for organic bread chain in diverse environments of northern Italy. Eur. J. Agron. 2016, 79, 131–141. [Google Scholar] [CrossRef]
- Shewry, P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci. 2018, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.M.; Gebruers, K.; Boros, D.; Andersson, A.A.; Åman, P.; Rakszegi, M.; Bedo, Z.; et al. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem. 2013, 61, 8295–8303. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A. Nutritional properties of einkorn wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94, 601–612. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I.; Hucl, P.; Fregeau-Reid, J. Identification and quantification of seed carotenoids in selected wheat species. J. Agric. Food Chem. 2007, 55, 787–794. [Google Scholar] [CrossRef]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef] [Green Version]
- Trozzi, C.; Raffaelli, F.; Vignini, A.; Nanetti, L.; Gesuita, R.; Mazzanti, L. Evaluation of antioxidative and diabetes-preventive properties of an ancient grain, KAMUT® khorasan wheat, in healthy volunteers. Eur. J. Nutr. 2019, 58, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Anson, N.M.; Van Den Berg, R.; Havenaar, R.; Bast, A.; Haenen, G.R. Bioavailability of ferulic acid is determined by its bioaccessibility. J. Cereal Sci. 2009, 49, 296–300. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Dinelli, G.; Segura-Carretero, A.; Di Silvestro, R.; Marotti, I.; Arráez-Román, D.; Benedettelli, S.; Ghiselli, L.; Fernadez-Gutierrez, A. Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 7670–7681. [Google Scholar] [CrossRef] [PubMed]
- Montevecchi, G.; Setti, L.; Olmi, L.; Buti, M.; Laviano, L.; Antonelli, A.; Sgarbi, E. Determination of Free Soluble Phenolic Compounds in Grains of Ancient Wheat Varieties (Triticum sp. pl.) by Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Righetti, L.; Rubert, J.; Galaverna, G.; Folloni, S.; Ranieri, R.; Stranska-Zachariasova, M.; Hajslova, J.; Dall’Asta, C. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach. Int. J. Mol. Sci. 2016, 17, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righetti, L.; Rubert, J.; Galaverna, G.; Hurkova, K.; Dall’Asta, C.; Hajslova, J.; Stranska-Zachariasova, M. A novel approach based on untargeted lipidomics reveals differences in the lipid pattern among durum and common wheat. Food Chem. 2018, 240, 775–783. [Google Scholar] [CrossRef]
- Min, B.; González-Thuillier, I.; Powers, S.J.; Wilde, P.; Shewry, P.R.; Haslam, R.P. Effects of Cultivar and Nitrogen Nutrition on the Lipid Composition of Wheat Flour. J. Agric. Food Chem. 2017, 65, 5427–5434. [Google Scholar] [CrossRef]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Carrera-Bastos, P.; Fontes-Villalba, M.; O’Keefe, J.H.; Lindeberg, S.; Cordain, L. The western diet and lifestyle and diseases of civilization. Res. Rep. Clin. Cardiol. 2011, 2, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Taylor, C.; Nebl, T.; Ng, K.; Bennett, L.E. Effects of chemical composition and baking on in vitro digestibility of proteins in breads made from selected gluten-containing and gluten-free flours. Food Chem. 2017, 233, 514–524. [Google Scholar] [CrossRef]
- Caminero, A.; McCarville, J.L.; Zevallos, V.F.; Pigrau, M.; Yu, X.B.; Jury, J.; Galipeau, H.J.; Clarizio, A.V.; Casqueiro, J.; Murray, J.A.; et al. Lactobacilli Degrade Wheat Amylase Trypsin Inhibitors to Reduce Intestinal Dysfunction Induced by Immunogenic Wheat Proteins. Gastroenterology 2019, 156, 2266–2280. [Google Scholar] [CrossRef] [Green Version]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.M.; Loponen, J.; Poussa, T.; Huang, X.; Sontag-Strohm, T.; Salmenkari, H.; Korpela, R. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome. Nutrients 2017, 9, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Biesiekierski, J.R. What is gluten? J. Gastroenterol. Hepatol. 2017, 32 (Suppl. 1), 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Broeck, H.C.; de Jong, H.C.; Salentijn, E.M.; Dekking, L.; Bosch, D.; Hamer, R.J.; Gilissen, L.J.; van der Meer, I.M.; Smulders, M.J. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: Wheat breeding may have contributed to increased prevalence of celiac disease. Theor. Appl. Genet. 2010, 121, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.; Rodriguez-Quijano, M.; Nunes, F.M.; Carrillo, J.M.; Branlard, G.; Igrejas, G. New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chem. 2016, 213, 8–18. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef]
- Prandi, B.; Tedeschi, T.; Folloni, S.; Galaverna, G.; Sforza, S. Peptides from gluten digestion: A comparison between old and modern wheat varieties. Food Res. Int. 2017, 91, 92–102. [Google Scholar] [CrossRef]
- Gianfrani, C.; Camarca, A.; Mazzarella, G.; Di Stasio, L.; Giardullo, N.; Ferranti, P.; Picariello, G.; Rotondi Aufiero, V.; Picascia, S.; Troncone, R.; et al. Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: Implication for celiac disease. Mol. Nutr. Food Res. 2015, 59, 1844–1854. [Google Scholar] [CrossRef]
- Schuppan, D.; Zevallos, V. Wheat amylase trypsin inhibitors as nutritional activators of innate immunity. Dig. Dis. 2015, 33, 260–263. [Google Scholar] [CrossRef]
- Brigotti, M.; Carnicelli, D.; Arfilli, V.; Tamassia, N.; Borsetti, F.; Fabbri, E.; Tazzari, P.L.; Ricci, F.; Pagliaro, P.; Spisni, E.; et al. Identification of TLR4 as the receptor that recognizes Shiga toxins in human neutrophils. J. Immunol. 2013, 191, 4748–4758. [Google Scholar] [CrossRef] [Green Version]
- Reig-Otero, Y.; Mañes, J.; Manyes, L. Amylase-Trypsin Inhibitors in Wheat and Other Cereals as Potential Activators of the Effects of Nonceliac Gluten Sensitivity. J. Med. Food 2018, 21, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Zevallos, V.F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D. Nutritional Wheat Amylase-Trypsin Inhibitors Promote Intestinal Inflammation via Activation of Myeloid Cells. Gastroenterology 2017, 152, 1100–1113.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altenbach, S.B.; Vensel, W.H.; Dupont, F.M. The spectrum of low molecular weight α-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86. BMC Res. Notes 2011, 4, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Zoccatelli, G.; Sega, M.; Bolla, M.; Cecconi, D.; Vaccino, P.; Rizzi, C.; Chignola, R.; Brandolini, A. Expression of α-amylase inhibitors in diploid Triticum species. Food Chem. 2012, 135, 2643−2649. [Google Scholar] [CrossRef] [PubMed]
- Geisslitz, S.; Ludwig, C.; Scherf, K.A.; Koehler, P. Targeted LC-MS/MS Reveals Similar Contents of α-Amylase/Trypsin-Inhibitors as Putative Triggers of Nonceliac Gluten Sensitivity in All Wheat Species Except Einkorn. J. Agric. Food Chem. 2018, 66, 12395–12403. [Google Scholar] [CrossRef]
- Alvisi, P.; De Fazio, L.; Valerii, M.C.; Cavazza, E.; Salerno, A.; Lacorte, D.; Dinelli, G.; Spisni, E. Responses of blood mononucleated cells and clinical outcome of non-celiac gluten sensitive pediatric patients to various cereal sources: A pilot study. Int. J. Food Sci. Nutr. 2017, 68, 1005–1012. [Google Scholar] [CrossRef]
- Caminero, A.; Meisel, M.; Jabri, B.; Verdu, E.F. Mechanisms by which gut microorganisms influence food sensitivities. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 7–18. [Google Scholar] [CrossRef]
- Caminero, A.; Galipeau, H.J.; McCarville, J.L.; Johnston, C.W.; Bernier, S.P.; Russell, A.K.; Jury, J.; Herran, A.R.; Casqueiro, J.; Tye-Din, J.A.; et al. Duodenal Bacteria from Patients with Celiac Disease and Healthy Subjects Distinctly Affect Gluten Breakdown and Immunogenicity. Gastroenterology 2016, 151, 670–683. [Google Scholar] [CrossRef] [Green Version]
- Caminero, A.; Verdu, E.F. Metabolism of wheat proteins by intestinal microbes: Implications for wheat related disorders. Gastroenterol. Hepatol. 2019, 42, 449–457. [Google Scholar] [CrossRef]
- Costabile, A.; Klinder, A.; Fava, F.; Napolitano, A.; Fogliano, V.; Leonard, C.; Gibson, G.R.; Tuohy, K.M. Whole-grain wheatbreakfastcereal hasa prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossoverstudy. Br. J. Nutr. 2008, 99, 110–120. [Google Scholar] [CrossRef]
- Vitaglione, P.; Mennella, I.; Ferracane, R.; Rivellese, A.A.; Giacco, R.; Ercolini, D.; Gibbons, S.M.; La Storia, A.; Gilbert, J.A.; Jonnalagadda, S.; et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subject swith unhealthy dietaryand lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr. 2015, 101, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuholm, S.; Nielsen, D.S.; Iversen, K.; Suhr, J.; Westermann, P.; Krych, L.; Andersen, J.R.; Kristensen, M. Whole-grain rye and wheat affect some markers of gut health without altering the fecal microbiota in healthy overweight adults: A 6 week randomized trial. J. Nutr. 2017, 147, 2067–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koecher, K.J.; McKeown, N.M.; Sawicki, C.M.; Menon, R.S.; Slavin, J.L. Effect of whole-grain consumption on changes in fecal microbiota: A review of human intervention trials. Nutr. Rev. 2019, 77, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Taneyo Saa, D.; Turroni, S.; Serrazanetti, D.I.; Rampelli, S.; Maccaferri, S.; Candela, M.; Severgnini, M.; Simonetti, E.; Brigidi, P.; Gianotti, A. Impact of Kamut® Khorasan on gut microbiota and metabolome in healthy volunteers. Food Res. Int. 2014, 63, 227–232, doi101016/jfoodres201404005. [Google Scholar] [CrossRef]
- Marotti, I.; Bregola, V.; Aloisio, I.; Di Gioia, D.; Bosi, S.; Di Silvestro, R.; Quinn, R.; Dinelli, G. Prebiotic effect of soluble fibres from modern and old durum-type wheat varieties on Lactobacillus and Bifidobacterium strains. J. Sci. Food Agric. 2012, 92, 2133–2140. [Google Scholar] [CrossRef]
- Barone, F.; Laghi, L.; Gianotti, A.; Ventrella, D.; Saa, D.L.T.; Bordoni, A.; Forni, M.; Brigidi, P.; Bacci, M.L.; Turroni, S. In Vivo Effects of Einkorn Wheat (Triticum monococcum) Bread on the Intestinal Microbiota, Metabolome, and on the Glycemic and Insulinemic Response in the Pig Model. Nutrients 2018, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, A.; Dinu, M.; Cesari, F.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Casini, A.; Marcucci, R.; Benedettelli, S.; Sofi, F. A khorasan wheat based replacement diet improves risk profile of patients with type 2 diabetes mellitus (T2DM): A randomized crossover trial. Eur. J. Nutr. 2017, 56, 1191–1200. [Google Scholar] [CrossRef] [Green Version]
- Shannon, J.; King, I.B.; Moshofsky, R.; Lampe, J.W.; Gao, D.L.; Ray, R.M.; Thomas, D.B. Erythrocyte fatty acids and breast cancer risk: A case-control study in Shanghai, China. Am. J. Clin. Nutr. 2007, 85, 1090–1097. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. Omega-6/omega-3 essential fatty acids: Biological effects. World Rev. Nutr. Diet. 2009, 99, 1–16. [Google Scholar] [CrossRef]
- Kelavkar, U.; Hutzley, J.; Dhir, R.; Kim, P.; Allen, K.; McHugh, K. Prostate Tumor Growth and Recurrence Can Be Modulated by the ω-6:ω-3 Ratio in Diet: Athymic Mouse Xenograft Model Simulating Radical Prostatectomy. Neoplasia 2006, 8, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Fogacci, F.; Veronesi, M.; Grandi, E.; Dinelli, G.; Hrelia, S.; Borghi, C. Short-Term Hemodynamic Effects of Modern Wheat Products Substitution in Diet with Ancient Wheat Products: A Cross-Over, Randomized Clinical Trial. Nutrients 2018, 10, 1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Giangrandi, I.; Colombini, B.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Casini, A.; Benedettelli, S.; et al. A Khorasan Wheat-Based Replacement Diet Improves Risk Profile of Patients with Nonalcoholic Fatty Liver Disease (NAFLD): A Randomized Clinical Trial. J. Am. Coll. Nutr. 2018, 37, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofi, F.; Whittaker, A.; Gori, A.M.; Cesari, F.; Surrenti, E.; Abbate, R.; Gensini, G.F.; Benedettelli, S.; Casini, A. Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: A double-blinded randomised dietary intervention trial. Br. J. Nutr. 2014, 111, 1992–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanini, B.; Villanacci, V.; De Leo, L.; Lanzini, A. Triticum monococcum in patients with celiac disease: A phase II open study on safety of prolonged daily administration. Eur. J. Nutr. 2015, 54, 1027–1029. [Google Scholar] [CrossRef] [PubMed]
- Valli, V.; Taccari, A.; Di Nunzio, M.; Danesi, F.; Bordoni, A. Health benefits of ancient grains. Comparison among bread made with ancient, heritage and modern grain flours in human cultured cells. Food Res. Int. 2018, 107, 206–215. [Google Scholar] [CrossRef]
- Yenagi, N.B.; Hanchinal, R.R.; Patil, C.S.; Koppikar, V.; Halagi, M. Glycemic and lipidemic response to dicoccum wheat (Triticum dicoccum) in the diet of diabetic patients. Int. J. Diabetes Dev. Ctries. 2001, 21, 153–155. [Google Scholar]
- Bakhøj, S.; Flint, A.; Holst, J.J.; Tetens, I. Lower glucose-dependent insulinotropic polypeptide (GIP) response but similar glucagon-like peptide 1 (GLP-1), glycaemic, and insulinaemic response to ancient wheat compared to modern wheat depends on processing. Eur. J. Clin. Nutr. 2003, 57, 1254–1261. [Google Scholar] [CrossRef]
- Sofi, F.; Ghiselli, L.; Cesari, F.; Gori, A.M.; Mannini, L.; Casini, A.; Vazzana, C.; Vecchio, V.; Gensini, G.F.; Abbate, R.; et al. Effects of short-term consumption of bread obtained by an old Italian grain variety on lipid, inflammatory, and haemorheological variables: An intervention study. J. Med. Food 2010, 13, 615–620. [Google Scholar] [CrossRef]
- Armentia, A.; Martín, S.; Diaz-Perales, A.; Palacín, A.; Tordesillas, L.; Herrero, M.; Martín-Armentia, B. A possible hypoallergenic cereal in wheat food allergy and baker’s asthma. Am. J. Plant Sci. 2012, 3, 1779–1781. [Google Scholar] [CrossRef] [Green Version]
- Ghiselli, L.; Sofi, F.; Whittaker, A.; Gori, A.M.; Casini, A.; Abbate, R.; Gensini, G.F.; Dinelli, G.; Marotti, I.; Benedettelli, S. Effects of pasta consumption obtained by an old Italian durum wheat variety on cardiovascular parameters: An intervention study. Prog. Nutr. 2013, 15, 265–273. [Google Scholar]
- Zanini, B.; Petroboni, B.; Not, T.; Di Toro, N.; Villanacci, V.; Lanzarotto, F.; Pogna, N.; Ricci, C.; Lanzini, A. Search for atoxic cereals: A single blind, cross-over study on the safety of a single dose of Triticum monococcum, in patients with celiac disease. BMC Gastroenterol. 2013, 13, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inclusion Criteria | Experimental Design | No. of Subject Enrolled | Ancient/Heritage Wheat Varieties | Control Wheat | Duration of Intervention | Recorded Effects (Ancient/Heritage vs. Control) | Ref. |
---|---|---|---|---|---|---|---|
Type 2 Diabetes Mellitus. | Randomized, parallel groups. Enrolled patients were randomized to follow an ancient/heritage grain-based diet or a modern grain-based diet. | 22 (8 m, 14 f), age: 42–71 years. | Whole grain flour: Triticum dicoccum. | Whole grain flour: Triticum aestivum (modern). | 6 weeks. | Decreased blood total cholesterol, triglycerides, and LDL-cholesterol. | [86] |
Healthy subjects. | Open label. | 11 Men, mean age: 25 ± 2. | Triticum monococcum (Einkorn Bread). | Triticum aestivum (modern). | One single meal test. | Decreased Gastric Inhibitory Peptide (GIP) with einkorn bread. | [87] |
Healthy subjects. | Non-blinded, crossover. Enrolled patients were randomized to follow a heritage grain-based diet or a modern grain-based diet. | 20 (11 m, 9 f), median age 39.5 years. | Semi-Whole grain: Triticum aestivum Verna. | Semi-Whole grain: Triticum aestivum mixed modern varieties. | 10 weeks of diet intervention. | Decreased blood total cholesterol, LDL-cholesterol, IL-8, whole blood viscosity. | [88] |
Baker’s asthma or wheat allergy. | Interventional open label: Oral and bronchial challenges, prick test. | 66 (45 m, 21 f), mean age: 28.6 ± 12.9 years. | Triticum spelta grain extracts. | Triticum aestivum grain extract. | Immediate. | Decrease of wheal area and percentage of positive challenge tests. | [89] |
Healthy subjects. | Randomized, single blind, crossover. Enrolled patients switched from heritage grain-based diet to modern grain-based diet. | 22 (8 m, 14 f) mean age: 50.5 ± 11.8 Years. | Semi-Whole grain: Triticum turgidum. Khorasan. | Mix of semi-Whole grain: Triticum durum and Triticum Aestivum (modern). | 8 weeks diet intervention. | Decrease of blood total cholesterol, LDL-cholesterol, glucose, TNFα, IL-6, IL-12, and Vascular endothelial growth factor (VEGF). Increase: K+, Mg2+. | [24] |
Healthy subjects. | Randomized, single-blinded, crossover trial. Enrolled patients switched from heritage grain-based diet to modern grain-based diet. | 20 (11 m, 9 f), age: 21–61 years. Mean BMI: 26.1 ± 2.5 (m) 24.8 ± 4.9 (f) | Semi-whole grain: Triticum durum Senatore Cappelli. | Mixed modern semi-whole grain Triticum durum wheat varieties | 10 weeks diet intervention. | Decrease of total cholesterol, whole blood viscosity, and Red Blood Cell deformability. | [90] |
Celiac Disease (CD) patients. | Single blind, crossover trial. | 12 (4 m, 8 f) mean age: 44.5 ± 10 years. | Triticum monococcum. | Amygluten (pure gluten) and rice. | Administration of a single dose. | No significant conclusions. | [91] |
Irritable Bowel Syndrome (IBS) patients (Rome III Diagnostic Criteria). | Randomized, double-blinded, crossover trial. Enrolled patients switched from ancient/heritage grain-based diet to modern grain-based diet. | 20 (7 m, 13 f), median age 35.5 years. | Semi whole grain: Triticum turgidum Khorasan. | Modern Italian durum and soft wheat varieties. | 6 weeks diet intervention. | Decrease in the severity of IBS symptoms (abdominal pain, bloating, stool consistency, and tiredness). Decrease of IL-6, IL-17, Interferon gamma (IFN-γ), Monocyte chemoattractant protein 1 (MCP-1), VEGF. | [83] |
Healthy subjects. | Parallel arms. | 30 (4 m, 26 f), mean age: 37 ± 7 years. | Whole grain Triticum turgidum Khorasan. | whole grain: Triticum durum. | 3 months. | Increase of short chain fatty acids (SCFA), phenol compounds and an increase in health-promoting mutualists in the gut microbiota. | [74] |
Type 2 Diabetes Mellitus. | Randomized, double blind, crossover. Enrolled patients switched from ancient/heritage grain-based diet to modern grain-based diet. | 24 (14 m, 7 f), mean age 64.4 ± 10.9 years. | Semi-whole grain: Triticum turgidum Khorasan. | Mix of semi-whole grain: T. durum and T. aestivum (modern varieties). | 8 weeks diet intervention. | Decrease of blood total and LDL cholesterol, insulin and fasting glucose. Decreased levels of reactive oxygen species (ROS), VEGF, and IL-1ra. | [77] |
Acute Coronary Syndrome. | Randomized, double-blinded, crossover trial. Enrolled patients switched from heritage grain-based diet to modern grain-based diet. | 22 (13 m, 9 f), median age 61 years. | Semi whole grain: Triticum turgidum Khorasan. | Mix of semi-whole grain: T. durum and aestivum (modern). | 8 weeks diet intervention. | Decrease of blood total cholesterol, LDL-cholesterol, fasting glucose, insulin ROS, and TNF-α. | [25] |
Healthy young athletes. | Randomized, single-blind crossover trial. Enrolled patients switched from ancient/heritage grain-based diet to modern grain-based diet. | 20, men, median age 18.3 (15–25) years. | Semi whole grain: Triticum turgidum Khorasan. | Semi-whole grain: Triticum turgidum ssp. durum, Triticum aestivum (modern). | 4 weeks diet intervention. | Decrease of MCP–1 and improvement of self–rated health status. | [7] |
CD patients in remission and in GFD diet. | Phase II, open label. | 7 1 man, 6 women, median age 37 ± 7.3 years | Triticum monococcum. | None. | 60 days. | Increased villous atrophy and recurrence of dermatitis herpetiformis. | [84] |
Healthy subjects. | Randomized, double-blinded, crossover trial. Enrolled patients switched from heritage grain-based diet to modern grain-based diet. Three diet intervention studied: 1. Verna 2. Blasco 3. Gentil Rosso or Autonomia B. | 45 32 men, 13 women, median age 50.1 (25–75) years. | Triticum aestivum: Verna, Gentil Rosso, Autonomia B. | Triticum aestivum: Blasco (modern). | 8 weeks diet intervention. | Decrease of blood total cholesterol, LDL-cholesterol, and fasting glucose. | [26] |
Pre-hypertensive non diabetic adult volunteers with no metabolic, cardiovascular, gastrointestinal, nor endocrine major disorders. | Double-blind, randomized, feeding-controlled, crossover. Enrolled patients switched from heritage grain-based diet to modern grain-based diet. | 63 (30 m, 33 f), mean age 55.9 ± 6.8 years. | Triticum turgidum Khorasan. | Mix of T. durum varieties and T. aestivum (modern). | 4 weeks diet intervention. | Decrease of blood triglycerides, fasting glucose, systolic blood pressure, and rise of pulse volume change. | [81] |
Nonalcoholic Fatty Liver Disease (NAFLD)—mild to moderate liver steatosis—NO, excessive alcohol consumption, type 2 diabetes mellitus (T2DM), viral hepatitis, NASH, and chronic liver diseases. | Randomized, double-blinded trial with two parallel arms. Enrolled patients were randomized 1:1 to follow an heritage grain-based diet or a modern grain-based diet. | 40 (12 m, 28 f), mean age 55.2 ± 10.4 years. | Semi whole grain: Triticum turgidum Khorasan. | Mix of semi-whole grain: T. durum and T. aestivum (modern). | 3 months. | Decrease of alanine aminotransferase (ALT), aspartate aminotransferase (AST), TNF-a, IL-1ra, IL-8, and IFN-γ. | [82] |
Healthy subjects. | Randomized, non-blind, parallel arm study. Enrolled patients were randomized 1:1 to follow an ancient/heritage grain-based diet or a modern grain-based diet. | 30 median age 37 years. | Whole grain: Triticum turgidum Khorasan. | Mix of whole grain modern commercial Italian durum wheat. | 16 weeks. | Decrease of fat mass and blood insulin; increase of docosahexaenoic acid (DHA). | [38] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spisni, E.; Imbesi, V.; Giovanardi, E.; Petrocelli, G.; Alvisi, P.; Valerii, M.C. Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones. Nutrients 2019, 11, 2879. https://doi.org/10.3390/nu11122879
Spisni E, Imbesi V, Giovanardi E, Petrocelli G, Alvisi P, Valerii MC. Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones. Nutrients. 2019; 11(12):2879. https://doi.org/10.3390/nu11122879
Chicago/Turabian StyleSpisni, Enzo, Veronica Imbesi, Elisabetta Giovanardi, Giovannamaria Petrocelli, Patrizia Alvisi, and Maria Chiara Valerii. 2019. "Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones" Nutrients 11, no. 12: 2879. https://doi.org/10.3390/nu11122879