Plasma versus Erythrocyte Vitamin E in Renal Transplant Recipients, and Duality of Tocopherol Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection, and Clinical and Laboratory Measurements
2.2.1. Vitamin E in Plasma
2.2.2. Vitamin E in Erythrocytes
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Plasma and Erythrocyte α-Tocopherol, and Biological Parameters
3.3. Plasma and Erythrocyte γ-Tocopherol, and Biological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cristol, J.P.; Vela, C.; Maggi, M.F.; Descomps, B.; Mourad, G. Oxidative stress and lipid abnormalities in renal transplant recipients with or without chronic rejection. Transplantation 1998, 65, 1322–1328. [Google Scholar] [CrossRef]
- Briggs, J.D. Causes of death after renal transplantation. Nephrol. Dial. Transpl. 2001, 16, 1545–1549. [Google Scholar] [CrossRef]
- Pippias, M.; Jager, K.J.; Kramer, A.; Leivestad, T.; Benítez Sánchez, M.; Caskey, F.J.; Collart, F.; Couchoud, C.; Dekker, F.W.; Finne, P.; et al. The changing trends and outcomes in renal replacement therapy: Data from the ERA-EDTA Registry. Nephrol. Dial. Transpl. 2016, 31, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Au, E.H.; Chapman, J.R.; Craig, J.C.; Lim, W.H.; Teixeira-Pinto, A.; Ullah, S.; McDonald, S.; Wong, G. Overall and Site-Specific Cancer Mortality in Patients on Dialysis and after Kidney Transplant. J. Am. Soc. Nephrol. 2019, 30, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Lamb, K.E.; Lodhi, S.; Meier-Kriesche, H.U. Long-term renal allograft survival in the United States: A critical reappraisal. Am. J. Transpl. 2011, 11, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Quinn, P.J. Vitamin E and its function in membranes. Prog. Lipid Res. 1999, 38, 309–336. [Google Scholar] [CrossRef]
- Shi, H.; Noguchi, N.; Niki, E. Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation. Free Radic. Biol. Med. 1999, 27, 334–346. [Google Scholar] [CrossRef]
- Niki, E. Interaction of ascorbate and alpha-tocopherol. Ann. N. Y. Acad. Sci. 1987, 498, 186–199. [Google Scholar] [CrossRef]
- Golumbic, C.; Mattil, H.A. The antioxygenic action of ascorbic acid in association with tocopherols, hydroquinones and related compounds. J. Am. Chem. Soc. 1941, 63, 1279–1280. [Google Scholar] [CrossRef]
- Leung, H.W.; Vang, M.J.; Mavis, R.D. The cooperative interaction between vitamin E and vitamin C in suppression of peroxidation of membrane phospholipids. Biochim. Biophys. Acta 1981, 664, 266–272. [Google Scholar]
- Compounds, I. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000; ISBN 0309069491. [Google Scholar]
- Rubinstein, H.M.; Dietz, A.A.; Srinavasan, R. Relation of vitamin E and serum lipids. Clin. Chim. Acta 1969, 23, 1–6. [Google Scholar] [CrossRef]
- Thurnham, D.I.; Davies, J.A.; Crump, B.J.; Situnayake, R.D.; Davis, M. The Use of Different Lipids to Express Serum Tocopherol: Lipid Ratios for the Measurement of Vitamin E Status. Ann. Clin. Biochem. 1986, 23, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Eisenga, M.F.; Gomes-Neto, A.W.; Van Londen, M.; Ziengs, A.L.; Douwes, R.M.; Stam, S.P.; Osté, M.C.J.; Knobbe, T.J.; Hessels, N.R.; Buunk, A.M.; et al. Rationale and design of TransplantLines: A prospective cohort study and biobank of solid organ transplant recipients. BMJ Open 2018, 8, 24502. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Horwitt, M.K.; Harvey, C.C.; Dahm, C.H.; Searcy, M.T. Relationship Between Tocopherol and Serum Lipid Levels for Determination of Nutritional Adequacy. Ann. N. Y. Acad. Sci. 1972, 203, 223–236. [Google Scholar] [CrossRef]
- Borggreve, S.E.; Hillege, H.L.; Wolffenbuttel, B.H.R.; de Jong, P.E.; Bakker, S.J.L.; van der Steege, G.; van Tol, A.; Dullaart, R.P.F. The Effect of Cholesteryl Ester Transfer Protein −629C→A Promoter Polymorphism on High-Density Lipoprotein Cholesterol Is Dependent on Serum Triglycerides. J. Clin. Endocrinol. Metab. 2005, 90, 4198–4204. [Google Scholar] [CrossRef]
- Leberkühne, L.J.; Ebtehaj, S.; Dimova, L.G.; Dikkers, A.; Dullaart, R.P.F.; Bakker, S.J.L.; Tietge, U.J.F. The predictive value of the antioxidative function of HDL for cardiovascular disease and graft failure in renal transplant recipients. Atherosclerosis 2016, 249, 181–185. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Kieneker, L.M.; Bakker, S.J.L.; James, R.W.; Dullaart, R.P.F. The inverse association of HDL-cholesterol with future risk of hypertension is not modified by its antioxidant constituent, paraoxonase-1: The PREVEND prospective cohort study. Atherosclerosis 2017, 263, 219–226. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Kieneker, L.M.; Bakker, S.J.L.; James, R.W.; Dullaart, R.P.F. Incident type 2 diabetes is associated with HDL, but not with its anti-oxidant constituent—Paraoxonase-1: The prospective cohort PREVEND study. Metabolism 2017, 73, 43–51. [Google Scholar] [CrossRef]
- Annema, W.; Dikkers, A.; de Boer, J.F.; Dullaart, R.P.; Sanders, J.S.; Bakker, S.J.; Tietge, U.J. HDL Cholesterol Efflux Predicts Graft Failure in Renal Transplant Recipients. J. Am. Soc. Nephrol. 2016, 27, 595–603. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; Eisenga, M.F.; Gomes-Neto, A.W.; Ozyilmaz, A.; Gans, R.O.B.; Jong, W.H.A.; Zelle, D.M.; Berger, S.P.; Gaillard, C.A.J.M.; Navis, G.J.; et al. Vitamin C Depletion and All-Cause Mortality in Renal Transplant Recipients. Nutrients 2017, 9, 568. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.M.; De Roos, A.J.; Renner, J.B.; Luta, G.; Cohen, A.; Craft, N.; Helmick, C.G.; Hochberg, M.C.; Arab, L. A case-control study of serum tocopherol levels and the alpha- to gamma-tocopherol ratio in radiographic knee osteoarthritis: The Johnston County Osteoarthritis Project. Am. J. Epidemiol. 2004, 159, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Berdnikovs, S.; Abdala-Valencia, H.; Mccary, C.; Somand, M.; Cole, R.; Garcia, A.; Bryce, P.; Cook-Mills, J.M. Isoforms of Vitamin E Have Opposing Immunoregulatory Functions during Inflammation by Regulating Leukocyte Recruitment 1. J. Immunol. 2009, 182, 4395–4405. [Google Scholar] [CrossRef] [PubMed]
- Cooney, R.V.; Franke, A.A.; Wilkens, L.R.; Gill, J.; Kolonel, L.N. Elevated plasma gamma-tocopherol and decreased alpha-tocopherol in men are associated with inflammatory markers and decreased plasma 25-OH vitamin D. Nutr. Cancer 2008, 60 (Suppl. 1), 21–29. [Google Scholar] [CrossRef] [PubMed]
- McCary, C.A.; Abdala-Valencia, H.; Berdnikovs, S.; Cook-Mills, J.M. Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation: Reversibility of α-tocopherol and γ-tocopherol’s effects. J. Immunol. 2011, 186, 3674–3685. [Google Scholar] [CrossRef]
- Marchese, M.E.; Kumar, R.; Colangelo, L.A.; Avila, P.C.; Jacobs, D.R.; Gross, M.; Sood, A.; Liu, K.; Cook-Mills, J.M. The vitamin E isoforms α-tocopherol and γ-tocopherol have opposite associations with spirometric parameters: The CARDIA study. Respir. Res. 2014, 15, 31. [Google Scholar] [CrossRef]
- Tucker, L.A. Alpha- and Gamma-Tocopherol and Telomere Length in 5768 US Men and Women: A NHANES Study. Nutrients 2017, 9, 601. [Google Scholar] [CrossRef]
- Shamim, A.A.; Kabir, A.; Merrill, R.D.; Ali, H.; Rashid, M.; Schulze, K.; Labrique, A.; West, K.P.; Christian, P. Plasma zinc, vitamin B(12) and α-tocopherol are positively and plasma γ-tocopherol is negatively associated with Hb concentration in early pregnancy in north-west Bangladesh. Public Health Nutr. 2013, 16, 1354–1361. [Google Scholar] [CrossRef]
- Cook-Mills, J.M.; Marchese, M.E.; Abdala-Valencia, H. Vascular cell adhesion molecule-1 expression and signaling during disease: Regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal. 2011, 15, 1607–1638. [Google Scholar] [CrossRef]
- McCary, C.A.; Yoon, Y.; Panagabko, C.; Cho, W.; Atkinson, J.; Cook-Mills, J.M. Vitamin E isoforms directly bind PKCα and differentially regulate activation of PKCα. Biochem. J. 2012, 441, 189–198. [Google Scholar] [CrossRef]
- Abdala-Valencia, H.; Berdnikovs, S.; Cook-Mills, J.M. Vitamin E isoforms differentially regulate intercellular adhesion molecule-1 activation of PKCα in human microvascular endothelial cells. PLoS ONE 2012, 7, e41054. [Google Scholar] [CrossRef] [PubMed]
- So, A.; Thorens, B. Uric acid transport and disease. J. Clin. Investig. 2010, 120, 1791–1799. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zavaroni, I.; Mazza, S.; Fantuzzi, M.; Dall’Aglio, E.; Bonora, E.; Delsignore, R.; Passeri, M.; Reaven, G.M. Changes in insulin and lipid metabolism in males with asymptomatic hyperuricaemia. J. Intern. Med. 1993, 234, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, M.; Chiba, H.; Maruoka, S.; Katayose, S. Elevated serum leptin concentrations in women with hyperuricemia. J. Atheroscler. Thromb. 2002, 9, 28–34. [Google Scholar] [CrossRef][Green Version]
- Masuo, K.; Kawaguchi, H.; Mikami, H.; Ogihara, T.; Tuck, M.L. Serum Uric Acid and Plasma Norepinephrine Concentrations Predict Subsequent Weight Gain and Blood Pressure Elevation. Hypertension 2003, 42, 474–480. [Google Scholar] [CrossRef]
- Johnson, R.J.; Kang, D.-H.; Feig, D.; Kivlighn, S.; Kanellis, J.; Watanabe, S.; Tuttle, K.R.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Mazzali, M. Is There a Pathogenetic Role for Uric Acid in Hypertension and Cardiovascular and Renal Disease? Hypertension 2003, 41, 1183–1190. [Google Scholar] [CrossRef][Green Version]
- Nakanishi, N.; Okamoto, M.; Yoshida, H.; Matsuo, Y.; Suzuki, K.; Tatara, K. Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur. J. Epidemiol. 2003, 18, 523–530. [Google Scholar] [CrossRef]
- Ogura, T.; Matsuura, K.; Matsumoto, Y.; Mimura, Y.; Kishida, M.; Otsuka, F.; Tobe, K. Recent trends of hyperuricemia and obesity in Japanese male adolescents, 1991 through 2002. Metabolism 2004, 53, 448–453. [Google Scholar] [CrossRef]
- Alper, A.B.; Chen, W.; Yau, L.; Srinivasan, S.R.; Hamm, L.L.; Berenson, G.S.; Hamm, L.L. Childhood Uric Acid Predicts Adult Blood Pressure. Hypertension 2005, 45, 34–38. [Google Scholar] [CrossRef][Green Version]
- Johnson, R.J.; Segal, M.S.; Srinivas, T.; Ejaz, A.; Mu, W.; Roncal, C.; Sánchez-Lozada, L.G.; Gersch, M.; Rodriguez-Iturbe, B.; Kang, D.H.; et al. Essential Hypertension, Progressive Renal Disease, and Uric Acid: A Pathogenetic Link? J. Am. Soc. Nephrol. 2005, 16, 1909–1919. [Google Scholar] [CrossRef][Green Version]
- Schultz, M.; Leist, M.; Petrzika, M.; Gassmann, B.; Brigelius-Flohé, R. Novel urinary metabolite of alpha-tocopherol, 2,5,7,8-tetramethyl-2(2′-carboxyethyl)-6-hydroxychroman, as an indicator of an adequate vitamin E supply? Am. J. Clin. Nutr. 1995, 62, 1527S–1534S. [Google Scholar] [CrossRef] [PubMed]
Plasma α-tocopherol | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
Total cholesterol | 0.68 *** | — | 0.53 *** | — | 0.49 *** | — | — |
HDL cholesterol | — | — | — | — | 0.10 | 0.29 *** | 0.32 *** |
Non-HDL cholesterol | — | — | — | — | — | — | 0.49 *** |
LDL cholesterol | — | — | — | — | — | 0.41 *** | — |
Triglycerides | — | 0.61 *** | 0.43 *** | — | 0.48 *** | 0.59 *** | 0.48 *** |
Total lipids | — | — | — | 0.77 *** | — | — | — |
R2 | 0.46 | 0.37 | 0.62 | 0.60 | 0.63 | 0.60 | 0.63 |
Erythrocytes α-tocopherol | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
Total cholesterol | 0.08 | — | 0.15 | — | 0.06 | — | — |
HDL cholesterol | — | — | — | — | 0.21 | 0.24 * | 0.24 * |
Non-HDL cholesterol | — | — | — | — | — | — | 0.06 |
LDL cholesterol | — | — | — | — | — | 0.05 | — |
Triglycerides | — | −0.17 | −0.22 * | — | −0.13 | −0.11 | −0.13 |
Total lipids | — | — | — | −0.08 | — | — | — |
R2 | 0.01 | 0.03 | 0.05 | 0.01 | 0.08 | 0.08 | 0.08 |
Plasma γ-tocopherol | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
Total cholesterol | 0.20 * | — | 0.08 | — | 0.10 | — | — |
HDL cholesterol | — | — | — | — | –0.05 | –0.01 | <0.001 |
Non-HDL cholesterol | — | — | — | — | — | — | 0.10 |
LDL cholesterol | — | — | — | — | — | 0.05 | — |
Triglycerides | — | 0.39 | 0.37 *** | — | 0.35 ** | 0.38 *** | 0.35 ** |
Total lipids | — | — | — | 0.42 *** | — | — | — |
R2 | 0.04 | 0.16 | 0.16 | 0.18 | 0.16 | 0.16 | 0.16 |
Erythrocytes γ-tocopherol | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
Total cholesterol | 0.06 | — | 0.05 | — | 0.09 | — | — |
HDL cholesterol | — | — | — | — | –0.10 | –0.07 | –0.06 |
Non-HDL cholesterol | — | — | — | — | — | — | 0.09 |
LDL cholesterol | — | — | — | — | — | 0.08 | — |
Triglycerides | — | 0.05 | 0.04 | — | −0.01 | 0.01 | –0.01 |
Total lipids | — | — | — | 0.09 | — | — | — |
R2 | 0.004 | 0.003 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Baseline Characteristics | Overall RTR (n = 113) | α-tocopherol | |||
---|---|---|---|---|---|
Plasma | Erythrocyte | ||||
Standardization | Standardization | ||||
None | Lipids | None | Lipids | ||
Plasma α-tocopherol, mg/dL, mean (SD) | 1.4(0.3) | — | — | — | — |
Quotient plasma α-tocopherol (mg/dL)/total lipids (g/dL), mean (SD) | 4.2(0.7) | — | — | — | — |
Erythrocyte α-tocopherol, mg/1013 erythrocytes, mean (SD) a | 0.27(0.07) | — | — | — | — |
Quotient erythrocyte α-tocopherol (mg/1013 erythrocytes)/total lipids (g/dL), median (IQR) a | 0.79(0.61–1.04) | — | — | — | — |
Demographics and anthropometrics | |||||
Age, years, mean (SD) † | 55(14) | 0.20 * | 0.20 * | 0.12 | 0.05 |
Gender, male, n (%) † | 68(60) | 0.15 | 0.19 * | 0.13 | 0.08 |
Ethnicity, Caucasian, n (%) b | 86(76) | −0.13 | 0.13 | 0.10 | 0.19 |
Body mass index, kg/m2, median (IQR) c | 25.9(24.2–29.3) | 0.04 | −0.17 | −0.10 | −0.17 |
Systolic blood pressure, mmHg, mean (SD) c | 140(19) | 0.06 | 0.04 | 0.003 | −0.01 |
Diastolic blood pressure, mmHg, mean (SD) c | 81(15) | 0.002 | −0.06 | −0.17 | −0.13 |
Diabetes mellitus, n (%) d | 31(27) | 0.01 | −0.04 | 0.08 | −0.01 |
Current smoker, n (%) e | 5(4) | −0.04 | 0.01 | −0.01 | 0.02 |
Allograft function and transplantation | |||||
Creatinine, mg/dL, mean (SD) | 1.5(0.4) | 0.09 | −0.04 | 0.01 | −0.05 |
eGFR, mL/min/1.73 m2, mean (SD) | 51(16) | −0.11 | 0.001 | −0.08 | 0.01 |
Dialysis vintage d | |||||
<1 year, n (%) | 62(56) | — | — | — | — |
1–5 years, n (%) | 37(33) | −0.13 | −0.13 | −0.16 | −0.06 |
>5 years, n (%) | 11(10) | 0.17 | 0.06 | 0.01 | −0.06 |
Time since transplantation, years, median (IQR) f | 1(1–10) | 0.20* | 0.07 | 0.02 | −0.08 |
Lipids | |||||
Total cholesterol, mg/dL, mean (SD) | 181(38) | 0.66 *** | −0.14 | 0.06 | −0.46 *** |
Non-HDL cholesterol, mg/dL, mean (SD) | 127(37) | 0.67 *** | −0.24 ** | −0.03 | −0.54 *** |
LDL cholesterol, mg/dL, mean (SD) | 110(35) | 0.57 *** | −0.13 | 0.01 | −0.41 *** |
Triglycerides, mg/dL, median (IQR) | 151(101–197) | 0.61 *** | −0.59 *** | −0.17 | −0.74 *** |
Total lipid, mg/dL, median (IQR) | 334(272–397) | 0.76 *** | −0.51 *** | −0.08 | −0.76 *** |
Antioxidants, pro-oxidants, and inflammation | |||||
HDL cholesterol, mg/dL, median (IQR) | 50(41–64) | −0.01 | 0.25 * | 0.24* | 0.21 |
γ-Glutamyltransferase, U/L, median (IQR) | 30(19–42) | 0.05 | −0.05 | −0.06 | −0.10 |
Uric acid, mg/dL, mean (SD) | 6.4(1.6) | 0.20 | −0.26 ** | −0.18 | −0.35 *** |
Vitamin C, mg/dL, median (IQR) g | 0.7(0.4–0.9) | 0.10 | 0.22 * | 0.23* | 0.23 * |
hs-CRP, mg/L, median (IQR) h | 3.0(1.3–7.0) | −0.11 | 0.09 | −0.08 | 0.06 |
Glucose homeostasis | |||||
Glucose, mg/dL, median (IQR) | 99(90–114) | 0.13 | −0.21 * | −0.04 | −0.31 * |
HbA1C, %, median (IQR) | 5.8(5.4–6.5) | 0.09 | 0.09 | 0.02 | −0.03 |
Baseline Characteristics | Overall RTR (n = 113) | γ-tocopherol | |||
---|---|---|---|---|---|
Plasma | Erythrocyte | ||||
Standardization | Standardization | ||||
None | Lipids | None | Lipids | ||
Plasma γ-tocopherol, mg/dL, mean (SD) a | 0.07(0.03) | — | — | — | — |
Quotient plasma γ-tocopherol (mg/dL)/total lipids (g/dL), mean (SD) a | 0.22(0.08) | — | — | — | — |
Erythrocyte α-tocopherol, mg/1013 erythrocyte, median (IQR) b | 0.02(0.01) | — | — | — | — |
Quotient erythrocyte α-tocopherol (mg/1013 erythrocyte)/total lipids (g/dL), median (IQR) b | 0.06(0.03) | — | — | — | — |
Demographics and anthropometrics | |||||
Age, years, mean (SD) † | 55(14) | −0.10 | −0.09 | −0.14 | −0.16 |
Gender, male, n (%) † | 68(60) | 0.13 | 0.10 | 0.08 | 0.06 |
Ethnicity, Caucasian, n (%) c | 86(76) | −0.03 | 0.16 | 0.16 | 0.27 |
Body mass index, kg/m2, median (IQR) a | 25.9(24.2–29.3) | 0.29 ** | 0.16 | 0.07 | −0.07 |
Systolic blood pressure, mmHg, mean (SD) a | 140(19) | −0.09 | −0.11 | −0.12 | −0.12 |
Diastolic blood pressure, mmHg, mean (SD) a | 81(15) | 0.11 | 0.03 | −0.09 | −0.14 |
Diabetes mellitus, n (%) d | 31(27) | 0.17 | 0.09 | 0.11 | 0.04 |
Current smoker, n (%) e | 5(4) | 0.05 | 0.13 | 0.10 | 0.09 |
Allograft function and transplantation | |||||
Creatinine, mg/dL, mean (SD) | 1.5(0.4) | –0.05 | –0.17 | –0.05 | –0.40 |
eGFR, mL/min/1.73 m2, mean (SD) | 51(16) | 0.07 | 0.18 | 0.03 | 0.08 |
Dialysis vintage d | |||||
<1 year, n (%) | 62(56) | — | — | — | — |
1–5 years, n (%) | 37(33) | 0.10 | 0.12 | 0.002 | 0.03 |
>5 years, n (%) | 11(10) | −0.10 | −0.15 | −0.02 | −0.07 |
Time since transplantation, years, median (IQR) b | 1(1–10) | 0.08 | −0.02 | 0.02 | −0.04 |
Lipids | |||||
Total cholesterol, mg/dL, mean (SD) | 181(38) | 0.19 * | −0.23 * | 0.07 | −0.29 ** |
Non-HDL cholesterol, mg/dL, mean (SD) | 127(37) | 0.28 ** | −0.21 * | 0.12 | −0.29 ** |
LDL cholesterol, mg/dL, mean (SD) | 110(35) | 0.16 | −0.21 * | 0.10 | −0.21 * |
Triglycerides, mg/dL, median (IQR) | 151(101–197) | 0.40 *** | −0.22 * | 0.06 | −0.44 *** |
Total lipid, mg/dL, median (IQR) | 334(272–397) | 0.42 *** | −0.2 5** | 0.10 | −0.45 *** |
Antioxidants, pro-oxidants, and inflammation | |||||
HDL cholesterol, mg/dL, median (IQR) | 50(41–64) | −0.20 * | −0.07 | −0.12 | −0.02 |
γ-Glutamyltransferase, U/L, median (IQR) | 30(19–42) | 0.05 | −0.003 | −0.03 | −0.03 |
Uric acid, mg/dL, mean (SD) | 6.4(1.6) | 0.10 | −0.16 | −0.04 | −0.18 |
Vitamin C, mg/dL, median (IQR) f | 0.7(0.4–0.9) | −0.17 | −0.05 | 0.03 | 0.12 |
hs-CRP, mg/L, median (IQR) g | 3.0(1.3–7.0) | 0.14 | 0.23 * | 0.24 * | 0.20 * |
Glucose homeostasis | |||||
Glucose, mg/dL, median (IQR) | 99(90–114) | 0.21 * | 0.01 | 0.13 | −0.05 |
HbA1C, %, median (IQR) | 5.8(5.4–6.5) | 0.11 | 0.07 | −0.001 | −0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotomayor, C.G.; Rodrigo, R.; Gomes-Neto, A.W.; Gormaz, J.G.; Pol, R.A.; Minović, I.; Eggersdorfer, M.L.; Vos, M.; Riphagen, I.J.; de Borst, M.H.; Nolte, I.M.; Berger, S.P.; Navis, G.J.; Bakker, S.J.L. Plasma versus Erythrocyte Vitamin E in Renal Transplant Recipients, and Duality of Tocopherol Species. Nutrients 2019, 11, 2821. https://doi.org/10.3390/nu11112821
Sotomayor CG, Rodrigo R, Gomes-Neto AW, Gormaz JG, Pol RA, Minović I, Eggersdorfer ML, Vos M, Riphagen IJ, de Borst MH, Nolte IM, Berger SP, Navis GJ, Bakker SJL. Plasma versus Erythrocyte Vitamin E in Renal Transplant Recipients, and Duality of Tocopherol Species. Nutrients. 2019; 11(11):2821. https://doi.org/10.3390/nu11112821
Chicago/Turabian StyleSotomayor, Camilo G., Ramón Rodrigo, António W. Gomes-Neto, Juan Guillermo Gormaz, Robert A. Pol, Isidor Minović, Manfred L. Eggersdorfer, Michel Vos, Ineke J. Riphagen, Martin H. de Borst, Ilja M. Nolte, Stefan P. Berger, Gerjan J. Navis, and Stephan J. L. Bakker. 2019. "Plasma versus Erythrocyte Vitamin E in Renal Transplant Recipients, and Duality of Tocopherol Species" Nutrients 11, no. 11: 2821. https://doi.org/10.3390/nu11112821