Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients
Abstract
:1. Introduction
2. Cholesterol Disturbances in CKD
2.1. Cholesterol Disturbances in CKD Stage 2–3a, 3b, and 4
2.2. Cholesterol Disturbances in ESRD (5ND)
2.3. Cholesterol Disturbances in Dialyzed Patients
2.3.1. Hemodialysis
2.3.2. Peritoneal Dialysis (PD)
2.4. Cholesterol Disturbances in Transplant Patients
3. Risk Associated with Bad Cholesterol Profile and Benefits Associated with Lipid Lowering in CKD Patients
3.1. Children/Adolescent Population
3.2. Adult Population
4. Guidelines and Recommendations Concerning Lipid Levels and Therapeutic Lifestyle Change (Including Diet) in CKD Patients
5. Diets Helping to Lower Cholesterol Level
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smajić, J.; Hasić, S.; Rašić, S. High-density lipoprotein cholesterol, apolipoprotein E and atherogenic index of plasma are associated with risk of chronic kidney disease. Med. Glas. (Zenica) 2018, 15, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Parmar, J.A.; Joshi, A.G.; Chakrabarti, M. Dyslipidemia and chronic kidney disease. ISRJ 2014, 3, 396–397. [Google Scholar] [CrossRef]
- Mekki, K.; Bouzidi-Bekada, N.; Kaddousb, A.; Bouchenak, M. Mediterranean diet improves dyslipidemia and biomarkers in chronic renal failure patients. Food Funct. 2010, 1, 110–115. [Google Scholar] [CrossRef]
- Filiopoulos, V.; Hadjiyannakos, D.; Takouli, L.; Metaxaki, P.; Sideris, V.; Vlassopoulos, D. Inflammation and oxidative stress in dialysis patients: The impact of renal replacement treatment. Int. J. Artif. Organs 2009, 32, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Vaid, M. Dyslipidemia in chronic kidney disease: Managing a high-risk combination. Postgrad. Med. 2009, 121, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Tziomalos, K.; Ganotakis, E.S.; Gazi, I.F.; Nair, D.R.; Mikhailidis, D.P. Kidney function and estimated vascular risk in patients with primary dyslipidemia. Open Cardiovasc. Med. J. 2009, 16, 57–68. [Google Scholar] [CrossRef]
- Bulbul, M.C.; Dagel, T.; Afsar, B.; Ulusu, N.N.; Kuwabara, M.; Covic, A.; Kanbay, M. Disorders of lipid metabolism in chronic kidney disease. Blood Purif. 2018, 46, 44–152. [Google Scholar] [CrossRef]
- Tsimihodimos, V.; Mitrogianni, Z.; Elisaf, M. Dyslipidemia associated with chronic kidney disease. Open Cardiovasc. Med. J. 2011, 5, 41–48. [Google Scholar] [CrossRef]
- Kanbay, M.; Yildirir, A.; Bozbas, H.; Ulus, T.; Ulus, T.; Bilgi, M.; Muderrisoglu, H.; Akcay, A.; Ozdemir, F.N. Statin therapy helps to control blood pressure levels in hypertensive dyslipidemic patients. Ren. Fail. 2005, 27, 297–303. [Google Scholar] [CrossRef]
- Kanbay, M.; Turgut, F.; Covic, A.; Goldsmith, D. Statin treatment for dyslipidemia in chronic kidney disease and renal transplantation: A review of the evidence. J. Nephrol. 2009, 22, 598–609. [Google Scholar]
- Fliser, D.; Pacini, G.; Engelleiter, R.; Kautzky-Willer, A.; Prager, R.; Franek, E.; Ritz, E. Insulin resistance and hyperinsulinemia are already present in patients with incipient renal disease. Kidney Int. 1998, 53, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Sechi, L.A.; Catena, C.; Zingaro, L.; Melis, A.; De Marchi, S. Abnormalities of glucose metabolism in patients with early renal failure. Diabetes 2002, 51, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, J.A.; Kriketos, A.D.; Jones, J.E.; Erlich, J.H.; Campbell, L.V.; Peake, P.W. Insulin resistance and postprandial triglyceride levels in primary renal disease. Metabolism 2005, 54, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Saland, J.M.; Ginsberg, H.N. Lipoprotein metabolism in chronic renal insufficiency. Pediatr. Nephrol. 2007, 22, 1095–1112. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Moradi, H. Mechanisms of dyslipidemia of chronic renal failure. Hemodial. Int. 2006, 10, 1–7. [Google Scholar] [CrossRef]
- Kwan, B.C.; Kronenberg, F.; Beddhu, S.; Cheung, A.K. Lipoprotein metabolism and lipid management in chronic kidney disease. J. Am. Soc. Nephrol. 2007, 18, 1246–1261. [Google Scholar] [CrossRef]
- Attman, P.O.; Samuelsson, O. Dyslipidemia of kidney disease. Curr. Opin. Lipidol. 2009, 20, 293–299. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Liang, K. Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996, 50, 1928–1935. [Google Scholar] [CrossRef]
- Nitta, K. Clinical assessment and management of dyslipidemia in patients with chronic kidney disease. Clin. Exp. Nephrol. 2012, 16, 522–529. [Google Scholar] [CrossRef]
- Vaziri, N.D. Causes of dysregulation of lipid metabolism in chronic renal failure. Semin. Dial. 2009, 22, 644–651. [Google Scholar] [CrossRef]
- Kim, C.; Vaziri, N.D. Down-regulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 2005, 67, 1028–1032. [Google Scholar] [CrossRef] [PubMed]
- Joven, J.; Vilella, E.; Ahmad, S.; Cheung, M.C.; Brunzell, J.D. Lipoprotein heterogeneity in end-stage renal disease. Kidney Int. 1993, 43, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Akmal, M.; Kasim, S.E.; Soliman, A.R.; Massary, S.G. Excess parathyroid hormone adversely affects lipid metabolism in chronic renal failure. Kidney Int. 1990, 37, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.T.; Dogra, G.K.; Irish, A.B.; Ooi, E.M.; Barrett, P.H.; Chan, D.C.; Watts, G.F. Chronic kidney disease delays VLDL-apoB-100 particle catabolism: Potential role of apolipoprotein C-III. J. Lipid Res. 2009, 50, 2524–2531. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Sakaue, T.; Misaki, A.; Murayama, S.; Takahashi, T.; Okada, K.; Takeuchi, H.; Yoshino, G.; Adachi, M. Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: Comparison with apoprotein CIII. Kidney Int. 2003, 63, 2171–2177. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Wang, X.Q.; Liang, K. Secondary hyperparathyroidism downregulates lipoprotein lipase expression in chronic renal failure. Am. J. Physiol. 1997, 273, F925–F930. [Google Scholar] [CrossRef]
- Prinsen, B.H.; de Sain-van der Velden, M.G.; de Koning, E.J.; Koomans, H.A.; Berger, R.; Rabelink, T.J. Hypertriglyceridemia in patients with chronic renal failure: Possible mechanisms. Kidney Int. Suppl. 2003, 84, S121–S124. [Google Scholar] [CrossRef]
- Junyent, M.; Martínez, M.; Borràs, M.; Coll, B.; Valdivielso, J.M.; Vidal, T.; Sarró, F.; Roig, J.; Craver, L.; Fernández, E. Predicting cardiovascular disease morbidity and mortality in chronic kidney disease in Spain. The rationale and design of NEFRONA: A prospective, multicenter, observational cohort study. BMC Nephrol. 2010, 11, 14. [Google Scholar] [CrossRef]
- Klin, M.; Smogorzewski, M.; Ni, Z.; Zhang, G.; Massry, S.G. Abnormalities in hepatic lipase in chronic renal failure: Role of excess parathyroid hormone. J. Clin. Investig. 1996, 97, 2167–2173. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Liang, K. Down-regulation of VLDL receptor expression in chronic experimental renal failure. Kidney Int. 1997, 51, 913–919. [Google Scholar] [CrossRef]
- Liang, K.; Oveisi, F.; Vaziri, N.D. Role of secondary hyperparathyroidism in the genesis of hypertriglyceridemia and VLDL receptor deficiency in chronic renal failure. Kidney Int. 1998, 53, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in patients with chronic kidney disease: Etiology and management. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, H.; Vaziri, N.D. Lipid Disorders Associated with Chronic Kidney Disease and Nephrotic Syndrome in Endocrine Disorders in Kidney Disease: Diagnosis and Treatment; Rhee, C.M., Kalantar-Zadeh, K., Brent, G.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Nam, K.H.; Chang, T.I.; Joo, Y.S.; Kim, J.; Lee, S.; Lee, C.; Yun, H.R.; Park, J.T.; Yoo, T.H.; Sung, S.A.; et al. Association between serum high-density lipoprotein cholesterol levels and progression of chronic kidney disease: Results from the KNOW-CKD. J. Am. Heart Assoc. 2019, 8, e011162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarnieri, G.F.; Moracchiello, M.; Campanacci, L.; Ursini, F.; Ferri, L.; Valente, M.; Gregolin, C. Lecithin-cholesterol acyltransferase (LCAT) activity in chronic uremia. Kidney Int. Suppl. 1978, 8, S26–S30. [Google Scholar]
- Vaziri, N.D.; Liang, K.; Parks, J.S. Down-regulation of hepatic lecithin:cholesterol acyltransferase gene expression in chronic renal failure. Kidney Int. 2001, 59, 2192–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, H.; Pahl, M.V.; Elahimehr, R.; Vaziri, N.D. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl. Res. 2009, 153, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Barter, P.J.; Hopkins, C.J.; Calvert, G.D. Transfers and exchanges of esterified cholesterol between plasma lipoproteins. Biochem. J. 1982, 208, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Barter, P.J.; Brewer, H.B., Jr.; Chapman, M.J.; Hennekens, C.H.; Rader, D.J.; Tall, A.R. Cholesteryl ester transfer protein. A novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 160–167. [Google Scholar] [CrossRef]
- Guerin, M.; Le Goff, W.; Lassel, T.S.; Van Tol, A.; Steiner, G.; Chapman, M.J. Atherogenic role of elevated CE transfer from HDL to VLDL (1) and dense LDL in type 2 diabetes: Impact of the degree of hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D. Dyslipidemia of chronic renal failure: The nature, mechanisms and potential consequences. Am. J. Physiol. Renal Physiol. 2006, 290, 262–272. [Google Scholar] [CrossRef]
- Deighan, C.J.; Caslake, M.J.; McConnell, M.; Boulton-Jones, J.M.; Packard, C.J. Atherogenic lipoprotein phenotype in end-stage renal failure: Origin and extent of small dense low-density lipoprotein formation. Am. J. Kidney Dis. 2000, 35, 852–862. [Google Scholar] [CrossRef]
- Zhao, Y.; Marcel, Y.L. Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins. Biochemistry 1996, 35, 7174–7180. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Nishizawa, Y.; Nishitani, H.; Yamakawa, M.; Morii, H. Impaired metabolism of high density lipoprotein in uremic patients. Kidney Int. 1992, 41, 1653–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rye, K.A. Biomarkers associated with high-density lipoproteins in atherosclerotic kidney disease. Clin. Exp. Nephrol. 2013, 18, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Attman, P.O.; Samuelsson, O.; Johansson, A.C.; Moberly, J.B.; Alaupovic, P. Dyslipidemias. Dialysis modalities and dyslipidemia. Kidney Int. 2003, 63 (Suppl. 84), S110–S112. [Google Scholar] [CrossRef] [Green Version]
- Attman, P.-O.; Samuelsson, O.; Moberly, J.; Johansson, A.C.; Ljungman, S.; Weiss, L.G.; Knight-Gibson, C.; Alaupovic, P. Apolipoprotein B-containing lipoproteins in renal failure: The relation to mode of dialysis. Kidney Int. 1999, 55, 1536–1542. [Google Scholar] [CrossRef] [Green Version]
- Ottosson, P.; Attman, P.-O.; Knight-Gibson, C.; Samuelsson, O.; Weiss, L.; Alaupovic, P. Do high-flux dialysis membranes affect renal dyslipidemia? ASAIO 2001, 47, 229–234. [Google Scholar] [CrossRef]
- Maheshwari, N.; Ansari, M.R.; Laghari, M.S.; Darshana; Lal, K.; Ahmed, K. Pattern of lipid profile in patients on maintenance hemodialysis. Saudi J. Kidney Dis. Transpl. 2010, 21, 565–570. [Google Scholar]
- Shoji, T.; Nishizawa, Y.; Kawagishi, T.; Tanaka, M.; Kawasaki, K.; Tabata, T.; Inoue, T.; Morii, H. Atherogenic lipoprotein changes in the absence of hyperlipidemia in patients with chronic renal failure treated by hemodialysis. Atherosclerosis 1997, 131, 229–236. [Google Scholar] [CrossRef]
- Lee, D.M.; Knight-Gibson, C.; Samuelsson, O.; Attman, P.O.; Wang, C.S.; Alaupovic, P. Lipoprotein particle abnormalities and the impaired lipolysis in renal insufficiency. Kidney Int. 2002, 61, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Kimura, H.; Miyazaki, R.; Suzuki, S.; Gejyo, F.; Yoshida, H. Cholesteryl ester transfer protein as a protective factor against vascular disease in hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Pahl, M.V.; Ni, Z.; Sepassi, L.; Moradi, H.; Vaziri, N.D. Plasma phospholipid transfer protein, cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase in end-stage renal disease (ESRD). Nephrol. Dial. Transplant. 2009, 24, 2541–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vuono, S.; Ricci, M.A.; Mannarino, M.R.; Lupattelli, G. Dyslipidemias and chronic kidney disease: A focus on pathogenesis and treatment. Clin. Lipid 2014, 9, 673–681. [Google Scholar] [CrossRef]
- Ansell, B.J.; Navab, M.; Hama, S.; Kamranpour, N.; Fonarow, G.; Hough, G.; Rahmani, S.; Mottahedeh, R.; Dave, R.; Reddy, S.T.; et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003, 108, 2751–2756. [Google Scholar] [CrossRef]
- Yamamoto, S.; Yancey, P.G.; Ikizler, T.A.; Jerome, W.G.; Kaseda, R.; Cox, B.; Bian, A.; Shintani, A.; Fogo, A.B.; Linton, M.F.; et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J. Am. Coll. Cardiol. 2012, 60, 2372–2379. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, S.; Faria Mdo, S.; Silva, G.; Nascimento, H.; Rocha-Pereira, P.; Miranda, V.; Vieira, E.; Santos, R.; Mendonça, D.; Quintanilha, A.; et al. Oxidized low-density lipoprotein and lipoprotein(a) levels in chronic kidney disease patients under hemodialysis: Influence of adiponectin and of a polymorphism in the apolipoprotein(a) gene. Hemodial. Int. 2012, 16, 481–490. [Google Scholar] [CrossRef]
- Moberly, J.B.; Attman, P.-O.; Samuelsson, O.; Johansson, A.C.; Knight-Gibson, C.; Alaupovic, P. Alterations in lipoprotein composition in peritoneal dialysis patients. Perit. Dial. Int. 2002, 22, 1–9. [Google Scholar]
- Johansson, A.-C.; Samuelsson, O.; Attman, P.-O.; Haraldsson, B.; Moberly, J.; Knight-Gibson, C.; Alaupovic, P. Dyslipidemia in peritoneal dialysis–relation to dialytic variables. Perit. Dial. Int. 2000, 20, 306–314. [Google Scholar]
- Bredie, S.J.; Bosch, F.H.; Demacker, P.N.; Stalenhoef, A.F.; van Leusen, R. Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Perit. Dial. Int. 2001, 21, 275–281. [Google Scholar]
- Mesquita, J.; Varela, A.; Medina, J.L. Dyslipidemia in renal disease: Causes, consequences and treatment. Endocrinol. Nutr. 2010, 57, 440–448. [Google Scholar] [CrossRef]
- Pannu, H.S.; Singh, D.; Sandhu, J.S. Lipid profile before and after renal transplantation—A longitudinal study. Ren. Fail. 2003, 25, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Badiou, S.; Cristol, J.P.; Mourad, G. Dyslipidemia following kidney transplantation: Diagnosis and treatment. Curr. Diab. Rep. 2009, 9, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Akman, B.; Uyar, M.; Afsar, B.; Sezer, S.; Ozdemir, F.N.; Haberal, M. Lipid profile during azathioprine or mycophenolate mofetil combinations with cyclosporine and steroids. Transplant. Proc. 2007, 39, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Perrea, D.N.; Moulakakis, K.G.; Poulakou, M.V.; Vlachos, I.S.; Nikiteas, N.; Kostakis, A. Correlation between lipid abnormalities and immunosuppressive therapy in renal transplant recipients with stable renal function. Int. Urol. Nephrol. 2008, 40, 521–527. [Google Scholar] [CrossRef]
- Blum, C.B.; Levy, R.I.; Eisenberg, S.; Hall, M., III; Goebel, R.H.; Berman, M. High density lipoprotein metabolism in man. J. Clin. Investig. 1977, 60, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Ray, U.; Yu, R.; Hudspeth, A.; Smillie, M.; Jordan, N.; Bartle, J. Kidney function as a determinant of HDL and triglyceride concentrations in the Australian population. J. Clin. Med. 2016, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D. Oxidative stress in uremia: Nature, mechanisms, and potential consequences. Semin. Nephrol. 2004, 24, 469–473. [Google Scholar] [CrossRef]
- Vaziri, N.D. Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin. Exp. Nephrol. 2014, 18, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Moradi, H.; Vaziri, N.D.; Kashyap, M.L.; Said, H.M.; Kalantar-Zadeh, K. Role of HDL dysfunction in end-stage renal disease: A double-edged sword. J. Ren. Nutr. 2013, 23, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Rajman, I.; Harper, L.; McPake, D.; Kendall, M.J.; Wheeler, D.C. Low-density lipoprotein subfraction profiles in chronic renal failure. Nephrol. Dial. Transplant. 1998, 13, 2281–2287. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, L.; Liu, D.; Chen, D.Q.; Vaziri, N.D.; Yu, X.Y.; Zhang, L.; Su, W.; Bai, X.; Zhao, Y.Y. Combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism. J. Proteome Res. 2017, 16, 1566–1578. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.; Rudnitskaya, A.; Chariyavilaskul, P.; Dhaun, N.; Melville, V.; Goddard, J.; Webb, D.J.; Pitt, A.R.; Spickett, C.M. Top-down lipidomics of low density lipoprotein reveal altered lipid profiles in advanced chronic kidney disease. J. Lipid Res. 2015, 56, 413–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.I.; Streja, E.; Soohoo, M.; Ko, G.J.; Rhee, C.M.; Kovesdy, C.P.; Kashyap, M.L.; Vaziri, N.D.; Kalantar-Zadeh, K.; Moradi, H. Increments in serum high-density lipoprotein cholesterol over time are not associated with improved outcomes in incident hemodialysis patients. J. Clin. Lipidol. 2018, 12, 488–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiss, A.B.; Voloshyna, I.; De Leon, J.; Miyawaki, N.; Mattana, J. Cholesterol Metabolism in CKD. Am. J. Kidney Dis. 2015, 66, 1071–1082. [Google Scholar] [CrossRef] [Green Version]
- Lanktree, M.B.; Theriault, S.; Walsh, M.; Pare, G. HDL cholesterol, LDL cholesterol, and triglycerides as risk factors for CKD: A Mendelian randomization study. Am. J. Kidney Dis. 2018, 71, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D. HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat. Rev. Nephrol. 2016, 12, 37–47. [Google Scholar] [CrossRef] [Green Version]
- US Renal Data System. USRDS 2011 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, Bethesda, MD; National Institutes of Health: Bethesda, MD, USA; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2011. [Google Scholar]
- Becherucci, F.; Roperto, R.M.; Materassi, M.; Romagnani, P. Chronic kidney disease in children. Clin. Kidney J. 2016, 9, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Anavekar, N.S.; Pfeffer, M.A. Cardiovascular risk in chronic kidney disease. Kidney Int. Suppl. 2004, 92, S11–S15. [Google Scholar] [CrossRef] [Green Version]
- Mitsnefes, M.M. Cardiovascular disease in children with chronic kidney disease. J. Am. Soc. Nephrol. 2012, 23, 578–585. [Google Scholar] [CrossRef]
- Järvisalo, M.J.; Jartti, L.; Näntö-Salonen, K.; Irjala, K.; Rönnemaa, T.; Hartiala, J.J.; Celermajer, D.S.; Raitakari, O.T. Increased aortic intima-media thickness: A marker of preclinical atherosclerosis in high-risk children. Circulation 2001, 104, 2943–2947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.P., III; Tracy, R.E.; Wattigney, W.A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa heart study. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Mudi, A.; Dickens, C.; Levy, C.; Ballot, D. Cardiovascular risk factors and mortality in children with chronic kidney disease. SAMJ 2017, 107, 710–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, M.; Kutkuhn, B.; Trenkwalder, E.; Bach, D.; Grabensee, B.; Dieplinger, H.; Kronenberg, F. Apolipoprotein B, fibrinogen, HDL cholesterol and apolipoprotein(a) phenotypes predict coronary artery disease in hemodialysis patients. J. Am. Soc. Nephrol. 1997, 8, 1889–1898. [Google Scholar] [PubMed]
- Degoulet, P.; Legrain, M.; Réach, I.; Aimé, F.; Devriés, C.; Rojas, P.; Jacobs, C. Mortality risk factors in patients treated by chronic hemodialysis. Report of the Diaphane collaborative study. Nephron 1982, 31, 103–110. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Fried, L.F.; Cushman, M.; Manolio, T.A.; Peterson, D.; Stehman-Breen, C.; Bleyer, A.; Newman, A.; Siscovick, D.; Psaty, B. Cardiovascular mortality risk in chronic kidney disease: Comparison of traditional and novel risk factors. JAMA 2005, 293, 1737–1745. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Block, G.; Humphreys, M.H.; Kopple, J.D. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003, 63, 793–808. [Google Scholar] [CrossRef] [Green Version]
- Obialo, C.I.; Ofili, E.O.; Norris, K.C. Statins and cardiovascular disease outcomes in chronic kidney disease: Reaffirmation vs. repudiation. Int. J. Environ. Res. Public Health 2018, 15, 2733. [Google Scholar] [CrossRef] [Green Version]
- Lowrie, E.G.; Lew, N.L. Death risk in hemodialysis patients: The predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am. J. Kidney Dis. 1990, 15, 458–482. [Google Scholar] [CrossRef]
- Lowrie, E.G.; Lew, N.L. Commonly measured laboratory variables in hemodialysis patients: Relationships among them and to death risk. Semin. Nephrol. 1992, 12, 276–283. [Google Scholar]
- Iseki, K.; Yamazato, M.; Tozawa, M.; Takishita, S. Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients. Kidney Int. 2002, 61, 1887–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Coresh, J.; Eustace, J.A.; Longenecker, J.C.; Jaar, B.; Fink, N.E.; Tracy, R.P.; Powe, N.R.; Klag, M.J. Association between cholesterol level and mortality in dialysis patients: Role of inflammation and malnutrition. JAMA 2004, 291, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiner, D.E.; Sarnak, M.J. Managing dyslipidemia in chronic kidney disease. J. Gen. Intern. Med. 2004, 19, 1045–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shurraw, S.; Tonelli, M. Statins for treatment of dyslipidemia in chronic kidney disease. Perit. Dial. Int. 2006, 26, 523–539. [Google Scholar]
- Wanner, C.; Tonelli, M.; Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014, 85, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Muntner, P.; Lloyd, A.; Manns, B.; Klarenbach, S.; Pannu, N.; James, M.; Hemmelgarn, B.; Alberta Kidney Disease Network. Association between LDL-C and risk of myocardial infarction in CKD. J. Am. Soc. Nephrol. 2013, 24, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Muntner, P.; Lloyd, A.; Manns, B.J.; Klarenbach, S.; Pannu, N.; James, M.T.; Hemmelgarn, B.R.; Alberta Kidney Disease Network. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: A population-level cohort study. Lancet 2012, 380, 807–814. [Google Scholar] [CrossRef]
- Herzog, C.A.; Ma, J.Z.; Collins, A.J. Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N. Engl. J. Med. 1998, 339, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Kanda, E.; Ai, M.; Okazaki, M.; Yoshida, M.; Maeda, Y. Association of high-density lipoprotein subclasses with chronic kidney disease progression, Atherosclerosis, and Klotho. PLoS ONE 2016, 11, e0166459. [Google Scholar] [CrossRef]
- Emanuelsson, F.; Nordestgaard, B.C.; Tybjærg-Hansen, A.; Benn, M. Impact of LDL cholesterol on microvascular versus macrovascular disease. J. Am. Coll. Cardiol. 2019, 74, 1465–1476. [Google Scholar] [CrossRef]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef] [Green Version]
- Harbin, M.; Amadio, A.; Tejani, A. Critical appraisal of the SHARP trial: The results may be dull. Clin. Ther. 2014, 36, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Strippoli, G.F.; Navaneethan, S.D.; Johnson, D.W.; Perkovic, V.; Pellegrini, F.; Nicolucci, A.; Craig, J.C. Effects of statins in patients with chronic kidney disease: Meta-analysis and meta-regression of randomised controlled trials. BMJ 2008, 336, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Tannock, L. Dyslipidemia in Chronic Kidney Disease. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., Koch, C., Kopp, P., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000; Available online: https://www.ncbi.nlm.nih.gov/books/NBK305899/ (accessed on 17 September 2019).
- Sato, H.; Suzuki, S.; Kobayashi, H.; Ogino, S.; Inomata, A.; Arakawa, M. Immunohistological localization of apolipoproteins in the glomeruli in renal disease: Specifically apoB and apoE. Clin. Nephrol. 1991, 36, 127–133. [Google Scholar] [PubMed]
- Fried, L.F.; Orchard, T.J.; Kasiske, B.L. Effect of lipid reduction on the progression of renal disease: A meta-analysis. Kidney Int. 2001, 59, 260–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.; Yang, W.; Akkina, S.; Alper, A.; Anderson, A.H.; Appel, L.J.; He, J.; Raj, D.S.; Schelling, J.; Strauss, L.; et al. Relation of serum lipids and lipoproteins with progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2014, 9, 1190–1198. [Google Scholar] [CrossRef] [Green Version]
- Beltowski, J. Statins and modulation of oxidative stress. Toxicol. Mech. Methods 2005, 15, 61–92. [Google Scholar] [CrossRef]
- Sørensen, A.L.; Hasselbalch, H.C.; Nielsen, C.H.; Poulsen, H.E.; Ellervik, C. Statin treatment, oxidative stress and inflammation in a Danish population. Redox Biol. 2019, 21, 101088. [Google Scholar] [CrossRef]
- Rodriguez, A.L.; Wojcik, B.M.; Wrobleski, S.K.; Myers, D.D., Jr.; Wakefield, T.W.; Diaz, J.A. Statins, inflammation and deep vein thrombosis: A systematic review. J. Thromb. Thrombolysis 2012, 33, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am. J. Kidney Dis. 2003, 41 (4 Suppl. 3), I–IV, S1–S91. [Google Scholar]
- Khurana, M.; Silverstein, D.M. Etiology and management of dyslipidemia in children with chronic kidney disease and end-stage renal disease. Pediatr. Nephrol. 2015, 30, 2073–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavey, R.E.; Allada, V.; Daniels, S.R.; Hayman, L.L.; McCrindle, B.W.; Newburger, J.W.; Parekh, R.S.; Steinberger, J. Cardiovascular risk reduction in high-risk pediatric patients: A scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: Endorsed by the American Academy of Pediatrics. Circulation 2006, 114, 2710–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallman, D.A.; Sahathevan, S.; Karupaiah, T.; Khosla, P. Egg intake in chronic kidney disease. Nutrients 2018, 10, 1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Kidney Foundation. K/DOQI clinical practice guidelines for managing dyslipidemias in CKD. Am. J. Kidney Dis. 2003, 41, S1–S91. [Google Scholar]
- Grundy, S.M.; Becker, D.; Clark, L.T.; Cooper, R.S.; Denke, M.A.; Howard, J.; Hunninghake, D.B.; Illingworth, D.R.; Luepker, R.V.; McBride, P.; et al. Detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Natl. Inst. Health 2002, 106, 3143–3421. [Google Scholar]
- National Kidney Foundation. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. 2005, 45, A3–A4. [Google Scholar] [CrossRef]
- Tonelli, M.A.; Wanner, C.; Upadhyay, A.; Earley, A.; Haynes, S.; Lamont, J.; Cass, A.; Kronenberg, F.; Garg, A.X.; Parekh, R.S.; et al. Kidney disease improving global outcomes KDIGO clinical practice guideline for lipid management in chronic kidney disease. Kidney Int. Suppl. 2013, 3, 259–305. [Google Scholar]
- Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Yu-Poth, S.; Zhao, G.; Etherton, T.; Naglak, M.; Jonnalagadda, S.; Kris-Etherton, P.M. Effects of the national cholesterol education program’s step I and step II dietary intervention programs on cardiovascular disease risk factors: A meta-analysis. Am. J. Clin. Nutr. 1999, 69, 632–646. [Google Scholar] [CrossRef]
- Shoji, T.; Nishizawa, Y.; Kawagishi, T.; Kawasaki, K.; Taniwaki, H.; Tabata, T.; Inoue, T.; Morii, H. Intermediate-density lipoprotein as an independent risk factor for aortic atherosclerosis in hemodialysis patients. J. Am. Soc. Nephrol. 1998, 9, 1277–1284. [Google Scholar]
- Ricardo, A.C.; Anderson, C.A.; Yang, W.; Zhang, X.; Fischer, M.J.; Dember, L.M.; Fink, J.C.; Frydrych, A.; Jensvold, N.G.; Lustigova, E.; et al. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: Findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Am. J. Kidney Dis. 2015, 65, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiuve, S.E.; Rexrode, K.M.; Spiegelman, D.; Logroscino, G.; Manson, J.E.; Rimm, E.B. Primary prevention of stroke by healthy lifestyle. Circulation 2008, 118, 947–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiuve, S.E.; Fung, T.T.; Rexrode, K.M.; Spiegelman, D.; Manson, J.E.; Stampfer, M.J.; Albert, C.M. Adherence to a low-risk, healthy lifestyle and risk of sudden cardiac death among women. JAMA 2011, 306, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricardo, A.C.; Madero, M.; Yang, W.; Anderson, C.; Menezes, M.; Fischer, M.J.; Turyk, M.; Daviglus, M.L.; Lash, J.P. Adherence to a healthy lifestyle and all-cause mortality in CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Muntner, P.; Judd, S.E.; Gao, L.; Gutiérrez, O.M.; Rizk, D.V.; McClellan, W.; Cushman, M.; Warnock, D.G. Cardiovascular risk factors in CKD associate with both ESRD and mortality. J. Am. Soc. Nephrol. 2013, 24, 1159–1165. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.C.; Maggo, J.K.; Campbell, K.L.; Craig, J.C.; Johnson, D.W.; Sutanto, B.; Ruospo, M.; Tong, A.; Strippoli, G.F. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst. Rev. 2017, 4, CD011998. [Google Scholar] [CrossRef] [Green Version]
- Abiemo, E.E.; Alonso, A.; Nettleton, J.A.; Steffen, L.M.; Bertoni, A.G.; Jain, A.; Lutsey, P.L. Relationships of the Mediterranean dietary pattern with insulin resistance and diabetes incidence in the Multi-Ethnic Study of Atherosclerosis (MESA). Br. J. Nutr. 2013, 109, 1490–1497. [Google Scholar] [CrossRef] [Green Version]
- Dijk, S.J.; Feskens, E.J.; Bos, M.B.; de Groot, L.C.; de Vries, J.H.; Müller, M.; Afman, L.A. Consumption of a high monounsaturated fat diet reduces oxidative phosphorylation gene expression in peripheral blood mononuclear cells of abdominally overweight men and women. J. Nutr. 2012, 142, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Fontes, B.C.; Anjos, J.S.D.; Black, A.P.; Moreira, N.X.; Mafra, D. Effects of low-protein diet on lipid and anthropometric profiles of patients with chronic kidney disease on conservative management. J. Bras. Nefrol. 2018, 40, 225–232. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Lagiou, P. Healthy traditional Mediterranean diet—An expression of culture, history and lifestyle. Nutr. Rev. 2009, 55, 383–389. [Google Scholar] [CrossRef]
- Grundy, S.M.; Bilheimer, D.; Chait, A.; Clark, L.T.; Denke, M.; Havel, R.J.; Hazzard, W.R.; Hulley, S.B.; Hunninghake, D.B.; Kreisberg, R.A.; et al. Expert panel on detection and treatment of high blood cholesterol in adults summary of the second report of the national cholesterol education program expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). JAMA 1993, 269, 3015–3023. [Google Scholar]
- Parthasarathy, S.; Khoo, J.C.; Miller, E.; Barnett, J.; Witztum, J.L.; Steinberg, D. Steinberg, low density lipoprotein rich in oleic acid is protected against oxidative modification: Implications for dietary prevention of atherosclerosis. Proc. Natl. Acad. Sci. USA 1990, 87, 3894–3898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carluccio, M.A.; Siculella, L.; Ancora, M.A.; Massaro, M.; Scoditti, E.; Storelli, C.; Visioli, F.; Distante, A.; De Caterina, R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Supreme Scientific Health Council, Ministry of Health and Welfare of Greece. Dietary guidelines for adults in Greece. Arch. Hell. Med. 1999, 16, 516–524. [Google Scholar]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Skoumas, J.; Zeimbekis, A.; Kastorini, C.M.; Stefanadis, C. Adherence to the mediterranean diet is associated with renal function among healthy adults: The ATTICA study. J. Ren. Nutr. 2010, 20, 176–184. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Stefanadis, C. Adherence to the mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA study. J. Am. Coll. Cardiol. 2004, 44, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Zampelas, A.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Chrysohoou, C.; Skoumas, Y.; Stefanadis, C. Fish consumption among healthy adults is associated with decreased levels of inflammatory markers related to cardiovascular disease: The ATTICA study. J. Am. Coll. Cardiol. 2005, 46, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Stachowska, E.; Gutowska, I.; Strzelczak, A.; Wesołowska, T.; Safranow, K.; Ciechanowski, K.; Chlubek, D. The use of neural networks in evaluation of the direction and dynamics of changes in lipid parameters in kidney transplant patients on the Mediterranean diet. J. Ren. Nutr. 2006, 16, 150–159. [Google Scholar] [CrossRef]
- Beddhu, S.; Abraham, J. Risk factor paradox in CKD and ESRD: Does a healthy lifestyle matter? Clin. J. Am. Soc. Nephrol. 2013, 8, 515–517. [Google Scholar] [CrossRef]
- Salmean, Y.A.; Zello, G.A.; Dahl, W.J. Foods with added fiber improve stool frequency in individuals with chronic kidney disease with no impact on appetite or overall quality of life. BMC Res. Notes 2013, 6, 510. [Google Scholar] [CrossRef] [Green Version]
- Voloshyna, I.; Hai, O.; Littlefield, M.J.; Carsons, S.; Reiss, A.B. Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur. J. Pharmacol. 2013, 698, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Toklu, H.Z.; Sehirli, O.; Erşahin, M.; Süleymanoğlu, S.; Yiğiner, O.; Emekli-Alturfan, E.; Yarat, A.; Yeğen, B.Ç.; Sener, G. Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J. Pharm. Pharmacol. 2010, 62, 1784–1793. [Google Scholar] [CrossRef] [PubMed]
- Cottart, C.H.; Nivet-Antoine, V.; Laguillier-Morizot, C.; Beaudeux, J.L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 2010, 54, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Rizkalla, S.W.; Bellisle, F.; Slama, G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br. J. Nutr. 2002, 88, S255–S262. [Google Scholar] [CrossRef]
- Zhang, Z.; Lanza, E.; Kris-Etherton, P.M.; Colburn, N.H.; Bagshaw, D.; Rovine, M.J.; Ulbrecht, J.S.; Bobe, G.; Chapkin, R.S.; Hartman, T.J. A high legume low glycemic index diet improves serum lipid profiles in men. Lipids 2010, 45, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Pittaway, J.K.; Robertson, I.K.; Ball, M.J. Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J. Am. Diet. Assoc. 2008, 108, 1009–1013. [Google Scholar] [CrossRef]
- Krishnamurthy, V.M.; Wei, G.; Baird, B.C.; Murtaugh, M.; Chonchol, M.B.; Raphael, K.L.; Greene, T.; Beddhu, S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012, 81, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.; Molfino, A.; Coppola, B.; De Leo, S.; Tommasi, V.; Galani, A.; Migliaccio, S.; Greco, E.A.; Gnerre Musto, T.; Muscaritoli, M. Effect of personalized dietary intervention on nutritional, metabolic and vascular indices in patients with chronic kidney disease. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3351–3359. [Google Scholar]
- Rees, K.; Dyakova, M.; Wilson, N.; Ward, K.; Thorogood, M.; Brunner, E. Dietary advice for reducing cardiovascular risk. Cochrane Database Syst. Rev. 2013, 12, CD002128. [Google Scholar] [CrossRef] [Green Version]
- Rees, K.; Hartley, L.; Flowers, N.; Clarke, A.; Hooper, L.; Thorogood, M.; Stranges, S. ‘Mediterranean’ dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013, 8, CD009825. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Lee, H.-Y.; Lin, Y.-C. The effect of ketoanalogues on chronic kidney disease deterioration: A meta-analysis. Nutrients 2019, 11, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo, J.; Ramirez, V.; Perez, J.; Torre-Villalvazo, I.; Torres, N.; Tovar, A.R.; Munoz, R.M.; Uribe, N.; Gamba, G.; Bobadilla, N.A. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation. Am. J. Physiol. Ren. Physiol. 2005, 288, F108–F116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, G.; Gentile, M.G. Influence of diet on lipid abnormalities in human renal disease. Am. J. Kidney Dis. 1993, 22, 151–157. [Google Scholar] [CrossRef]
- Mukkuden-Petersen, J.; Oosthuizen, W.; Jerling, J.C. A systematic review of the effects of nuts on blood lipid profiles in humans. J. Nutr. 2005, 135, 2082–2089. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.; Kendall, C.W.; Faulkner, D.; Vidgen, E.; Trautwein, E.A.; Parker, T.L.; Marchie, A.; Koumbridis, G.; Lapsley, K.G.; Josse, R.G.; et al. A dietary portfolio approach to cholesterol reduction: Combined effects of plant sterols, vegetable proteins and viscous fibers in hypercholesterolemia. Metabolism 2002, 51, 1596–1604. [Google Scholar] [CrossRef]
- Knekt, P.; Reunanen, A.; Jarvinen, R.; Seppanen, R.; Heliovaara, M.; Aromaa, A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am. J. Epidemiol. 1994, 139, 1180–1189. [Google Scholar] [CrossRef]
- Key, T.J.; Fraser, G.E.; Thorogood, M.; Appleby, P.N.; Beral, V.; Reeves, G.; Burr, M.L.; Chang-Claude, J.; Frentzel-Beyme, R.; Kuzma, J.W.; et al. Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. Am. J. Clin. Nutr. 1999, 70 (Suppl. S3), 516S–524S. [Google Scholar] [CrossRef]
- Chauveau, P.; Couzi, L.; Vendrely, B.; de Precigout, V.; Combe, C.; Fouque, D.; Aparicio, M. Long-term outcome on renal replacement therapy in patients who previously received a keto acid-supplemented very-low-protein diet. Am. J. Clin. Nutr. 2009, 90, 969–974. [Google Scholar] [CrossRef] [Green Version]
- Boaz, M.; Smetana, S.; Weinstein, T.; Matas, Z.; Gafter, U.; Iaina, A.; Knecht, A.; Weissgarten, Y.; Brunner, D.; Fainaru, M.; et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): Randomised placebo-controlled trial. Lancet 2000, 356, 1213–1218. [Google Scholar] [CrossRef]
- Islam, K.N.; O’Byrne, D.; Devaraj, S.; Palmer, B.; Grundy, S.M.; Jialal, I. Alpha-tocopherol supplementation decreases the oxidative susceptibility of LDL in renal failure patients on dialysis therapy. Atherosclerosis 2000, 150, 217–224. [Google Scholar] [CrossRef]
- Daud, Z.A.; Tubie, B.; Sheyman, M.; Osia, R.; Adams, J.; Tubie, S.; Khosla, P. Vitamin E tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients. Vasc. Health Risk Manag. 2013, 9, 747–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolignano, D.; Cernaro, V.; Gembillo, G.; Baggetta, R.; Buemi, M.; D’Arrigo, G. Antioxidant agents for delaying diabetic kidney disease progression: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0178699. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.J.; Kalantar-Zadeh, K.; Goldstein-Fuchs, J.; Rhee, C.M. Dietary approaches in the management of diabetic patients with kidney disease. Nutrients 2017, 9, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michas, G.; Micha, R.; Zampelas, A. Dietary fats and cardiovascular disease: Putting together the pieces of a complicated puzzle. Atherosclerosis 2014, 234, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.J.; Gregoire, J.; Hegele, R.A.; Couture, P.; Mancini, G.B.; McPherson, R.; Francis, G.A.; Poirier, P.; Lau, D.C.; Grover, S.; et al. 2012 update of the Canadian cardiovascular society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol. 2013, 29, 151–167. [Google Scholar] [CrossRef]
- Kwiterovich, P.O., Jr.; Barton, B.A.; McMahon, R.P.; Obarzanek, E.; Hunsberger, S.; Simons-Morton, D.; Kimm, S.Y.; Friedman, L.A.; Lasser, N.; Robson, A.; et al. Effects of diet and sexual maturation on low-density lipoprotein cholesterol during puberty: The Dietary Intervention Study in Children (DISC). Circulation 1997, 96, 2526–2533. [Google Scholar] [CrossRef]
- Niinikoski, H.; Koskinen, P.; Punnonen, K.; Seppänen, R.; Viikari, J.; Rönnemaa, T.; Irjala, K.; Simell, O. Intake and indicators of iron and zinc status in children consuming diets low in saturated fat and cholesterol: The STRIP baby study. Special Turku coronary risk factor intervention project for babies. Am. J. Clin. Nutr. 1997, 66, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Orozco, L.J.; Buchleitner, A.M.; Gimenez-Perez, G.; Roqué I Figuls, M.; Richter, B.; Mauricio, D. Exercise or exercise and diet for preventing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2008, 3, CD003054. [Google Scholar] [CrossRef]
- Shapiro, H.; Theilla, M.; Attal-Singer, J.; Singer, P. Effects of polyunsaturated fatty acid consumption in diabetic nephropathy. Nat. Rev. Nephrol. 2011, 7, 110–121. [Google Scholar] [CrossRef]
- Malhotra, R.; Cavanaugh, K.L.; Blot, W.J.; Ikizler, T.A.; Lipworth, L.; Kabagambe, E.K. Dietary polyunsaturated fatty acids and incidence of end-stage renal disease in the southern community cohort study. BMC Nephrol. 2016, 17, 152. [Google Scholar] [CrossRef] [Green Version]
- Punthakee, Z.; Gerstein, H.C.; Bosch, J.; Tyrwhitt, J.; Jung, H.; Lee, S.F.; Lonn, E.; Marsden, T.; McKelvie, R.; McQueen, M.J.; et al. ORIGIN Trial Investigators. Cardiovascular and other outcomes post-intervention with insulin glargine and omega-3 fatty acids (originale). Diab. Care 2016, 39, 709–716. [Google Scholar]
- Rosenson, R.S.; Cannon, C.P. Patient Education: High Cholesterol and Lipid Treatment Options (Beyond the Basics). Available online: https://www.uptodate.com/contents/high-cholesterol-and-lipid-treatment-options-beyond-the-basics?topicRef=3440&source=see_link (accessed on 10 August 2019).
- Khajehdehi, P. Lipid-lowering effect of polyunsaturated fatty acids in hemodialysis patients. J. Ren. Nutr. 2000, 10, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Seri, S.; D’Alessandro, A.; Acitelli, S.; Giammaria, U.; Cocchi, M.; Noble, R.C. Effect of dietary supplementation by alternative oils on blood lipid levels of haemodialysed patients. Med. Sci. Res. 1993, 21, 315–316. [Google Scholar]
- Krauss, R.M.; Eckel, R.H.; Howard, B.; Appel, L.J.; Daniels, S.R.; Deckelbaum, R.J.; Erdman, J.W., Jr.; Kris-Etherton, P.; Goldberg, I.J.; Kotchen, T.A.; et al. AHA dietary guidelines: Revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 2000, 102, 2284–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelms, M.; Sucher, K.P.; Lacey, K.; Long Roth, S. Nutrition Therapy and Pathophysiology, 2nd ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2010. [Google Scholar]
Group of Patients | Type of Study | Finding | Ref. |
---|---|---|---|
Hemodialysis patients | Cohort study (n = 1167) | Independent association between low TC and higher CRP and mortality in patients with serum albumin values ≥4.5 g/dL (adjusted hazards ratio was 1.370 (1.109 to 1.692), p = 0.0034) Lowest mortality rate (35.9%) at the baseline serum cholesterol level of 200 to 219 mg/dL and the highest (57.2%) at the serum cholesterol of less than 140 mg/dL (adjusted hazards ratio 0.939 (0.891 to 0.989), p = 0.0180) | [93] |
Dialyzed patients | Prospective study | Increase in baseline TC by 1 mmol/L was associated with a decrease in all-cause mortality in the presence of inflammation/malnutrition. | [96] |
Adults from the Alberta Kidney Disease Network (excluding V CKD) | Large study (n = 836,060) | Relationship between LDL-C and MI risk seems linear at LDL-C above 2.6 mmol/L (100 mg/dL). Adjusted HRs (95% CI) of MI associated with LDL-C of ≥4.9 compared with 2.6–3.39 mmol/L in participants with eGFR = 15–59.9 and 60–89.9 ml/min per 1.73 m2 were 2.06 (1.59, 2.67) and 2.30 (2.00, 2.65), respectively | [98] |
Hemodialysis patients | (n > 12,000) | >4 times higher mortality risk in patients with low TC (<100 mg/dL [2.6 mmol/L]) versus patients with TC levels between 200 and 250 mg/dL (5.2–6.5 mmol/L) | [91] |
CKD population (stage 4 and 5) | Prospective cohort study (n = 71) | Subclass composition of lipoproteins might be related to enhanced risk of death in CKD population. Cholesterol proportions in very small HDLs were associated with eGFR change rate [F19 β = −17.63, p = 0.036] and ankle-brachial index (ABI) (a marker of atherosclerosis in the peripheral artery) [F19 β = 0.047, p = 0.047] in stage 4 group. | [101] |
CKD patients (3023 on dialysis and 6247 not) with no known history of MI or coronary revascularization | Randomized double-blind trial (n = 9270) | Lower LDL level (after statin treatment) was associated with a significant 17% reduction in the risk of combined major atherosclerotic events (526 [11.3%] simvastatin plus ezetimibe vs. 619 [13.4%] placebo; rate ratio [RR] 0.83, 95% CI 0.74–0.94; log-rank p = 0.0021) Non-significant association between LDL lowering with non-fatal MI or death from CHD (213 [4.6%] vs. 230 [5.0%]; RR 0.92, 95% CI 0.76–1.11; p = 0.37) and significant reduction in non-hemorrhagic stroke (131 [2.8%] vs. 174 [3.8%]; RR 0.75, 95% CI 0.60–0.94; p = 0.01) and arterial revascularization procedures (284 [6.1%] vs. 352 [7.6%]; RR 0.79, 95% CI 0.68–0.93; p = 0.0036). | [103] |
CKD, patients on maintenance dialysis or after renal transplantation | Meta-analysis of randomized and quasi-randomized controlled trials (n = 30,144) | No improvement in all-cause mortality in statin-treated CKD patients with significantly reduced lipid concentrations (44 studies, 23 665 patients; 0.92, 0.82 to 1.03). Significant effect of lipid lowering on the occurrence of fatal cardiovascular events (43 studies, 23 266 patients; relative risk 0.81, 0.73 to 0.90) and non-fatal cardiovascular events (8 studies, 22 863 patients; 0.78, 0.73 to 0.84). | [105] |
A meta-analysis of 13 prospective controlled trials | Lower rate of decline in glomerular filtration rate in patients receiving a lipid-lowering agent compared with controls (treated controls, 0.156 mL/min/month; 95% CI, 0.026 to 0.285 mL/min/month, p = 0.008). | [108] |
Group of Patients | Type of Recommendation | Recommendation | Level of Evidence | Ref. |
---|---|---|---|---|
Adults with newly identified CKD | Kidney Disease: Improving Global Outcomes (KDIGO) | Determination of a lipid profile (TC, LDL, HDL, and triglycerides) should be performed primarily in order to detect potential severe hypercholesterolemia or hypertriglyceridemia and potential secondary cause establishment. | [97] | |
Adults with newly identified CKD | Kidney Disease: Improving Global Outcomes (KDIGO) | Triglyceride levels >11.3 mmol/L or LDL levels >4.9 mmol/L require further assessment | [97] | |
Adults with stage 5 CKD and LDL ≥100 mg/dL (≥2.59 mmol/L) | KDOQI Clinical Practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease. Guideline 4 | Target LDL should be reduced to <100 mg/dL (<2.59 mmol/L). | B | [113] |
Adults with stage 5 CKD and LDL <100 mg/dL (<2.59 mmol/L), fasting TG ≥200 mg/dL (≥2.26 mmol/L), and non-HDL cholesterol ≥130 mg/dL (≥3.36 mmol/L) | KDOQI Clinical Practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease. Guideline 4 | Non-HDL cholesterol should be lowered to <130 mg/dL (<3.36 mmol/L). | C | [113] |
Adolescents with stage 5 CKD and LDL ≥130 mg/dL (≥3.36 mmol/L) | KDOQI Clinical Practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease. Guideline 5 | Target LDL should be less than 130 mg/dL (<3.36 mmol/L). | C | [113] |
Adolescents with Stage 5 CKD, LDL <130 mg/dL (<3.36 mmol/L), fasting triglycerides ≥200 mg/dL (≥2.26 mmol/L), and non-HDL cholesterol ≥160 mg/dL (≥4.14 mmol/L) | KDOQI Clinical Practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease. Guideline 5 | Reduction of non-HDL cholesterol to <160 mg/dL (<4.14 mmol/L) should be considered. | C | [113] |
Adolescents with CKD | KDOQI Clinical Practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease. | Isolated hypertriglyceridemia should be treated with therapeutic lifestyle change. | [113] | |
Patients with LDL-C above the goal limit | 2003 Kidney Disease Outcomes Quality Initiative (K/DOQI) Clinical Practice Guidelines for Managing Dyslipidemias | Lifestyle changes comprising the reduction of saturated fat to less than 7% of calories and cholesterol to less than 200 mg/day should be introduced. | [116,117,118] | |
Dialysis Patients | 2005 K/DOQI Clinical Practice Guidelines for Cardiovascular Disease in Dialysis Patients | Caution in using diet due to lack of solid evidences. | [116,119] | |
Adult patients with CKD and: TG > 500 mg/dL (≥5.65 mmol/L), LDL-C > 100 mg/dL (≥2.59 mmol/L) and TG ≥ 200 mg/dL (≥2.26 mmol/L) and non-HDL-C ≥ 130 mg/dL | 2003 K/DOQI dietary guidelines concerning the management of dyslipidemia in adult patients with CKD | Therapeutic life-style changes involving the limitation of dietary cholesterol to <200 mg per day are recommended. | [117] | |
Patients with fasting triglycerides ≥1000 mg/dL (≥11.29 mmol/L) | ATP III | Diet which include a very low-fat diet (<15% total calories), medium-chain triglycerides, and fish oils in order to limit the intake of some long-chain triglycerides is recommended. | [113,121] |
Group of Patients | Type of Study | Diet | Effect | Ref. |
---|---|---|---|---|
Patients with GFR of 60–89 mL/min and dyslipidemia (triacylglycerols > 1.7 mmol/L) and/or (TC > 5 mmol/L) | Prospective randomized trial | Mediterranean diet | ➢ 26% ↓ TG concentration after 90 days after initiating nutritional intervention in comparison to a control group, ➢ ↓ TC concentration by 14% after 60 days and by 35% after 90 days (p < 0.05) ➢ ↓ TC/HDL-C ratio after 30, 60, 90 days (p < 0.05) ➢ ↑ apo A-I/apo B ratio after 90 days compared to the control group and to T0 (p < 0.05). | [3] |
Patients with chronic renal failure before dialysis | Prospective randomized trial | Mediterranean diet | Improved food consumption, ↓ dyslipidemia and protection against lipid peroxidation and inflammation | [3] |
Patients after kidney transplantation | Case/control study | Mediterranean diet/low fat diet | ➢ ↓ cholesterol level during the first months on MD diet only in the group of young and middle-aged patients. ➢ Diet ideal for post-transplantation patients without severe pathologic dyslipidemia ➢ ↓ Serum LDL cholesterol levels in comparison to a low fat diet (MD −0.60 mmol/L, 95% CI −1.15 to −0.05). | [142] |
CKD patients | Case/control study | Diet rich in fruits and vegetables and poor in saturated fat and sodium | ➢ The risk of all-cause death in individuals in the second, third, and fourth quartiles of the weighted healthy lifestyle score compared to those in the lowest quartile (adjusted hazard ratio of all-cause mortality: 0.53 (95% confidence interval [CI], 0.41–0.68), 0.52 (95% CI, 0.42–0.63), and 0.47 (95% CI, 0.38–0.60) was not different between these groups. ➢ ↓ Rates of age-adjusted all-cause mortality ➢ No significant association between diet and all-cause mortality after multivariable adjustment | [127] |
Stage 3 to 5 CKD patients | Case/control study | High fibers diet (23 grams per day) for 6 weeks | ➢ Improved lipid profile, considerable ↓ TC, LDL and cholesterol-HDL ratio. ➢ Improved quality of life ➢ ↓ TC from 175 ± 12 to 167 ± 11 mg/dL (p = 0.02) ➢ Strong trend for ↓ LDL (100 ± 8 to 93 ± 7 mg/dL; p = 0.05) ➢ ↓ TC: HDL ratio from 4.0 ± 0.3 during control to 3.7 ± 0.2 during the fiber intervention (p = 0.02) ➢ No significant effect on HDL and TG | [143] |
Patients with pre-dialysis CKD | Case/control study | Low-protein diet (0.6 g/kg/d) for six months | ➢ ↓ TC (from 199.7 ± 57.1 to 176.0 ± 43.6 mg/dL, p = 0.0001) and LDL-C (from 116.2 ± 48.1 to 97.4 ± 39.1 mg/dL, p = 0.001) ➢ Preserved renal function and ↓ serum levels of uric acid (from 6.8 ± 1.4 to 6.2 ± 1.3 mg/dL, p = 0.004) ➢ GFR increased from 26.2 ± 9.5 to 28.9 ± 12.7 mL/min (p = 0.02). | [132] |
Patients with CKD stages 3 and 4 | Interventional, single-center study | Low-protein diet for 12 months | Insignificant improvements in lipid profiles - ↓ TC (baseline 176.3 ± 37.5; 12 months 159.3 ± 26.2), and TG levels (baseline 126.6 ± 43.8; 12 months 100.2 ± 36.7), and ↑ HDL-C levels (baseline 47.2 ± 18.5; 12 months 52.9 ± 26.6). | [151] |
CKD patients | A meta-analysis | Ketoanalogs of amino acids (KAs) supplements | No significant ↓ TC level (MD = −24.13, 95% CI = (−93.68, 45.42), p = 0.50) | [154] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gluba-Brzozka, A.; Franczyk, B.; Rysz, J. Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients. Nutrients 2019, 11, 2820. https://doi.org/10.3390/nu11112820
Gluba-Brzozka A, Franczyk B, Rysz J. Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients. Nutrients. 2019; 11(11):2820. https://doi.org/10.3390/nu11112820
Chicago/Turabian StyleGluba-Brzozka, Anna, Beata Franczyk, and Jacek Rysz. 2019. "Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients" Nutrients 11, no. 11: 2820. https://doi.org/10.3390/nu11112820
APA StyleGluba-Brzozka, A., Franczyk, B., & Rysz, J. (2019). Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients. Nutrients, 11(11), 2820. https://doi.org/10.3390/nu11112820