Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models
Abstract
:1. Introduction
2. Composition and Content of Proanthocyanidins in Grape Seeds and Grape Seed Extracts
3. Biological Activities of Proanthocyanidins from Grape Seeds
3.1. Oxidative Stress
3.2. Inflammation
3.3. Metabolic Syndrome-Related Disorders
3.3.1. Obesity
3.3.2. Diabetes
3.3.3. Cardiovascular Risk Disease
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A Comprehensive Review. Biomed. Pharmacoth. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, M.D.; Giardina, R.C.; Fava, G.; Mirabella, E.F.; Acquaviva, R.; Renis, M.; D’antona, N. Polyphenolic Profile and Antioxidant Activity of Olive Mill Wastewater from Two Sicilian Olive Cultivars: Cerasuola and Nocellara Etnea. Eur. Food Res. Technol. 2017, 243, 1895–1903. [Google Scholar] [CrossRef]
- Neilson, A.P.; O’Keefe, S.F.; Bolling, B.W. High-Molecular-Weight Proanthocyanidins in Foods: Overcoming Analytical Challenges in Pursuit of Novel Dietary Bioactive Components. Annu. Rev. Food Sci. Technol. 2016, 7, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Proanthocyanidins in Cereals and Pseudocereals. Crit. Rev. Food Sci. Nutr. 2019, 59, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Stürzenbaum, S.R. Proanthocyanidins of Natural Origin: Molecular Mechanisms and Implications for Lipid Disorder and Aging-Associated Diseases. Adv. Nutr. 2019, 10, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef]
- Yang, L.; Xian, D.; Xiong, X.; Lai, R.; Song, J.; Zhong, J. Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. BioMed Res. Int. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sundararajan, A.; Rane, H.S.; Ramaraj, T.; Sena, J.; Howell, A.B.; Bernardo, S.M.; Schilkey, F.D.; Lee, S.A. Cranberry-derived proanthocyanidins induce a differential transcriptomic response within Candida albicans urinary biofilms. PLoS ONE 2018, 13, e0201969. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Uberos, J.; Jiménez-Sánchez, C.; Peña, A.; Segura-Carretero, A. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli. Food Funct. 2016, 7, 1564–1573. [Google Scholar] [CrossRef]
- Maki, K.C.; Nieman, K.M.; Schild, A.L.; Kaspar, K.L.; Khoo, C. The Effect of Cranberry Juice Consumption on the Recurrence of Urinary Tract Infection: Relationship to Baseline Risk Factors. J. Am. Coll. Nutr. 2018, 37, 121–126. [Google Scholar] [CrossRef]
- Johnson, M.H.; De Mejia, E.G.; Fan, J.; Lila, M.A.; Yousef, G.G. Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Mol. Nutr. Food Res. 2013, 57, 1182–1197. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, K.; Aketa, S.; Sakai, H.; Watanabe, Y.; Nishida, H.; Hirayama, M. Antihypertensive and Vasorelaxant Effects of Water-Soluble Proanthocyanidins from Persimmon Leaf Tea in Spontaneously Hypertensive Rats. Biosci. Biotechnol. Biochem. 2011, 75, 1435–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, D.; Swaroop, A.; Preuss, H.G.; Bagchi, M. Free Radical Scavenging, Antioxidant and Cancer Chemoprevention by Grape Seed Proanthocyanidin: An Overview. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2014, 768, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.A.; Pimentel, F.; Costa, A.S.; Alves, R.C.; Oliveira, M.B.P. Cardioprotective properties of grape seed proanthocyanidins: An update. Trends Food Sci. Technol. 2016, 57, 31–39. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules 2018, 23, 1888. [Google Scholar] [CrossRef]
- Pasini, F.; Chinnici, F.; Caboni, M.F.; Verardo, V. Recovery of Oligomeric Proanthocyanidins and Other Phenolic Compounds with Established Bioactivity from Grape Seed By-Products. Molecules 2019, 24, 677. [Google Scholar] [CrossRef]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control. 2018, 92, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Machado, N.F.L.; Domínguez-Perles, R. Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products. Molecules 2017, 22, 286. [Google Scholar] [CrossRef]
- Tang, G.-Y.; Zhao, C.-N.; Liu, Q.; Feng, X.-L.; Xu, X.-Y.; Cao, S.-Y.; Meng, X.; Li, S.; Gan, R.-Y.; Li, H.-B. Potential of Grape Wastes as a Natural Source of Bioactive Compounds. Molecules 2018, 23, 2598. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity—A review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Prodanov, M.; Vacas, V.; Hernández, T.; Estrella, I.; Amador, B.; Winterhalter, P. Chemical characterisation of Malvar grape seeds (Vitis vinifera L.) by ultrafiltration and RP-HPLC-PAD-MS. J. Food Compos. Anal. 2013, 31, 284–292. [Google Scholar] [CrossRef]
- Bagchi, D.; Bagchi, M.; Stohs, S.J.; Das, D.K.; Ray, S.D.; A Kuszynski, C.; Joshi, S.S.; Pruess, H.G. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology 2000, 148, 187–197. [Google Scholar] [CrossRef]
- Ma, Z.F.; Zhang, H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants 2017, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yu, S. Lipophilized Grape Seed Proanthocyanidin Derivatives as Novel Antioxidants. J. Agric. Food Chem. 2017, 65, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Pan, Q.-H.; Shi, Y.; Duan, C.-Q. Biosynthesis and Genetic Regulation of Proanthocyanidins in Plants. Molecules 2008, 13, 2674–2703. [Google Scholar] [CrossRef] [Green Version]
- Freitas, V.A.; Glories, Y.; Bourgeois, G.; Vitry, C. Characterisation of oligomeric and polymeric procyanidins from grape seeds by liquid secondary ion mass spectrometry. Phytochemistry 1998, 49, 1435–1441. [Google Scholar] [CrossRef]
- Prior, R.L.; Lazarus, S.A.; Cao, G.; Muccitelli, H.; Hammerstone, J.F. Identification of Procyanidins and Anthocyanins in Blueberries and Cranberries (Vaccinium spp.) Using High-Performance Liquid Chromatography/Mass Spectrometry. J. Agric. Food Chem. 2001, 49, 1270–1276. [Google Scholar] [CrossRef]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004, 134, 613–617. [Google Scholar] [CrossRef]
- Travaglia, F.; Bordiga, M.; Locatelli, M.; Coisson, J.D.; Arlorio, M. Polymeric Proanthocyanidins in Skins and Seeds of 37 Vitis vinifera L. Cultivars: A Methodological Comparative Study. J. Food Sci. 2011, 76, 742. [Google Scholar] [CrossRef]
- Escribano-Bailon, T.; Gutierrez-Fernandez, Y.; Rivas-Gonzalo, J.-C.; Santos-Buelga, C. Characterization of procyanidins of Vitis vinifera variety Tinta del Pais grape seeds. J. Agric. Food Chem. 1992, 40, 1794–1799. [Google Scholar] [CrossRef] [Green Version]
- Fuleki, T.; Da Silva, J.M.R. Catechin and Procyanidin Composition of Seeds from Grape Cultivars Grown in Ontario. J. Agric. Food Chem. 1997, 45, 1156–1160. [Google Scholar] [CrossRef]
- Bombai, G.; Pasini, F.; Verardo, V.; Sevindik, O.; Di Foggia, M.; Tessarin, P.; Bregoli, A.M.; Caboni, M.F.; Rombolà, A.D. Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (Vitis vinifera L.). J. Sci. Food Agric. 2017, 97, 3058–3064. [Google Scholar] [CrossRef] [PubMed]
- Genebra, T.; Santos, R.R.; Francisco, R.; Pinto-Marijuan, M.; Brossa, R.; Serra, A.T.; Duarte, C.M.M.; Chaves, M.M.; Zarrouk, O. Proanthocyanidin Accumulation and Biosynthesis Are Modulated by the Irrigation Regime in Tempranillo Seeds. Int. J. Mol. Sci. 2014, 15, 11862–11877. [Google Scholar] [CrossRef] [PubMed]
- Montero, L.; Herrero, M.; Prodanov, M.; Ibáñez, E.; Cifuentes, A. Characterization of grape seed procyanidins by comprehensive two-dimensional hydrophilic interaction × reversed phase liquid chromatography coupled to diode array detection and tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 4627–4638. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Brianceau, S.; Turk, M.; Boussetta, N.; Vorobiev, E. Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace. Food Bioprocess Technol. 2015, 8, 1139–1148. [Google Scholar] [CrossRef]
- Nawaz, H.; Shi, J.; Mittal, G.S.; Kakuda, Y. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep. Purif. Technol. 2006, 48, 176–181. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R.; Castro-Muñoz, R. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products. Int. J. Mol. Sci. 2018, 19, 351. [Google Scholar] [CrossRef]
- Kuhnert, S.; Lehmann, L.; Winterhalter, P. Rapid characterisation of grape seed extracts by a novel HPLC method on a diol stationary phase. J. Funct. Foods 2015, 15, 225–232. [Google Scholar] [CrossRef]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef]
- Tomasello, B.; Malfa, G.A.; Strazzanti, A.; Gangi, S.; Di Giacomo, C.; Basile, F.; Renis, M. Effects of Physical Activity on Systemic oxidative/DNA Status in Breast Cancer Survivors. Oncol. Lett. 2017, 13, 441–448. [Google Scholar] [CrossRef]
- Roberts, C.K.; Sindhu, K.K. Oxidative stress and metabolic syndrome. Life Sci. 2009, 84, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; He, P.; Xu, S.; Ma, R.; Ding, Y.; Mu, L.; Li, S. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract. J. Toxicol. Sci. 2018, 43, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashir, N.; Shagirtha, K.; Manoharan, V.; Miltonprabu, S. The molecular and biochemical insight view of grape seed proanthocyanidins in ameliorating cadmium-induced testes-toxicity in rat model: Implication of PI3K/Akt/Nrf-2 signaling. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.H.; Yu, Z.L.; Bu, Y.J.; Xu, P.W.; Xi, J.Y.; Liang, H.Y. Grape seed proanthocyanidin extract alleviates high-fat diet induced testicular toxicity in rats. RSC Adv. 2019, 9, 11842–11850. [Google Scholar] [CrossRef] [Green Version]
- Xianchu, L.; Ming, L.; Xiangbin, L.; Lan, Z. Grape seed proanthocyanidin extract supplementation affects exhaustive exercise-induced fatigue in mice. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazima, B.; Manoharan, V.; Miltonprabu, S. Oxidative Stress Induced by Cadmium in the Plasma, Erythrocytes and Lymphocytes of Rats: Attenuation by Grape Seed Proanthocyanidins. Hum. Exp. Toxicol. 2016, 35, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Li, S.G.; Ding, Y.S.; Niu, Q.; Xu, S.Z.; Pang, L.J.; Ma, R.L.; Jing, M.X.; Feng, G.L.; Liu, J.M.; Guo, S.X. Grape Seed Proanthocyanidin Extract Alleviates Arsenic-induced Oxidative Reproductive Toxicity in Male Mice. Biomed. Environ. Sci. 2015, 28, 272–280. [Google Scholar]
- Lu, J.; Jiang, H.; Liu, B.; Baiyun, R.; Li, S.; Lv, Y.; Li, D.; Qiao, S.; Tan, X.; Zhang, Z. Grape seed procyanidin extract protects against Pb-induced lung toxicity by activating the AMPK/Nrf2/p62 signaling axis. Food Chem. Toxicol. 2018, 116, 59–69. [Google Scholar] [CrossRef]
- Quiñones, M.; Guerrero, L.; Suárez, M.; Pons, Z.; Aleixandre, A.; Arola, L.; Muguerza, B. Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. Food Res. Int. 2013, 51, 587–595. [Google Scholar] [CrossRef]
- Thiruchenduran, M.; Vijayan, N.A.; Sawaminathan, J.K.; Devaraj, S.N. Protective effect of grape seed proanthocyanidins against cholesterol cholic acid diet-induced hypercholesterolemia in rats. Cardiovasc. Pathol. 2011, 20, 361–368. [Google Scholar] [CrossRef]
- Huang, L.-L.; Pan, C.; Wang, L.; Ding, L.; Guo, K.; Wang, H.-Z.; Xu, A.-M.; Gao, S. Protective effects of grape seed proanthocyanidins on cardiovascular remodeling in DOCA-salt hypertension rats. J. Nutr. Biochem. 2015, 26, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Iglesias, A.; Pajuelo, D.; Quesada, H.; Díaz, S.; Bladé, C.; Arola, L.; Salvadó, M.J.; Mulero, M. Grape Seed Proanthocyanidin Extract Improves the Hepatic Glutathione Metabolism in Obese Z Ucker Rats. Mol. Nutr. Food Res 2014, 58, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Winiarska-Mieczan, A. Protective effect of tea against lead and cadmium-induced oxidative stress-a review. BioMetals 2018, 31, 909–926. [Google Scholar] [CrossRef]
- Middleton, E., Jr.; Kandaswami, C. Effects of Flavonoids on Immune and Inflammatory Cell Functions. Biochem. Pharmacol. 1992, 43, 1167–1179. [Google Scholar] [CrossRef]
- Li, W.G.; Zhang, X.Y.; Wu, Y.J.; Tian, X. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol. Sin. 2001, 22, 1117–1120. [Google Scholar]
- Weseler, A.R.; Bast, A. Masquelier’s Grape Seed Extract: From Basic Flavonoid Research to a Well-Characterized Food Supplement with Health Benefits. Nutr. J. 2017, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P. The role of adipokines in chronic inflammation. ImmunoTargets Ther. 2016, 5, 47–56. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-Gonzalez, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-Gonzalez, J.A. Inflammation, Oxidative Stress, and Obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [Green Version]
- Terra, X.; Montagut, G.; Bustos, M.; Llopiz, N.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvado, J.; Arola, L.; et al. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J. Nutr. Biochem. 2009, 20, 210–218. [Google Scholar] [CrossRef]
- Terra, X.; Pallarés, V.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvado, J.; Arola, L.; Blay, M.; Blay, M.T. Modulatory effect of grape-seed procyanidins on local and systemic inflammation in diet-induced obesity rats. J. Nutr. Biochem. 2011, 22, 380–387. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, S.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Hong, J.; Liu, R. Back cover: Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol. Nutr. Food Res. 2017, 61, 1770096. [Google Scholar] [CrossRef]
- González-Quilen, C.; Gil-Cardoso, K.; Ginés, I.; Beltrán-Debón, R.; Pinent, M.; Ardévol, A.; Terra, X.; Blay, M.T. Grape-Seed Proanthocyanidins are Able to Reverse Intestinal Dysfunction and Metabolic Endotoxemia Induced by a Cafeteria Diet in Wistar Rats. Nutrients 2019, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, H.; Zhao, J.; Yan, J.; Meng, H.; Zhan, H.; Chen, L.; Yuan, L. Grape seed proanthocyanidin inhibits monocrotaline-induced pulmonary arterial hypertension via attenuating inflammation: In vivo and in vitro studies. J. Nutr. Biochem. 2019, 67, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Salvadó, M.J.; Casanova, E.; Fernández-Iglesias, A.; Arola, L.; Bladé, C. Roles of proanthocyanidin rich extracts in obesity. Food Funct. 2015, 6, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pérez, C.; Segura-Carretero, A.; del Mar Contreras, M. Phenolic Compounds as Natural and Multifunctional Anti-Obesity Agents: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1212–1229. [Google Scholar] [CrossRef]
- Ginés, I.; Gil-Cardoso, K.; Terra, X.; Blay, M.; Pérez-Vendrell, A.M.; Pinent, M.; Ardévol, A. Grape Seed Proanthocyanidins Target the Enteroendocrine System in cafeteria-diet-fed Rats. Mol. Nutr. Food Res. 2019, 63, 1800912. [Google Scholar] [CrossRef]
- Serrano, J.; Casanova-Martí, À.; Gual, A.; Pérez-Vendrell, A.M.; Blay, M.T.; Terra, X.; Ardévol, A.; Pinent, M. A Specific Dose of Grape Seed-Derived Proanthocyanidins to Inhibit Body Weight Gain Limits Food Intake and Increases Energy Expenditure in Rats. Eur. J. Nutr. 2017, 56, 1629–1636. [Google Scholar] [CrossRef]
- Kanoski, S.E.; Hayes, M.R.; Skibicka, K.P. GLP-1 and weight loss: Unraveling the diverse neural circuitry. Am. J. Physiol. Integr. Comp. Physiol. 2016, 310, R885–R895. [Google Scholar] [CrossRef]
- Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Bravo, F.I.; Muguerza, B.; Arola-Arnal, A.; Vila, Z.P. Lack of Tissue Accumulation of Grape Seed Flavanols after Daily Long-Term Administration in Healthy and Cafeteria-Diet Obese Rats. J. Agric. Food Chem. 2015, 63, 9996–10003. [Google Scholar] [CrossRef]
- Serrano, J.; Casanova-Martí, À.; Blay, M.; Terra, X.; Ardévol, A.; Pinent, M. Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-Seed Derived Proanthocyanidin Extract. Nutrients 2016, 8, 652. [Google Scholar] [CrossRef] [PubMed]
- Montagut, G.; Bladé, C.; Blay, M.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, M.J.; Arola, L.; Pinent, M.; Ardèvol, A.; Blay, M.T. Effects of a grapeseed procyanidin extract (GSPE) on insulin resistance☆. J. Nutr. Biochem. 2010, 21, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Serrano, A.; Arola-Arnal, A.; Suárez-García, S.; I Bravo, F.; Suárez, M.; Arola, L.; Bladé, C. Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats. Int. J. Obes. 2017, 41, 1246–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual-Serrano, A.; Bladé, C.; Suárez, M.; Arola-Arnal, A. Grape Seed Proanthocyanidins Improve White Adipose Tissue Expansion during Diet-Induced Obesity Development in Rats. Int. J. Mol. Sci. 2018, 19, 2632. [Google Scholar] [CrossRef]
- Caimari, A.; Del Bas, J.; Crescenti, A.; Arola, L. Low Doses of Grape Seed Procyanidins Reduce Adiposity and Improve the Plasma Lipid Profile in Hamsters. Int. J. Obes. 2013, 37, 576. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Dai, X.; Jiang, Y.; Bao, L.; Li, Y.; Li, Y. Grape seed proanthocyanidins ameliorate pancreatic beta-cell dysfunction and death in low-dose streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats partially by regulating endoplasmic reticulum stress. Nutr. Metab. 2013, 10, 51. [Google Scholar] [CrossRef]
- Ginés, I.; Gil-Cardoso, K.; Serrano, J.; Casanova-Martí, À.; Blay, M.; Pinent, M.; Ardévol, A.; Terra, X. Effects of an Intermittent Grape-Seed Proanthocyanidin (GSPE) Treatment on a Cafeteria Diet Obesogenic Challenge in Rats. Nutrients 2018, 10, 315. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, Y.; Liu, Z.; Gao, Z.; Li, B.; Zhang, D.; Zhang, Z.; Jiang, X.; Liu, Z.; Meng, L. Grape Seed Proanthocyanidin Extract Ameliorates Diabetic Bladder Dysfunction Via the Activation of the Nrf2 Pathway. PLoS ONE. 2015, 10, e0126457. [Google Scholar] [CrossRef]
- Favaretto, F.; Milan, G.; Collin, G.B.; Marshall, J.D.; Stasi, F.; Maffei, P.; Vettor, R.; Naggert, J.K. GLUT4 Defects in Adipose Tissue Are Early Signs of Metabolic Alterations in Alms1GT/GT, a Mouse Model for Obesity and Insulin Resistance. PLoS ONE 2014, 9, e109540. [Google Scholar] [CrossRef]
- Cedó, L.; Castell-Auví, A.; Pallarés, V.; Blay, M.; Ardèvol, A.; Arola, L.; Pinent, M.; Blay, M.T. Grape seed procyanidin extract modulates proliferation and apoptosis of pancreatic beta-cells. Food Chem. 2013, 138, 524–530. [Google Scholar] [CrossRef]
- Yogalakshmi, B.; Bhuvaneswari, S.; Sreeja, S.; Anuradha, C.V. Grape Seed Proanthocyanidins and Metformin Act by Different Mechanisms to Promote Insulin Signaling in Rats Fed High Calorie Diet. J. Cell Commun. Signal. 2014, 8, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Cervantes Gracia, K.; Llanas-Cornejo, D.; Husi, H. CVD and Oxidative Stress. J. Clin. Med. 2017, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, L.; Yu, T.; Zhu, J.; Shen, B.; Zhang, Y.; Wang, H.; Gao, S. Effects of Oligomeric Grape Seed Proanthocyanidins on Heart, Aorta, Kidney in DOCA-salt Mice: Role of Oxidative Stress. Phytother. Res. 2013, 27, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim. Care 2013, 40, 195–211. [Google Scholar] [CrossRef] [PubMed]
GSPE Extract Composition | GSPE Purity * | Dose | Study Design | Major Outcomes | Reference |
---|---|---|---|---|---|
Oxidative stress | |||||
NE | 99% | 400 mg/kg BW/day | Fluoride-induced iron overload Kunming male mice; GSPE (5 weeks) | ↓ ALT, AST, MDA, iron content; ↑ GSH-Px, SOD, T-AOC | [42] |
54% dimeric, 13% trimeric procyanidins, and 7% tetrameric proanthocyanidins | NE | 100 mg/kg BW | Cd intoxicated-adult male albino Wistar rats; GSPE (4 weeks) | ↓ ROS, TBARS, LOOH, PC, CD, and NO, ↑ GSH, TSH, Vitamin C and E | [43] |
Dimer (56%), trimer (12%), tetramer (6.6%), monomers and other high-molecular mass oligomers (20.4%) | >95% | 100 and 300 mg/kg BW | HFD fed male Sprague Dawley rats; GSPE (13 weeks) | ↓ MDA levels and ↑ GSH, GSH-Px and SOD activities of the testes tissue | [44] |
NE | ≥95% | 1, 50 and 100 mg/kg BW/day | Male ICR mice; GSPE (28 days) | ↑ T-AOC, SOD, CAT and ↓ MDA activities in plasma and in skeletal muscle (50 and 100 mg/kg BW day of GSPE) | [45] |
54% dimeric, 13% trimeric and 7% tetrameric proanthocyanidins | NE | 100 mg/kg BW/day | Cd-intoxicated male albino Wistar rats; GSPE (4 weeks) | ↓ AST, ALT, ACP, LDH and ΥGT and ↑ ALP; ↓ TBARS, LH, NO plasma levels and ↑ vitamins C and E and GSH plasma concentration | [46] |
NE | >95% | High dose 400 mg/kg BW/day, 100, 200, 400 mg/kg BW/day | As-induced Oxidative Reproductive Toxicity male Kunming mice; GSPE (5 weeks) | GSPE (400 mg/kg/BW) ↓ MDA and 8-OHdG levels and ↑ T-AOC, GSH and SOD activities | [47] |
56% dimeric, 12% trimeric procyanidins, and 6.6% tetrameric PACs | NE | 200 mg/kg BW/day | Pb-induced lung toxicity male Wistar rats, GSPE (5 weeks) | ↓ MDA levels and total Pb accumulation in the lung. ↑ GSH, SOD, γ-GCS activities and Nrf2 levels in lung tissue | [48] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 375 mg/kg BW/day | Male, spontaneously hypertensive rats, GSPE (2 days) | No changes in MDA liver tissue and plasma ACE, ↑ GSH | [49] |
NE | 37% | 100 mg/kg BW/day | Hypercholesterolemic induced-male Wistar rats; GSPE (30 days) | ↑ SOD, CAT, GSH, ascorbate and α -tocopherol in cardiac tissue | [50] |
NE | NE | 150, 240, 384 mg/kg BW/day | DOCA hypertension-induced SD rats; GSPE (4 weeks) | ↑ SOD activities, inhibition of the increase of serum and cardiac tissue MDA, inhibition of p-JNK1/2 and p-p38MAPK | [51] |
Catechin (58 mol/g), epicatechin (52 mol/g), epigallocatechin (5.50 mol/g), epicatechin gallate (89 mol/g), epigallocatechin gallate (1.40 mol/g), dimeric procyanidins (250 mol/g), trimeric procyanidins (15.68 mol/g), tetrameric procyanidins (8.8 mol/g), pentameric procyanidins (0.73 mol/g), and hexameric procyanidins (0.38mol/g) | >75% | 35 mg/kg BW/day | Obese Zucker rats; GSPE (10 weeks) | ↑ GSH/GSSG ratio and ORAC, ↓ GSSG content | [52] |
GSPE Extract Composition | GSPE Purity* | Dose | Study Design | Major Outcomes | Reference |
---|---|---|---|---|---|
Inflammation | |||||
NE | >95% | 300 mg/kg BW/day | Specific-pathogen free male C57BL/6 mice fed with HFD; GSPE (7 weeks) | ↓ Plasma levels of TNF-α, IL-6 and MCP-1 | [61] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 345 mg/kg BW/day | HFD fed male Zucker rats; GSPE (19 weeks) | ↓ CRP, ↑ adiponectin plasma levels, no differences in IL-6 plasma levels | [59] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 30 mg/kg BW/day | HFD fed female Wistar rats; GSPE (15 weeks) - Preventive treatment | ↓ CRP and TNF-α plasma and adipose tissue levels, ↓ IL-6, Emr1 and ↑ adiponectin in adipose tissue | [60] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 10 or 20 mg/animal/day | Diet-induced obese female Wistar rats; GSPE (10 days or 30 days) | ↓ CRP and TNF-α plasma levels after 10 days (20 mg/animal/day) | [60] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 100 and 500 mg/kg BW/day | Diet-induced obese female Wistar rats; GSPE (2 weeks) | ↓ TNF-α secretions, ↓ transepithelial electrical resistance in small and large intestine, ↓ plasma LPS to basal levels | [62] |
56% dimeric, 12% trimeric procyanidins, and 6.6% tetrameric PACs | NE | 200 mg/kg BW/day | Pb-induced lung toxicity male Wistar rats, GSPE (5 weeks) | ↓ inflammatory cells in the lung tissue, ↓ TNF-α in lung tissue | [48] |
NE | ≥95% | 1, 50 and 100 mg/kg BW/day | Male ICR mice; GSPE (28 days) | ↓ TNF-α and IL-1β activities in plasma and in skeletal muscle (50 and 100 mg/kg BW day of GSPE) | [45] |
NE | 99.5 g GSP/mL | 10 mL/kg BW/day | Monocrotaline-induced PAH male Sprague–Dawley rats; GSPE (3 weeks) | Down regulation of myeloperoxidase, IL-1β, IL-6 and TNF-α in lung tissue | [63] |
GSPE Extract Composition | GSPE Purity * | Dose | Study Design | Major Outcomes | Reference |
---|---|---|---|---|---|
Obesity | |||||
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 500 mg/kg BW/day | Aged male Wistar rats; GSPE (8 days) | ↓ Food intake, ↑ energy expenditure, ↓ BW | [71] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | Acute treatment 1000 mg/kg; Chronic treatment: 500 and 1000 mg/kg BW/day | Female Wistar rats; GSPE (8 days) | Acute treatment: ↑ GLP-1 plasma levels, CART mRNA expression; chronic treatment: no differences in leptin levels; no clear effects on the hypothalamic mRNA levels | [68] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 100 and 500 mg/kg BW/day | Diet-induced obese female Wistar rats; GSPE (2 weeks) | No changes in adiposity, ↓ BW gain at 500 mg/kg/BW | [62] |
Catechin (121 ± 3 mg/g), epicatechin (93 ± 4 mg/g), PAC dimer B1 (89 ± 3 mg/g), PAC dimer B3 (46 ± 2 mg/g) | NE | 25 mg/kg BW/day | Diet-induced obese male Wistar rats; GSPE (3 weeks) | ↓ adipocyte size, no reduction of BW gain, no reversion of adiposity in WAT | [73] |
Phenolic acids (1.63%), as well as monomeric (20.9%), dimeric (20.7%), trimeric (17.3%) and oligomeric (39.41%) procyanidins. | NE | 25 mg/kg BW/day | Male Golden Syrian hamsters fed with HFD; GSPE (15 days) | ↓ Adiposity index, the weight of the WAT depots and the BW gain | [75] |
Dimer (56%), trimer (12%), tetramer (6.6%), monomers and other high-molecular mass oligomers (20.4%) | >95% | 300 mg/kg BW | HFD fed male Sprague Dawley rats; GSPE (13 weeks) | ↓ Relative weight of WAT | [44] |
NE | >95% | 300 mg/kg BW/day | Specific-pathogen free male C57BL/6 mice fed with an HFD; GSPE (7 weeks) | ↓ Epidydimal fat mass, no changes in BW | [61] |
NE | 37% | 100 mg/kg BW/day | Hypercholesterolemic induced-male Wistar rats; GSPE (30 days) | ↓ BW | [50] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 25 mg/kg BW/day | Diet-induced obese female Wistar rats; GSPE (10 days and 30 days) | ↓ the total amount of visceral adipose tissue, no reduction of BW gain, no changes in plasma leptin levels after 30 days intervention | [72] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 345 mg/kg BW/day | HFD fed Male Zucker rats; GSPE (19 weeks) | No changes in adiposity index or in BW | [59] |
Monomeric (21.3%), dimeric (17.4%), trimeric (16.3%), tetrameric (13.3%) and oligomeric (5–13 units) (31.7%) procyanidins and phenolic acids (4.7 %) | >75% | 30 mg/kg BW/day | HFD fed female Wistar rats; GSPE (15 weeks) - Preventive treatment | ↓ BW gain, no changes in adiposity or the weight of fat depots | [60] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 10 or 20 mg/animal/day | Diet-induced obese female Wistar rats; GSPE (10 days or 30 days) | No significant ↓in adiposity index or in BW | [60] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 25 mg/kg BW | Diet-induced obese male Wistar rats; GSPE (12 weeks) | No significant reduction in weight gain or reverse or adiposity, ↓ adipocyte size | [73] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 25, 100 and 200 mg/kg BW | Diet-induced obese male Wistar rats; GSPE (3 weeks) | Not improvement of adiposity index, prevention in the increase of the area and volume of the WAT, no change in leptin plasma levels, BW and upregulation PPARΥ (200 mg/kg BW) | [74] |
Monomers of flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 500 mg/kg BW/day | Diet-induced obese female Wistar rats; GSPE intermittently | ↓ BW, total WAT, BAT, % visceral adiposity and % total adiposity | [77] |
Diabetes | |||||
6.1% catechin, 6.78% epicatechin, 55.59% dimeric forms, 11.91% trimeric forms, 6.55% tetrameric forms and small amounts of other polymeric forms | 96.64% | 500 mg/kg BW/day | STZ-induced diabetic male Sprague–Dawley rats with basal diet; GSPE (16 weeks) | The score of beta-cell function and the abnormal oral glucose tolerance partially reversed, ↑ normal insulin content | [76] |
Monomeric (21.3%), dimeric (17.4%), trimeric (16.3%), tetrameric (13.3%) and oligomeric (5–13 units; 31.7%) | >75% | 25 mg/kg BW/day | Diet-induced obese female Wistar rats; GSPE (10 days and 30 days) | ↓ fasting plasma insulin levels after 10 and 30 days | [72] |
Monomeric (21.3%), dimeric (17.4%), trimeric (16.3%), tetrameric (13.3%) and oligomeric (5–13 units) (31.7%) procyanidins and phenolic acids (4.7%) | NE | 345 mg/kg BW/day | HFD fed Male Zucker rats; GSPE (19 weeks) | ↓ glucose levels | [59] |
89 % PAC, 6 % monomers, and 5 % other materials | NE | 100 mg/kg BW/day | High fat-fructose diet fed male Wistar rats; GSPE (45 days) | ↓ glucose and insulin levels, ↑ insulin sensitivity, restoration of the activities of glycolytic enzymes in the liver | [81] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PAs | >75% | 25, 100 and 200 mg/kg BW | Diet-induced obese male Wistar rats; GSPE (12 weeks) | No significant changes in glucose, insulin or HOMA-IR plasma levels | [74] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PAs | >75% | 25 mg/kg BW/day | Diet-induced obese male Wistar rats; GSPE (3 weeks) | ↓ plasma glucose and insulin levels | [73] |
Cardiovascular risk disease | |||||
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of procyanidins. | >75% | 375 mg/kg BW | Male, spontaneously hypertensive rats; GSPE (2 days) | ↓ DBP and SBP | [49] |
NE | 37% | 100 mg/kg BW | Hypercholesterolemic induced-male Wistar rats; GSPE (30 days) | ↓ Tissue and serum cholesterol levels, LDL, serum free fatty acids, serum TAGs and ↑ (p < 0.01) serum phospholipids and HDL. | [50] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PAs | >75% | 25 mg/kg BW/day | Diet-induced obese male Wistar rats; GSPE (3 weeks) | ↓ TC | [73] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 345 mg/kg BW/day | HFD fed Male Zucker rats; GSPE (19 weeks) | No changes in total plasma cholesterol | [59] |
NE | NE | 150, 240, 384 mg/kg BW/day | DOCA hypertension-induced SD rats; GSPE (4 weeks) | ↓ SBP, reversion of morphological hypertrophy of heart, ↑ in aortic rings vasodilatation | [51] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 25, 100 and 200 mg/kg BW | Diet-induced obese male Wistar rats; GSPE (12 weeks) | No significant changes in plasma TC, TAGs, HDL | [74] |
Flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers (5–13 units; 31.7%) of PACs | >75% | 500 mg/kg BW/day | Diet-induced obese female Wistar rats; GSPE intermittently | No significant changes in plasma TAGs, fatty acids and cholesterol levels | [77] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Pérez, C.; García-Villanova, B.; Guerra-Hernández, E.; Verardo, V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients 2019, 11, 2435. https://doi.org/10.3390/nu11102435
Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, Verardo V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients. 2019; 11(10):2435. https://doi.org/10.3390/nu11102435
Chicago/Turabian StyleRodríguez-Pérez, Celia, Belén García-Villanova, Eduardo Guerra-Hernández, and Vito Verardo. 2019. "Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models" Nutrients 11, no. 10: 2435. https://doi.org/10.3390/nu11102435
APA StyleRodríguez-Pérez, C., García-Villanova, B., Guerra-Hernández, E., & Verardo, V. (2019). Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients, 11(10), 2435. https://doi.org/10.3390/nu11102435