Effect of Wakame and Carob Pod Snacks on Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals, Diets, and Experimental Design
2.3. Serum Parameters
2.4. Liver Composition
2.5. Oxidative Stress Determinants
2.6. Enzyme Activities
2.7. RNA Extraction and Real Time RT-PCR
2.8. Western Blot
2.9. Statistical Analysis
3. Results
3.1. Effect of the Snacks on Liver Weight and Liver Composition
3.2. Effect of the Snacks on Serum Parameters
3.3. Effect of the Snacks on Oxidative Stress
3.4. Effect of the Snacks on β-Oxidation Related Gene Expression and Enzyme Activity
3.5. Effect of the Snacks on Lipogenesis Related Gene Expression and Enzyme Activity
3.6. Effects of the Snacks on the Expression Of Genes Involved in Lipolysis, Triacylglycerol Re-Esterification and Release
3.7. Effect of the Snacks on Fatty Acid Uptake Related Gene and Protein Expression
3.8. Effect of the Snacks on Glucose Uptake Related Gene and Protein Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwenger, K.J.P.; Bolzon, C.M.; Li, C.; Allard, J.P. Non-alcoholic fatty liver disease and obesity: The role of the gut bacteria. Eur. J. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol. Ther. 2011, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Sayiner, M.; Koenig, A.; Henry, L.; Younossi, Z.M. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in the United States and the Rest of the World. Clin. Liver Dis. 2016, 20, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Softic, S.; Cohen, D.E.; Kahn, C.R. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Dig. Dis. Sci. 2016, 61, 1282–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Airanthi, M.K.; Sasaki, N.; Iwasaki, S.; Baba, N.; Abe, M.; Hosokawa, M.; Miyashita, K. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver. J. Agric. Food Chem. 2011, 59, 4156–4163. [Google Scholar] [CrossRef]
- Murata, M.; Ishihara, K.; Saito, H. Hepatic fatty acid oxidation enzyme activities are stimulated in rats fed the brown seaweed, Undaria pinnatifida (wakame). J. Nutr. 1999, 129, 146–151. [Google Scholar] [CrossRef]
- Schultz Moreira, A.R.; García-Fernández, R.A.; Bocanegra, A.; Méndez, M.T.; Bastida, S.; Benedí, J.; Sánchez-Reus, M.I.; Sánchez-Muniz, F.J. Effects of seaweed-restructured pork diets enriched or not with cholesterol on rat cholesterolaemia and liver damage. Food Chem. Toxicol. 2013, 56, 223–230. [Google Scholar] [CrossRef]
- Souli, A.; Sebai, H.; Chehimi, L.; Rtibi, K.; Tounsi, H.; Boubaker, S.; Sakly, M.; El-Benna, J.; Amri, M. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat. Toxicol. Ind. Health 2015, 31, 802–810. [Google Scholar] [CrossRef]
- Rtibi, K.; Selmi, S.; Jabri, M.A.; El-Benna, J.; Amri, M.; Marzouki, L.; Sebai, H. Protective Effect of Ceratonia siliqua L. Against a Dextran Sulfate Sodium-Induced Alterations in Liver and Kidney in Rat. J. Med. Food 2016, 19, 882–889. [Google Scholar] [CrossRef]
- Lasa, A.; Simon, E.; Churruca, I.; Fernandez-Quintela, A.; Rodriguez, V.M.; Portillo, M.P. Adiposity and serum parameters in hamsters fed energy restricted diets supplemented or not with trans-10,cis-12 conjugated linoleic acid. J. Physiol. Biochem. 2007, 63, 297–304. [Google Scholar] [CrossRef]
- Reeves, P.G.; Rossow, K.L.; Lindlauf, J. Development and testing of the AIN-93 purified diets for rodents: Results on growth, kidney calcification and bone mineralization in rats and mice. J. Nutr. 1993, 123, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Zabala, A.; Churruca, I.; Macarulla, M.; Rodríguez, V.; Fernández-Quintela, A.; Martínez, J.; Portillo, M. The trans-10,cis-12 isomer of conjugated linoleic acid reduces hepatic triacylglycerol content without affecting lipogenic enzymes in hamsters. Br. J. Nutr. 2004, 92, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynen, F. Yeast fatty acid synthase. Methods Enzymol. 1969, 14, 17–33. [Google Scholar]
- Bieber, L.; Abraham, T.; Helmrath, T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal. Biochem. 1972, 50, 509–518. [Google Scholar] [CrossRef]
- Srere, P. Citrate synthase. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1969; Volume 13, pp. 3–11. [Google Scholar]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Arias, N.; Macarulla, M.T.; Aguirre, L.; Miranda, J.; Portillo, M.P. Liver delipidating effect of a combination of resveratrol and quercetin in rats fed an obesogenic diet. J. Physiol. Biochem. 2015, 71, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Arias, N.; Picó, C.; Teresa Macarulla, M.; Oliver, P.; Miranda, J.; Palou, A.; Portillo, M.P. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity 2017, 25, 111–121. [Google Scholar] [CrossRef]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Rico, D.; Martín Diana, A.B.; Milton-Laskibar, I.; Fernandez-Quintela, A.; Silván, J.M.; Rai, D.K.; Choudhary, A.; Peñas, E.; De Luis, D.A.; Martinez-Villaluenga, C. Characterization and in vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome. J. Funct. Foods 2018, 185–194. [Google Scholar] [CrossRef]
- Rico, D.; Alonso de LInaje, A.; Herrero, A.; Asensio-Vegas, C.; Miranda, J.; Martinez-Villaluenga, C.; de Luis, D.A.; Martin Diana, A.B. Carob by-products and seaweeds for the development of functional bread. J. Food Procces. Preserv. 2018. [Google Scholar] [CrossRef]
- Ahmed, A.; Wong, R.J.; Harrison, S.A. Nonalcoholic Fatty Liver Disease Review: Diagnosis, Treatment, and Outcomes. Clin. Gastroenterol. Hepatol. 2015, 13, 2062–2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassir, F.; Rector, R.S.; Hammoud, G.M.; Ibdah, J.A. Pathogenesis and Prevention of Hepatic Steatosis. Gastroenterol. Hepatol. 2015, 11, 167–175. [Google Scholar]
- Lückhoff, H.K.; Kruger, F.C.; Kotze, M.J. Composite prognostic models across the non-alcoholic fatty liver disease spectrum: Clinical application in developing countries. World J. Hepatol. 2015, 7, 1192–1208. [Google Scholar] [CrossRef] [PubMed]
- Crespillo, A.; Alonso, M.; Vida, M.; Pavón, F.J.; Serrano, A.; Rivera, P.; Romero-Zerbo, Y.; Fernández-Llebrez, P.; Martínez, A.; Pérez-Valero, V.; et al. Reduction of body weight, liver steatosis and expression of stearoyl-CoA desaturase 1 by the isoflavone daidzein in diet-induced obesity. Br. J. Pharmacol. 2011, 164, 1899–1915. [Google Scholar] [CrossRef] [Green Version]
- Sadi, G.; Ergin, V.; Yilmaz, G.; Pektas, M.B.; Yildirim, O.G.; Menevse, A.; Akar, F. High-fructose corn syrup-induced hepatic dysfunction in rats: Improving effect of resveratrol. Eur. J. Nutr. 2015, 54, 895–904. [Google Scholar] [CrossRef]
- Yen, C.L.; Stone, S.J.; Koliwad, S.; Harris, C.; Farese, R.V. Thematic review series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008, 49, 2283–2301. [Google Scholar] [CrossRef]
- Yoshinaga, K.; Nakai, Y.; Izumi, H.; Nagaosa, K.; Ishijima, T.; Nakano, T.; Abe, K. Oral Administration of Edible Seaweed Undaria Pinnatifida (Wakame) Modifies Glucose and Lipid Metabolism in Rats: A DNA Microarray Analysis. Mol. Nutr. Food Res. 2018, 62, e1700828. [Google Scholar] [CrossRef]
- Valero-Muñoz, M.; Ballesteros, S.; Ruiz-Roso, B.; Pérez-Olleros, L.; Martín-Fernández, B.; Lahera, V.; de Las Heras, N. Supplementation with an insoluble fiber obtained from carob pod (Ceratonia siliqua L.) rich in polyphenols prevents dyslipidemia in rabbits through SIRT1/PGC-1α pathway. Eur. J. Nutr. 2017. [Google Scholar] [CrossRef]
- Francini, F.; Castro, M.C.; Schinella, G.; García, M.E.; Maiztegui, B.; Raschia, M.A.; Gagliardino, J.J.; Massa, M.L. Changes induced by a fructose-rich diet on hepatic metabolism and the antioxidant system. Life Sci. 2010, 86, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Polimeni, L.; Del Ben, M.; Baratta, F.; Perri, L.; Albanese, F.; Pastori, D.; Violi, F.; Angelico, F. Oxidative stress: New insights on the association of non-alcoholic fatty liver disease and atherosclerosis. World J. Hepatol. 2015, 7, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Seth, R.K.; Das, S.; Dattaroy, D.; Chandrashekaran, V.; Alhasson, F.; Michelotti, G.; Nagarkatti, M.; Nagarkatti, P.; Diehl, A.M.; Bell, P.D.; et al. TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity. Free Radic. Biol. Med. 2017, 102, 260–273. [Google Scholar] [CrossRef]
- Seth, R.K.; Das, S.; Kumar, A.; Chanda, A.; Kadiiska, M.B.; Michelotti, G.; Manautou, J.; Diehl, A.M.; Chatterjee, S. CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8+ T cells aid progression of environment-linked nonalcoholic steatohepatitis. Toxicol. Appl. Pharmacol. 2014, 274, 42–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.J.; Engstler, A.J.; Sellmann, C.; Ziegenhardt, D.; Landmann, M.; Kanuri, G.; Lounis, H.; Schröder, M.; Vetter, W.; Bergheim, I. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: Role of melatonin and lipid peroxidation. Br. J. Nutr. 2016, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.A.; D’Orazio, N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs 2015, 13, 2196–2214. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, M.; Belci, P.; Collo, A.; Prandi, V.; Pistone, E.; Martorana, M.; Gambino, R.; Bo, S. Gender specific medicine in liver diseases: A point of view. World J. Gastroenterol. 2014, 20, 2127–2135. [Google Scholar] [CrossRef]
MS | WC | OC | SA | SB | |
---|---|---|---|---|---|
Final body weight (g) | 412.0 ± 10.0 | 456.0 ± 14.0 | 449.0 ± 5.0 | 441.0 ± 8.0 | 448.0 ± 12.0 |
Liver weight (g) | 15.5 ± 0.6 a | 15.0 ± 0.3 a | 14.8 ± 0.7 a | 13.9 ± 0.7 a | 13.8 ± 0.7 a |
Liver/body weight | 3.7 ± 0.1 a | 3.3 ± 0.1 b | 3.3 ± 0.1 b | 3.1 ± 0.1 b | 3.1 ± 0.1 b |
Liver composition: | |||||
Triglycerides (%) | 5.31 ± 0.51 a | 4.29 ± 0.39 b | 3.66 ± 0.41 b,c | 3.43 ± 0.29 b,c | 3.15 ± 0.35 c |
Phospholipids (%) | 2.14 ± 0.11 a | 2.29 ± 0.15 b | 2.10 ± 0.13 b | 2.90 ± 0.27 b,c | 2.26 ± 0.08 c |
Protein (%) | 13.2 ± 0.5 b | 16.2 ± 1.3 a,b | 15.0 ± 0.9 a,b | 16.8 ± 0.6 a | 16.1 ± 1.1 a,b |
Water (%) | 61.4 ± 1.0 b | 64.0 ± 0.9 b | 72.9 ± 0.9 a | 66.6 ± 1.2 b | 65.3 ± 1.5 b |
MS | WC | OC | SA | SB | |
---|---|---|---|---|---|
Triacylglycerol (mg/L) | 37.1 ± 6.4 b | 64.0 ± 22.8 a | 46.6 ± 15.4 a,b | 37.4 ± 11.0 b | 40.6 ± 18.4 b |
NEFA (mmol/L) | 0.51 ± 0.10 a | 0.44 ± 0.12 a,b | 0.39 ± 0.09 a,b | 0.35 ± 0.04 b | 0.29 ± 0.03 b |
Total cholesterol (mg) | 150.0 ± 23.4 | 147.1 ± 15.9 | 143.0 ± 12.0 | 142.1 ± 19.6 | 136.7 ± 5.8 |
HDL-cholesterol (mg) | 13.9 ± 4.3 a | 10.2 ± 1.9 b | 10.7 ± 2.1 a,b | 11.2 ± 2.6 a,b | 11.1 ± 0.7 a,b |
Non-HDL-cholesterol | 136.1 ± 23.3 a | 136.9 ± 15.7 b | 131.2 ± 11.2 b | 130.9 ± 20.3 b | 125.0 ± 6.0 b |
Transaminases | |||||
GPT (U/L) | 42.0 ± 4.3 | 25.9 ± 1.7 | 29.0 ± 2.1 | 38.7 ± 6.6 | 32.4 ± 4.7 |
GOT (U/L) | 124.8 ± 5.3 a,b | 109.5 ± 3.3 a,b | 127.3 ± 5.9 a,b | 155.3 ± 25.3 a | 96.2 ± 11.1 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rico, D.; Martin-Diana, A.B.; Lasa, A.; Aguirre, L.; Milton-Laskibar, I.; De Luis, D.A.; Miranda, J. Effect of Wakame and Carob Pod Snacks on Non-Alcoholic Fatty Liver Disease. Nutrients 2019, 11, 86. https://doi.org/10.3390/nu11010086
Rico D, Martin-Diana AB, Lasa A, Aguirre L, Milton-Laskibar I, De Luis DA, Miranda J. Effect of Wakame and Carob Pod Snacks on Non-Alcoholic Fatty Liver Disease. Nutrients. 2019; 11(1):86. https://doi.org/10.3390/nu11010086
Chicago/Turabian StyleRico, Daniel, Ana Belén Martin-Diana, Arrate Lasa, Leixuri Aguirre, Iñaki Milton-Laskibar, Daniel Antonio De Luis, and Jonatan Miranda. 2019. "Effect of Wakame and Carob Pod Snacks on Non-Alcoholic Fatty Liver Disease" Nutrients 11, no. 1: 86. https://doi.org/10.3390/nu11010086
APA StyleRico, D., Martin-Diana, A. B., Lasa, A., Aguirre, L., Milton-Laskibar, I., De Luis, D. A., & Miranda, J. (2019). Effect of Wakame and Carob Pod Snacks on Non-Alcoholic Fatty Liver Disease. Nutrients, 11(1), 86. https://doi.org/10.3390/nu11010086