Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection
Abstract
1. Introduction
2. Prevalence
3. Almond Allergens
3.1 Detection of Almond Allergens
3.1.1. Immunochemical Methods
ELISA Methods
Lateral Flow Devices or Dipstick Assays
Immunoblotting
3.1.2. DNA-Based Methods
3.1.3. Mass Spectrometry (MS)-Based Methods
3.1.4. Allergen Microarrays
3.1.5. Adenosine Tri-Phosphate and Total Protein Methods
4. Threshold Dose Distribution and Precautionary Allergen Labelling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and management of food allergy in the united states: Report of the niaid-sponsored expert panel. J. Allergy Clin. Immunol. 2010, 126, S5–S58. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and management of food allergy in the united states: Summary of the niaid-sponsored expert panel report. J. Allergy Clin. Immunol. 2010, 126, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Finding a Path to Safety in Food Allergy: Assessment of the Global Burden, Causes, Prevention, Management, and Public Policy; Stallings, V.A., Oria, M.P., Eds.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Sicherer, S.H.; Sampson, H.A. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 2018, 141, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Allen, K.; Lack, G.; Taylor, S.L.; Donovan, S.M.; Oria, M. Critical issues in food allergy: A National Academies Consensus Report. Pediatrics 2017, 140, e20170194. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.J.; Koplin, J.J. Prospects for prevention of food allergy. J. Allergy Clin. Immunol. Pract. 2016, 4, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, G.; Tsakok, T.; Lack, S.; Lack, G. Prevention of food allergy. J. Allergy Clin. Immunol. 2016, 137, 998–1010. [Google Scholar] [CrossRef] [PubMed]
- Luyt, D.K.; Vaughan, D.; Oyewole, E.; Stiefel, G. Ethnic differences in prevalence of cashew nut, pistachio nut and almond allergy. Pediatr. Allergy Immunol. 2016, 27, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.; Dennis, S.; Gendel, S.; Acheson, D.; Assimon, S.A.; Beru, N.; Bolger, P.; Carlson, D.; Carvajal, R.; Copp, C.; et al. Approaches to establish thresholds for major food allergens and for gluten in food. J. Food Prot. 2008, 71, 1043–1088. [Google Scholar] [PubMed]
- McWilliam, V.; Koplin, J.; Lodge, C.; Tang, M.; Dharmage, S.; Allen, K. The prevalence of tree nut allergy: A systematic review. Curr. Allergy Asthma Rep. 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shoshan, M.; Turnbull, E.; Clarke, A. Food allergy: Temporal trends and determinants. Curr. Allergy Asthma Rep. 2012, 12, 346–372. [Google Scholar] [CrossRef] [PubMed]
- Woods, R.K.; Abramson, M.; Raven, J.M.; Bailey, M.; Weiner, J.M.; Walters, E.H. Reported food intolerance and respiratory symptoms in young adults. Eur. Respir. J. 1998, 11, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.S.; Chiu, W.H. Food hypersensitivity in primary school children in Taiwan: Relationship with asthma. Food Agric. Immunol. 2012, 23, 247–254. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Munoz-Furlong, A.; Sampson, H.A. Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: A 5-year follow-up study. J. Allergy Clin. Immunol. 2003, 112, 1203–1207. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Furlong, T.J.; Munoz-Furlong, A.; Burks, A.W.; Sampson, H.A. A voluntary registry for peanut and tree nut allergy: Characteristics of the first 5149 registrants. J. Allergy Clin. Immunol. 2001, 108, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Young, E.; Stoneham, M.D.; Petruckevitch, A.; Barton, J.; Rona, R. A population study of food intolerance. Lancet 1994, 343, 1127–1130. [Google Scholar] [CrossRef]
- Orhan, F.; Karakas, T.; Cakir, M.; Aksoy, A.; Baki, A.; Gedik, Y. Prevalence of immunoglobulin e-mediated food allergy in 6–9-year-old urban schoolchildren in the eastern black sea region of turkey. Clin. Exp. Allergy 2009, 39, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Brugman, E.; Meulmeester, J.F.; Spee-van der Wekke, A.; Beuker, R.J.; Radder, J.J.; Verloove-Vanhorick, S. Prevalence of self-reported food hypersensitivity among school children in the netherlands. Eur. J. Clin. Nutr. 1998, 52, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gimeno, A.; Del Castillo, P.; Garcia-Hernandez, G.; Luna-Paredes, C.; Garcia-Sanchez, J.A. Prevalence of food allergy/intolerance in children: Results from a population based survey. J. Allergy Clin. Immunol. 2000, 105, S130. [Google Scholar] [CrossRef]
- Burney, P.; Summers, C.; Chinn, S.; Hooper, R.; van Ree, R.; Lidholm, J. Prevalence and distribution of sensitization to foods in the european community respiratory health survey: A Europrevall analysis. Allergy 2010, 65, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.M.; Kleine-Tebbe, J.; Hoffmann, H.J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R.C.; Agache, I.; Asero, R.; Ballmer-Weber, B.; et al. EAACI molecular allergology user’s guide. Pediatr. Allergy Immunol. 2016, 27, 1–250. [Google Scholar] [CrossRef] [PubMed]
- Holzhauser, T.; Roder, M. Allergens in treenuts, sesame seeds, mustard and celery. In Food Allergens—Analysis, Instrumentation and Methods; Nollet, L.M.L., van Hengel, A.J., Eds.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Yeung, J.M. Criteria to determine priority allergens: Tree nut allergy review. In Allergen Management in the Food Industry; John Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Clark, A.T.; Ewan, P.W. Interpretation of tests for nut allergy in one thousand patients, in relation to allergy or tolerance. Clin. Exp. Allergy 2003, 33, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Noble, K.A.; Liu, C.Q.; Sathe, S.K.; Roux, K.H. A cherry seed-derived spice, mahleb, is recognized by anti-almond antibodies including almond-allergic patient IgE. J. Food Sci. 2017, 82, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Uotila, R.; Kukkonen, A.K.; Pelkonen, A.S.; Makela, M.J. Cross-sensitization profiles of edible nuts in a birch-endemic area. Allergy 2016, 71, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Couch, C.; Franxman, T.; Greenhawt, M. Characteristics of tree nut challenges in tree nut allergic and tree nut sensitized individuals. J. Allergy Clin. Immunol. 2017, 118, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Boyano, M.; Pedrosa, M.; Quirce, S.; Boyano-Martinez, T. Household almond and peanut consumption is related to the development of sensitization in young children. J. Allergy Clin. Immunol. 2016, 137, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J. 2014, 12. [Google Scholar] [CrossRef]
- Costa, J.; Mafra, I.; Carrapatoso, I.; Oliveira, M. Almond allergens: Molecular characterization, detection, and clinical relevance. J. Agric. Food Chem. 2012, 60, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.; Sethi, D.K.; Salunke, D.M. Purification, identification and preliminary crystallographic studies of pru du amandin, an allergenic protein from prunus dulcis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2008, 64, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.C.; Albillos, S.M.; Guo, F.; Howard, A.; Fu, T.J.; Kothary, M.H.; Zhang, Y.Z. Crystal structure of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin. J. Agric. Food Chem. 2009, 57, 8643–8651. [Google Scholar] [CrossRef] [PubMed]
- Tawde, P.; Venkatesh, Y.P.; Wang, F.; Teuber, S.S.; Sathe, S.K.; Roux, K.H. Cloning and characterization of profilin (pru du 4), a cross-reactive almond (Prunus dulcis) allergen. J. Allergy Clin. Immunol. 2006, 118, 915–922. [Google Scholar] [CrossRef] [PubMed]
- WHO/IUIS Allergen Nomenclature Sub-Committee. Allergen Nomenclature. Available online: http://www.allergen.org (accessed on 4 September 2018).
- Roux, K.H.; Teuber, S.S.; Robotham, J.M.; Sathe, S.K. Detection and stability of the major almond allergen in foods. J. Agric. Food Chem. 2001, 49, 2131–2136. [Google Scholar] [CrossRef] [PubMed]
- Willison, L.N.; Tripathi, P.; Sharma, G.; Teuber, S.S.; Sathe, S.K.; Roux, K.H. Cloning, expression and patient IgE reactivity of recombinant pru du 6, an 11s globulin from almond. Int. Arch. Allergy Immunol. 2011, 156, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Willison, L.N.; Zhang, Q.; Su, M.N.; Teuber, S.S.; Sathe, S.K.; Roux, K.H. Conformational epitope mapping of pru du 6, a major allergen from almond nut. Mol. Immunol. 2013, 55, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.; Teuber, S.S.; Roux, K.H.; Sathe, S.K. Effects of roasting, blanching, autoclaving, and microwave heating on antigenicity of almond (Prunus dulcis L.) proteins. J. Agric. Food Chem. 2002, 50, 3544–3548. [Google Scholar] [CrossRef] [PubMed]
- Mandalari, G.; Rigby, N.M.; Bisignano, C.; Lo Curto, R.B.; Mulholland, F.; Su, M.; Venkatachalam, M.; Robotham, J.M.; Willison, L.N.; Lapsley, K.; et al. Effect of food matrix and processing on release of almond protein during simulated digestion. LWT-Food Sci. Technol. 2014, 59, 439–447. [Google Scholar] [CrossRef]
- Holden, L.; Sletten, G.B.G.; Lindvik, H.; Faeste, C.K.; Dooper, M. Characterization of IgE binding to lupin, peanut and almond with sera from lupin-allergic patients. Int. Arch. Allergy Immunol. 2008, 146, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Poltronieri, P.; Cappello, M.S.; Dohmae, N.; Conti, A.; Fortunato, D.; Pastorello, E.A.; Ortolani, C.; Zacheo, G. Identification and characterisation of the IgE-binding proteins 2s albumin and conglutin gamma in almond (Prunus dulcis) seeds. Int. Arch. Allergy Immunol. 2002, 128, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Abolhassani, M.; Roux, K.H. Cdna cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (Prunus dulcis). Iran. J. Allergy Asthma Immunol. 2009, 8, 77–84. [Google Scholar] [PubMed]
- Jackson, L.S.; Al-Taher, F.M.; Moorman, M.; DeVries, J.W.; Tippett, R.; Swanson, K.M.J.; Fu, T.J.; Salter, R.; Dunaif, G.; Estes, S.; et al. Cleaning and other control and validation strategies to prevent allergen cross-contact in food-processing operations. J. Food Prot. 2008, 71, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Young, O.A.; Karl, D.P. Evaluation of cleaning procedures for allergen control in a food industry environment. J. Food Sci. 2010, 75, T149–T155. [Google Scholar] [CrossRef] [PubMed]
- Blais, B.W.; Gaudreault, M.; Phillippe, L.M. Multiplex enzyme immunoassay system for the simultaneous detection of multiple allergens in foods. Food Control 2003, 14, 43–47. [Google Scholar] [CrossRef]
- Garber, E.A.E.; Perry, J. Detection of hazelnuts and almonds using commercial elisa test kits. Anal. Bioanal. Chem. 2010, 396, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Schubert-Ullrich, P.; Rudolf, J.; Ansari, P.; Galler, B.; Fuhrer, M.; Molinelli, A.; Baumgartner, S. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: An overview. Anal. Bioanal. Chem. 2009, 395, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, S.B.; Abbott, M.; Davies, D.; Cleroux, C.; Delahaut, P. Multi-allergen screening immunoassay for the detection of protein markers of peanut and four tree nuts in chocolate. Food Addit. Contam. 2005, 22, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.S.; Venkatachalam, M.; Sharma, G.M.; Su, M.; Roux, K.H.; Sathe, S.K. Effect of food matrix on amandin, almond (Prunus dulcis L.) major protein, immunorecognition and recovery. LWT-Food Sci. Technol. 2010, 43, 675–683. [Google Scholar] [CrossRef]
- Taylor, S.L.; Nordlee, J.A.; Niemann, L.M.; Lambrecht, D.M. Allergen immunoassays-considerations for use of naturally incurred standards. Anal. Bioanal. Chem. 2009, 395, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Yang, W.; Krishnamurthy, K. Effects of pulsed uv-light on peanut allergens in extracts and liquid peanut butter. J. Food Sci. 2008, 73, C400–C404. [Google Scholar] [CrossRef] [PubMed]
- Su, M.N.; Venkatachalam, M.; Gradziel, T.M.; Liu, C.Q.; Zhang, Y.; Roux, K.H.; Sathe, S.K. Application of mouse monoclonal antibody (mAb) 4c10-based enzyme-linked immunosorbent assay (ELISA) for amandin detection in almond (Prunus dulcis L.) genotypes and hybrids. LWT-Food Sci. Technol. 2015, 60, 535–543. [Google Scholar] [CrossRef]
- Su, M.N.; Venkatachalam, M.; Liu, C.Q.; Zhang, Y.; Roux, K.H.; Sathe, S.K. A murine monoclonal antibody based enzyme-linked immunosorbent assay for almond (Prunus dulcis L.) detection. J. Agric. Food Chem. 2013, 61, 10823–10833. [Google Scholar] [CrossRef] [PubMed]
- Su, M.N.; Liu, C.Q.; Roux, K.H.; Gradziel, T.M.; Sathe, S.K. Effects of processing and storage on almond (Prunus dulcis L.) amandin immunoreactivity. Food Res. Int. 2017, 100, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Scheibe, B.; Weiss, W.; Rueff, F.; Przybilla, B.; Gorg, A. Detection of trace amounts of hidden allergens: Hazelnut and almond proteins in chocolate. J. Chromatogr. B Biomed. Sci. Appl. 2001, 756, 229–237. [Google Scholar] [CrossRef]
- Masir, J.; Benoit, L.; Meshgi, M.; Day, J.; Nadala, C.; Samadpour, M. A novel immunoassay test system for detection of modified allergen residues present in almond-, cashew-, coconut-, hazelnut-, and soy-based nondairy beverages. J. Food Prot. 2016, 79, 1572–1582. [Google Scholar] [CrossRef] [PubMed]
- Pafundo, S.; Gulli, M.; Marmiroli, N. Sybr® greenerTM real-time PCR to detect almond in traces in processed food. Food Chem. 2009, 116, 811–815. [Google Scholar] [CrossRef]
- Holzhauser, T.; Stephan, O.; Vieths, S. Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: A comparative study with DNA PCR-ELISA and protein Sandwich-ELISA. J. Agric. Food Chem. 2002, 50, 5808–5815. [Google Scholar] [CrossRef] [PubMed]
- Van Hengel, A.J. Food allergen detection methods and the challenge to protect food-allergic consumers. Anal. Bioanal. Chem. 2007, 389, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; De Angelis, E.; Montemurro, N.; Pilolli, R. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. Trends Anal. Chem. 2018, 106, 1337–1349. [Google Scholar] [CrossRef]
- Buhler, S.; Tedeschi, T.; Faccini, A.; Garino, C.; Arlorio, M.; Dossena, A.; Sforza, S. Isolation and full characterisation of a potentially allergenic lipid transfer protein (LTP) in almond. Food Addit. Contam. Part A Chem. Anal. Cont. Expo. Risk Assess. 2015, 32, 648–656. [Google Scholar]
- Johnson, P.E.; Baumgartner, S.; Aldick, T.; Bessant, C.; Giosafatto, V.; Heick, J.; Mamone, G.; O’Connor, G.; Poms, R.; Popping, B.; et al. Current perspectives and recommendations for the development of mass spectrometry methods for the determination of allergens in foods. J. AOAC Int. 2011, 94, 1026–1033. [Google Scholar] [PubMed]
- Bignardi, C.; Elviri, L.; Penna, A.; Careri, M.; Mangia, A. Particle-packed column versus silica-based monolithic column for liquid chromatography-electrospray-linear ion trap-tandem mass spectrometry multiallergen trace analysis in foods. J. Chromatogr. A 2010, 1217, 7579–7585. [Google Scholar] [CrossRef] [PubMed]
- Lupinek, C.; Wollmann, E.; Baar, A.; Banerjee, S.; Breiteneder, H.; Broecker, B.M.; Bublin, M.; Curin, M.; Flicker, S.; Garmatiuk, T.; et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: The medall allergen-chip. Methods 2014, 66, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Derr, L.E. When food is poison: The history, consequences, and limitations of the food allergen labeling and consumer protection act of 2004. Food Drug Law J. 2006, 61, 65–165. [Google Scholar] [PubMed]
- Taylor, S.L.; Baumert, J.L.; Kruizinga, A.G.; Remington, B.C.; Crevel, R.W.R.; Brooke-Taylor, S.; Allen, K.J.; Houben, G.; Allergen Bur Australia New Zealand. Establishment of reference doses for residues of allergenic foods: Report of the vital expert panel. Food Chem. Toxicol. 2014, 63, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.M.; Pouillot, R.; Kwegyir-Afful, E.K.; Luccioli, S.; Gendel, S.M. A retrospective analysis of allergic reaction severities and minimal eliciting doses for peanut, milk, egg, and soy oral food challenges. Food Chem. Toxicol. 2015, 80, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Rivas, M.; Barreales, L.; Mackie, A.R.; Fritsche, P.; Vazquez-Cortes, S.; Jedrzejczak-Czechowicz, M.; Kowalski, M.L.; Clausen, M.; Gislason, D.; Sinaniotis, A.; et al. The europrevall outpatient clinic study on food allergy: Background and methodology. Allergy 2015, 70, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Ballmer-Weber, B.K.; Fernandez-Rivas, M.; Beyer, K.; Defernez, M.; Sperrin, M.; Mackie, A.R.; Salt, L.J.; Hourihane, J.O.; Asero, R.; Belohlavkova, S.; et al. How much is too much? Threshold dose distributions for 5 food allergens. J. Allergy Clin. Immunol. 2015, 135, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Mackie, A.; Knulst, A.; Le, T.M.; Bures, P.; Salt, L.; Mills, E.N.C.; Malcolm, P.; Andreou, A.; Ballmer-Weber, B.K. High fat food increases gastric residence and thus thresholds for objective symptoms in allergic patients. Mol. Nutr. Food Res. 2012, 56, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, D.D.; Astwood, J.D.; Townsend, R.; Sampson, H.A.; Taylor, S.L.; Fuchs, R.L. Assessment of allergenic potential of foods derived from genetically engineered crop plants. Crit. Rev. Food Sci. Nutr. 1996, 36, S165–S186. [Google Scholar] [CrossRef] [PubMed]
- Lepski, S.; Brockmeyer, J. Impact of dietary factors and food processing on food allergy. Mol. Nutr. Food Res. 2013, 57, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Verhoeckx, K.C.M.; Vissers, Y.M.; Baumert, J.L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; van der Bolt, N.; et al. Food processing and allergenicity. Food Chem. Toxicol. 2015, 80, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.N.C.; Mackie, A.R. The impact of processing on allergenicity of food. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Bargman, T.J.; Rupnow, J.H.; Taylor, S.L. IgE-binding proteins in almonds (Prunus.-Amygdalus)—Identification by immunoblotting with sera from almond-allergic adults. J. Food Sci. 1992, 57, 717–720. [Google Scholar] [CrossRef]
- De Leon, M.P.; Glaspole, I.N.; Drew, A.C.; Rolland, J.M.; O’Hehir, R.E.; Suphioglu, C. Immunological analysis of allergenic cross-reactivity between peanut and tree nuts. Clin. Exp. Allergy 2003, 33, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Venkatachalam, M.; Teuber, S.S.; Roux, K.H.; Sathe, S.K. Impact of gamma-irradiation and thermal processing on the antigenicity of almond, cashew nut and walnut proteins. J. Sci. Food Agric. 2004, 84, 1119–1125. [Google Scholar] [CrossRef]
- Dhakal, S.; Liu, C.Q.; Zhang, Y.; Roux, K.H.; Sathe, S.K.; Balasubramaniam, V.M. Effect of high pressure processing on the immunoreactivity of almond milk. Food Res. Int. 2014, 62, 215–222. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.Q.; Sheng, W.; Wang, S.; Fu, T.J. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins. Food Chem. 2016, 199, 856–861. [Google Scholar] [CrossRef] [PubMed]
- DunnGalvin, A.; Chan, C.H.; Crevel, R.; Grimshaw, K.; Poms, R.; Schnadt, S.; Taylor, S.L.; Turner, P.; Allen, K.J.; Austin, M.; et al. Precautionary allergen labelling: Perspectives from key stakeholder groups. Allergy 2015, 70, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Remington, B.C.; Baumert, J.L.; Blom, W.M.; Houben, G.F.; Taylor, S.L.; Kruizinga, A.G. Unintended allergens in precautionary labelled and unlabelled products pose significant risks to UK Allergic consumers. Allergy 2015, 70, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Hoffmann-Sommergruber, K.; Holzhauser, T.; Poulsen, L.K.; Gowland, M.H.; Akdis, C.A.; Mills, E.N.C.; Papadopoulos, N.; Roberts, G.; Schnadt, S.; et al. Eaaci food allergy and anaphylaxis guidelines. Protecting consumers with food allergies: Understanding food consumption, meeting regulations and identifying unmet needs. Allergy 2014, 69, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
Name/Protein Family | Molecular Weight/Structural Details | Biological Function | Food Processing Effects | Clinical Relevance |
---|---|---|---|---|
Pru du 1 (PR-10 Protein) | 17 kDa (160 amino acids); various isoforms with different IgE binding capability | Protects against pathogens and adaption to a stressful environment | Wet heat processing changes eptitope conformation to reduce IgE reactivity | Mild immune reaction; severe allergic reactivity with birch pollen allergy |
Pru du 2 (PR-5 Protein/thaumatin-like protein) | 23–27 kDa (246 amino acids) | Response to pathogen infection, osmotic stressor fungal proteins | Very resistant to protease, pH, or heat treatment | Recognized as potential potent allergen, but the clinical evidence has not been studied |
Pru du 2S albumin (prolamin super family) | 12 kDa (28 amino acids) | Nut storage protein for seed development | Stable to heat treatment | Specific allergic symptoms not yet defined, more studies needed |
Pru du 3 (prolamin super family) | 9 kDa (116–123 amino acids) | Lipid transfer protein and defensive system against bacteria and fungi | Very resistant to pH, thermal and enzyme treatments | Systemic and life-threatening symptoms; cross reactivity among Rosaceae fruit |
Pru du 4 (profilin-specific IgE) | 14 kDa (131 amino acids) | Actin-binding protein for cellular function | Labile protein during heat processing | Symptoms are mild and limited to oral cavity |
Pru du 4 (profilin-specific IgE) | 14 kDa (131 amino acids) | Actin-binding protein for cellular function | Labile protein during heat processing | Symptoms are mild and limited to oral cavity |
Pru du 5 (r60sRP autoimmune reactions to human P2) | 10 kDa (113 amino acids) | Involved in protein synthesis | Unknown | Specific allergic symptoms not yet defined, more studies needed |
Pru du 6 (amandin; almond major protein (AMP)) The most widely studied almond allergen regarding molecular structure and biochemistry. | 360 kDa (1055 amino acids); 11S globulin hexameric amandine polypeptides subunits of 40–42 kDa acid α chain and a small β chain linked by a disulfide bond. | Major storage protein (about 65% of almond protein) | Thermally stable to dry heat such as roasting but it can be denatured by boiling. | Reported to induce severe IgE allergic reactions |
Pru du (γ-conglutin) | 45 kDa for each subunit (25 amino acids) | 7S vicillin storage protein | Unknown | Specific allergic symptoms not yet defined, more studies needed |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandalari, G.; Mackie, A.R. Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection. Nutrients 2018, 10, 1706. https://doi.org/10.3390/nu10111706
Mandalari G, Mackie AR. Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection. Nutrients. 2018; 10(11):1706. https://doi.org/10.3390/nu10111706
Chicago/Turabian StyleMandalari, Giuseppina, and Alan R. Mackie. 2018. "Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection" Nutrients 10, no. 11: 1706. https://doi.org/10.3390/nu10111706
APA StyleMandalari, G., & Mackie, A. R. (2018). Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection. Nutrients, 10(11), 1706. https://doi.org/10.3390/nu10111706