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Abstract: Phytoplankton pigments absorb sunlight for photosynthesis, protect the chloroplast from
damage caused by excess light energy, and influence the color of the water. Some pigments act as
bio-markers and are important for separation of phytoplankton functional types. Among many efforts
that have been made to obtain information on phytoplankton pigments from bio-optical properties,
Gaussian curves decomposed from phytoplankton absorption spectrum have been used to represent
the light absorption of different pigments. We incorporated the Gaussian scheme into a semi-analytical
model and obtained the Gaussian curves from remote sensing reflectance. In this study, a series
of sensitivity tests were conducted to explore the potential of obtaining the Gaussian curves from
multi-spectral satellite remote sensing. Results showed that the Gaussian curves can be retrieved
with 35% or less mean unbiased absolute percentage differences from MEdium Resolution Imaging
Spectrometer (MERIS) and Moderate Resolution Imaging Spectroradiometer (MODIS)-like sensors.
Further, using Lake Erie as an example, the spatial distribution of chlorophyll a and phycocyanin
concentrations were obtained from the Gaussian curves and used as metrics for the spatial extent of
an intense cyanobacterial bloom occurred in Lake Erie in 2014. The seasonal variations of Gaussian
absorption properties in 2011 were further obtained from MERIS imagery. This study shows that it is
feasible to obtain Gaussian curves from multi-spectral satellite remote sensing data, and the obtained
chlorophyll a and phycocyanin concentrations from these Gaussian peak heights demonstrated
potential application to monitor harmful algal blooms (HABs) and identification of phytoplankton
groups from satellite ocean color remote sensing semi-analytically.
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1. Introduction

Spectral light absorption and backscattering are the two inherent optical properties directly
controlling the light field in water and further influencing water color. Optical properties of
phytoplankton, specifically the absorption coefficients of the pigments inside them, play a key role
in determining both the penetration of radiant energy in water and the use of this radiant energy
for photosynthesis. These pigment absorption coefficients and their concentrations are important
for understanding photosynthetic rate [1,2], identifying and quantifying phytoplankton functional
groups [3] and determining size class distributions ([4,5] and references therein). These properties
of phytoplankton and their associated backscattering, along with colored dissolved organic matter
absorption and non-algal particle absorption and scattering directly control the light field of water.

Remote Sens. 2017, 9, 1309; doi:10.3390/rs9121309 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2516-1882
http://dx.doi.org/10.3390/rs9121309
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 1309 2 of 22

With the objective of expanding the ability to detect more pigments than just chlorophyll
a, various methods have been proposed [6–8]. Most of these methods could obtain one or more
pigments in addition to chlorophyll a from Rrs(λ), but the accuracy was influenced by the presence of
non-algal particles and dissolved organic matters in the water column. To reduce the influence from
components other than phytoplankton, Wang et al. [9] developed a multi-pigment inversion model
(MuPI) to obtain information of multiple pigments from hyperspectral Rrs(λ). This model incorporated
a Gaussian decomposition scheme into a semi-analytical inversion model and demonstrated that
13 Gaussian curves that contain important phytoplankton pigment information can be retrieved from
hyperspectral remote sensing reflectance. The Gaussian scheme was first described by Hoepffner
and Sathyendranath [10,11], and was one of the methods proposed to obtain multiple pigments
from phytoplankton absorption coefficients [12–17]. Hoepffner and Sathyendranath [10] used these
Gaussian curves to represent light absorption of different pigments and demonstrated that some of
the Gaussian peak heights showed good relationships with phytoplankton pigments, such as peaks
at 435 and 675 nm for chlorophyll a, peaks at 643 nm for chlorophyll c, peaks at 460 and 655 nm for
chlorophyll b, and peaks at 489 and 582 nm for carotenoids. This Gaussian decomposition scheme
sheds light on the potential of obtaining information for multiple phytoplankton pigments beyond
chlorophyll a semi-analytically using bio-optical techniques.

Most of the past and current operational ocean color satellite missions are multispectral. It is thus
necessary to evaluate the viability and associated uncertainties of obtaining these Gaussian curves
from multi-spectral remote sensing data. Using measurements from cyanobacteria bloom waters in
different regions, we validated the MuPI performance in obtaining multiple independent Gaussian
curves, and the sensitivity of MuPI to the specific spectral bands of existing ocean color satellite sensors.
Further, the inversion scheme was applied to Hyperspectral Imager for the Coastal Ocean (HICO),
and Moderate Resolution Imaging Spectroradiometer aboard the Aqua satellite (MODIS-Aqua), and
MEdium Resolution Imaging Spectrometer (MERIS) imagery over Lake Erie to obtain the spatial
distributions of pigment absorption coefficients, chlorophyll a (Chl-a) and phycocyanin (PC) for
a cyanobacteria bloom event in the western basin of Lake Erie.

2. Materials and Methods

2.1. In Situ Measurements

2.1.1. Study Areas

The in situ measurements were obtained from different areas at different seasons around
the world, which include ponds in the state of Mississippi, U.S.A. (MS), Lake Taihu, China (LT),
and Lake Erie, U.S.A. (LE).

Mississippi Pond dataset (MS): This dataset includes 41 samples of remote sensing reflectance
(Rrs(λ), sr−1) and absorption coefficients of phytoplankton (aph(λ), m−1), non-algal particles (ad(λ)),
and gelbstoff (ag(λ)). This dataset (see Mishra et al. [18] for details) was collected from a series of highly
turbid and productive aquaculture ponds at various bloom stages (initiation, peak, and senescence)
of cyanobacteria (Chl-a concentration varied from 59 to 1377 mg·m−3), located in northwestern
Mississippi, U.S.A., where cyanobacteria blooms with Planktothrix agardhii as the most abundant
species were occurring when the in situ data were collected

Lake Taihu dataset (LT): This dataset includes 45 Rrs(λ) spectra, corresponding spectra of ad(λ),
ag(λ), and aph(λ) (350–750 nm) collected from Lake Taihu, China under cyanobacteria bloom conditions
(Chl-a: 10–222 mg·m−3) where the dominant species was Microcystis aeruginosa. Water samples and
optical data of surface water were collected during two surveys in January–August 2011 and November
2011, respectively.

Lake Erie dataset (LE): This dataset is composed of 36 Rrs(λ), ad(λ), ag(λ), and aph(λ) samples,
and 20 Chl-a and PC concentrations. Cyanobacteria blooms dominated by Microcystis aeruginosa
have been seasonally reoccurring in the western basin of Lake Erie since the mid-1990s [19]. The field
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measurements were collected during cruises from 20–23 August 2013 and 18–21 August 2014 in western
Lake Erie at 16 and 20 stations, respectively, during the peak cyanobacteria bloom period [20,21],
with chlorophyll concentrations ranging from >1 to 100 s of mg·m−3.

Since the ponds are too small for the MODIS and MERIS 1 km spatial resolution imagery, Lake
Erie was selected as a local example for application of the method to HICO, MODIS and MERIS
imageries to obtain pigment concentrations and Gaussian absorption distribution. The cyanobacteria
bloom which occurred in Lake Erie in August 2014 was one of the most serious, causing disruption to
the drinking water supply in Toledo, U.S.A. The 2014 cruise was conducted during this event and the
sampling locations along with the Chl-a and PC concentrations at each station, are shown in Figure 1,
where PC concentrations as high as ~200 mg·m−3 were noted in the southern portion of Lake Erie.
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2.1.2. Remote Sensing Reflectance

The remote sensing reflectance of the MS dataset was acquired in the range of 400–900 nm with
a sampling interval of 0.3 nm by deploying a dual sensor system with two inter-calibrated ocean
optics spectroradiometers (Ocean Optics Inc., Dunedin, FL, USA). The in situ Rrs(λ) from LT and LE
were measured with a hand-held ASD spectroradiometer (Analytical Spectral Device, Inc., Boulder,
CO, U.S.A.), from 350 to 1050 nm at 1.4 nm intervals.

2.1.3. Absorption Coefficients

Surface water samples were collected and filtered immediately after the Rrs(λ) measurements
and analyzed on the same day in the laboratory. The particulate absorption coefficient was quantified
utilizing the transmittance or transmittance/reflectance method of Tassan and Ferrari [22] along with
the NASA Ocean Optics Protocols, Revision 4, Volume IV protocol [23]. Percent transmittance and
reflectance were measured for each sample filter to calculate the particulate absorption spectrum.
Filters were then bleached, and the transmittance and reflectance measured to calculate the absorption
coefficients of non-algal particles. The phytoplankton absorption coefficients (aph(λ)) at each station
were calculated by subtraction of non-algal particle absorption coefficients from total particle
absorption coefficients. The Gaussian peak heights (aGau(λ)) were obtained from aph(λ) using the
Gaussian decomposition scheme described in Wang et al. [9], which used a least-square curve fitting
technique in Matlab to obtain the aGau(λ). These aGau(λ) were used as ground truth to validate the
outputs from Rrs(λ) inversions.

For the MS dataset, a Perkin Elmer Lambda 850 Spectrophotometer (Perkin Elmer Inc., Waltham,
MA, USA) was used to measure the absorption coefficient of phytoplankton, detrital matter,
and gelbstoff in the 380–750 nm range at 1 nm spectral resolution. Detailed information regarding
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the environmental characteristics and measurement methods can be found in Mishra et al. [18].
A Shimadzu UV-2401 Spectrophotometer was used for LT. More information about LT and details
about water sample collection, measurement protocols, and processing methods can be found in
Duan et al. [24] and Ma et al. [25]. Samples from LE were measured with a Perkin-Elmer Lambda
35 UV/Vis Dual-beam Spectrophotometer from 300–800 nm at 1 nm resolution as described in
Mouw et al. [26].

2.1.4. Pigment Concentrations and Group Composition

Water samples for Chl-a and PC concentration from Lake Erie were filtered through 0.7 and
0.2 µm glass fiber filters (Whatman GF/F, 25-mm and 47-mm diameter), respectively. The Chl-a was
estimated using a Turner Designs 10-AU Fluorometer in the laboratory following the NASA Ocean
Optics Protocols, Revision 5, Volume V [23]. Following NASA protocols [27], filters for phycocyanin
concentration determination were extracted in phosphate buffer (Ricca Chemical, Arlington, TX, U.S.A.
pH 6.8) using two freeze-thaw cycles, followed by sonication. Relative fluorescence was measured
on a Turner Aquafluor fluorometer and converted to PC using a series of dilutions of a commercial
standard (Sigma-Aldrich, Saint Loise, MO, USA) [21]. Phytoplankton populations for the Lake Erie
stations in 2013 were also used in this study which were identified and counted using standard light
microscopy [21].

2.2. Satellite Imagery

The Hyperspectral Imager for the Coastal Ocean (HICO) was the first space-borne hyperspectral
imaging spectrometer designed to sample the coastal ocean. HICO covered selected coastal regions
at 90 m spatial resolution with full spectral coverage (380 to 960 nm sampled at 5.73 nm intervals).
HICO imagery of the same time frame as in situ measurements in Lake Erie in 2014 was downloaded
from the Oregon State University website (http://hico.coas.oregonstate.edu/), and following the
steps provided on the website the level 1B (L1B) imagery was atmospherically corrected to level 2 (L2)
data using the online version of Tafkaa_6s model, followed by georectification. The HICO Rrs(λ) data
have about the same spectral resolution as the in situ measured reflectance (5.73 nm for HICO and
5 nm for original Rrs(λ)). These data were used as an example for MuPI application in hyperspectral
satellite imagery.

The Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODIS-Aqua)
launched in 2002 is one of the contemporary satellite ocean color missions. The L1B imagery with
1 km spatial resolution was downloaded from the National Aeronautics and Space Administration
(NASA) website (https://ladsweb.nascom.nasa.gov/). The L2 imagery (with 748 nm included in
Rrs(λ)) from the same time frame as in situ measurements in Lake Erie in 2014 was obtained using
the data processing L2gen from the SeaWiFS Data Analysis System (SeaDAS) software using the
standard near infrared (NIR) scheme [28–30] for atmospheric correction. MODIS imagery was used as
an example of MuPI application to multi-spectral satellite remote sensing data.

MEdium Resolution Imaging Spectrometer (MERIS) on board the European Space Agency’s
Envisat platform, was launched in 2002 and ended its mission in May 2012. The L3 seasonal composed
imagery and L2 reduced resolution imagery (1 km spatial resolution) was obtained from NASA ocean
color website (https://oceancolor.gsfc.nasa.gov/). Lacking coincidence with in situ measurements,
the same day imagery of MODIS and MERIS on 3 September 2011 was used for the comparison of the
retrieving results. The MERIS seasonal composed imagery in Lake Erie was used to obtain a general
seasonal variation of Gaussian absorption coefficients.

http://hico.coas.oregonstate.edu/
https://ladsweb.nascom.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
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2.3. The aGau(λ) Estimation

2.3.1. MuPI Model

To obtain aGau(λ) from remote sensing reflectance, a multi-pigment inversion method [9] was
used. The corresponding functions used in this method are included in Table 1. In this method,
the Gaussian scheme, which uses 13 Gaussian curves to reconstruct the spectrum of phytoplankton
absorption coefficient, was incorporated into the relationship in which Rrs(λ) is a function of total
spectral absorption (a(λ)) and backscattering (bb(λ)) coefficients [31,32]. With an Rrs(λ) spectrum as
the only input, the function was solved with a spectral optimization method which returns the values
of unknowns (aGau(λ), absorption of non-algal particles and gelbstoff: adg(λ), and backscattering
coefficient of particles, bbp(λ)), that minimizes the difference between the estimated and input Rrs(λ)
spectra. A summarized flowchart of the method is shown in Figure 2. The parameters used for the
13 Gaussian curves in this study are shown in Table 2, which includes the peak locations, widths and
empirical relationships between the peak heights.

Table 1. Summary of the functions and symbols used in multi-pigment inversion model (MuPI).

Index Function Description References

1
Rrs(λ) = F(

bb(λ)

a(λ) + bb(λ)
) =

0.52
(
G1u + G2u2)

1 − 1.7(G1u + G2u2)

with u =
bb(λ)

a(λ) + bb(λ)

Remote sensing reflectance as a function
of a(λ) and bb(λ)
G1 = 0.089 sr−1; G2 = 0.125 sr−1 [31–35]

2
a(λ) = aph(λ) + adg(λ) + aw(λ)
bb(λ) = bbw(λ) + bbp(λ)

Absorption and backscattering
coefficients as the total of
their components

aph(λ): phytoplankton absorption coefficient; adg(λ): absorption coefficient of non-algal particles
and gelbstoff; aw(λ): absorption coefficients of pure seawaters; bbp(λ): beam attenuation
coefficients of suspended particles; bbw(λ): beam attenuation coefficients of water molecules

3
bbp(λ) = bbp

(
λ0
λ

)η

with η = 2.0
(

1 − 1.2 exp
(
−0.9

rrs(443)
rrs(55x)

)) λ0: 440 nm [33]

4 aph(λ) =
n
∑

i=1
aGau(λi) exp

[
−0.5

(
λ − λi
σi

)2
] σi: width of the ith Gaussian curve

(FWHM = 2.35 × σi, FWHM as full width
at half maximum)
aGau(λi): the peak height of peak
centered at λi

[10]

5 adg(λ) = adg(λ0) exp(−S(λ − λ0))
λ0 = 440 nm;
S: spectral slope of adg(λ) [36]

6 δ =

√
1

Nλ

Nλ

∑
i=1

(
R̂rs(λi)− Rrs(λi)

)2

1
Nλ

Nλ

∑
i=1

Rrs(λi)

Cost function for spectral optimization
“Rrs(λ) and Rrs(λ): Estimated and
measured remote sensing reflectance

[36–39]
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Figure 2. Flowchart of the inversion method. Utilizing satellite or in situ measured remote sensing
reflectance (Rrs(λ)), a spectral optimization method is used to minimize the differences between
estimated and measured Rrs(λ) spectra, output values for Gaussian curves (aGau(λ)), non-algal particles
and gelbstoff (adg(λ)) and particulate attenuation coefficients (cp) are obtained.

Table 2. The Gaussian curve peak locations, widths (σ = FWHM/2.35) and the corresponding power-law
relationships among the peak heights. The peak heights of the Gaussian curves located at 386.6, 414,
451.7, 484, 515.6, and 677 nm can be estimated from the peak height of the Gaussian curve centered
at 435 nm (annotated as x1), those of 548.8, 584.4, 653, and 693.5 nm can be estimated from the peak
height at 617.6 nm (x2).

Gaussian Bands and Pigment Relationships

Peaks Pigment Peak (nm) Width (nm) Peak Height R2

1 Chl-a 386.6 18.8 y = 1.52x1 0.99
2 Chl-a 414 10.7 y = 0.97x1 0.998
3 Chl-a 435 12 x1 1
4 Chl-c 451.7 18.5 y = 0.90x1 0.995
5 Carot 484 19.6 y = 0.95x1 0.99
6 Carot 515.6 18 y = 0.53x1 0.99
7 PE 548.8 15.7 y = 0.76x2

0.92 0.99
8 Chl-c 584.4 17 y = 90x2

0.94 0.997
9 PC 617.6 16 x2 1

10 Chl-c 636 11.6 y = 0.35x2
1.1 0.99

11 Chl-b 653 14 y = 0.82x2
0.87 0.99

12 Chl-a 677 10.6 y = 0.69x1 0.99
13 others 693.5 20 y = 0.37x2

0.92 0.99

2.3.2. Gaussian Parameters

As with other semi-analytical algorithms (e.g., HOPE [38]; GSM [40], GIOP [36]), aGau(λ) in
MuPI were retrieved using a spectral optimization method. The Gaussian scheme used in MuPI plays
a critical role in aGau(λ) estimation, and the Gaussian peak heights, locations, and widths are very
important factors in the Gaussian scheme. To determine the peak locations and widths of the Gaussian
curves, the peaks and troughs of aph(λ) spectra were used as the initial inputs in the optimization
process. As shown in Table 2 and Figure 3, a total of 13 Gaussian curves, corresponding to peaks
or shoulders of measured aph(λ) spectra, were used to represent the absorption of phytoplankton
pigments at different wavelengths: chlorophyll a: 386.6, 414, 435, 677, and 693.5 nm; chlorophyll b:
653 nm; chlorophyll c: 451.7, 584.4, and 636 nm; carotenoids: 484 and 515.6 nm; phycoerythrin:
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548.8 nm; and phycocyanin: 617.6 nm. These peak locations and widths (the second and third columns
of Table 2) were potentially influenced by pigment composition. Upon further analysis, we found that
using fixed values for peak locations and widths in Table 2 cause no more than 5% differences in aph(λ)
estimation versus when these peak locations and widths were set as free variables. Comparatively,
the peak height of Gaussian curves influenced by pigment concentrations play a critical role in aph(λ)
estimation. Thus, in the MuPI method, the peak locations and widths presented in Table 2 were fixed
as constants, and the peak heights of these 13 Gaussian curves, containing bio-optical information of
phytoplankton pigments, are the parameters to be obtained from remote sensing reflectance.
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It is impractical to retrieve 13 peaks simultaneously from an Rrs(λ) spectrum via spectral
optimization because more variables in the function usually means much higher uncertainties in
the outputs. In determining the number of independent aGau(λ) to be retrieved from the MuPI model,
a series of tests were conducted, and the mean, median, maximum and minimum unbiased absolute
percentage difference (UAPDs, Equation (1)) were compared for different datasets when the number of
independent aGau(λ) vary among 13, 5 (Peak 2, 5, 7, 9 and 12), 3 (Peak 3, 5 and 9) and 2 (Peak 3 and 9).
The combinations of independent aGau(λ) were determined based on the highest correlation coefficients
(R2) with other aGau(λ). As expected, an obvious decrease in the percentage differences are noticed
when the number of independent aGau(λ) are reduced from 13 to 2 for all three in situ datasets, as shown
in Table 3, although the retrieval accuracy varies from dataset to dataset because of the different
contributions of phytoplankton to the total absorption (100% × aph(λ)/a(λ), Figure 4). Thus the height
of two peaks, here aGau(435) and aGau(617.6), instead of 13, were retrieved as free variables from
an Rrs(λ) spectrum to achieve the highest retrieval accuracy from MuPI. This also controls the number
of unknowns in the model to maximize its application to different satellite remote sensing data and
improve computation efficiencies.

UAPD =

∣∣Ŝ − S
∣∣

0.5(Ŝ + S)
× 100% (1)
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where Ŝ is the estimated value and S is the measured value.

Table 3. The mean (Mea.), median (Med.), maximum (Max.) and Minimum (Min.) UAPD of different
dataset with different number of unknowns (N) to be retrieved from MuPI.

Unknowns (N) Datasets
UAPD (%)

Mea. Med. Max. Min.

13 All 47 43 73 24
5 All 37 38 46 27
3 All 33 34 40 25
2 All 32 34 38 24

13 MS 38 41 81 13
5 MS 29 28 50 15
3 MS 25 29 35 15
2 MS 26 28 37 16

13 LT 42 36 71 23
5 LT 37 38 47 25
3 LT 35 34 47 24
2 LT 32 31 49 22

13 LE 64 60 111 39
5 LE 45 45 56 36
3 LE 41 40 49 33
2 LE 39 39 50 33

13 LE-2014 62 65 108 30
5 LE-2014 31 28 45 17
3 LE-2014 27 28 35 16
2 LE-2014 22 21 33 16
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Figure 4. Percent contribution of phytoplankton absorption coefficients (aph(λ)) to the total absorption
coefficient (a(λ) = aw(λ) + adg(λ) + aph(λ), with aw(λ) and adg(λ) as the absorption coefficients of
pure seawater and non-algal particles and gelbstoff) for three datasets (all the samples and their
mean values): (A) Mississippi ponds (MS); (B) Lake Taihu (LT); and (C) Lake Erie (LE).

Once aGau(435) and aGau(617.6) were obtained from Rrs(λ), the other peaks could be estimated
from these two values through a set of relationships shown in Table 2. Whether these relationships can
represent data from different regions over different seasons presents uncertainty and a potential error
source for aGau(λ) retrieval from MuPI. In our analysis of three datasets, we found that the empirical
relationships among aGau(λ) to be very stable. The data from different regions over different seasons
follow the trend predicted by the regression line based on one dataset. Figure 5 shows two examples
in which all the data points from different datasets scattered tightly around the regression lines.
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In contrast with the parameters determined in Wang et al. [9], to reduce potential errors updates
were made in this study regarding the independent peak heights and their empirical relationships
with other peaks. These modifications were made for the following reasons: (1) when further checking
the co-variances among aGau(λ) from the MS and LT datasets, it was found that, sometimes, power-law
relationships among the peak heights were more robust and representative than the previously adopted
linear relationships (Figure 3); and (2) to make the retrievals more meaningful, aGau(435) and aGau(617.6)
instead of aGau(515.6) and aGau(584.4) were used as the two independent variables. This change was
made because aGau(435) showed a robust relationship with chlorophyll a concentration, and aGau(617.6)
with phycocyanin. Further, their absorption coefficients or concentrations directly retrieved from Rrs(λ)
can be more widely used in the estimation of phytoplankton biomass, productivity and cyanobacteria
bloom detection and monitoring. Further, because of the high co-variation among the peak heights
(R2 > 0.92), the selection of different peaks as free variables caused no more than 10% difference in the
retrieved results.

2.4. aGau(λ) Spectra Shape

In exploring the aGau(λ) application in HABs detection, a spectral shape analysis was conducted,
in which aGau(435), aGau(584.4), and aGau(617.6) were normalized by their respective root of
sum of squares,

naGau(λi) =
aGau(λi)√
N
∑

i=1
aGau(λi)

2

(2)

where the index N represents the total number of wavelengths, and λi corresponds to the wavelengths
of 435, 584.4 and 617.6 nm. The naGau(λ) spectra vary over the range between 0 and 1, while it retains
the “shapes” pertaining to the original aGau(λ) spectra, i.e., the band ratios of naGau(λ) retain the
same as aGau(λ).

2.5. Multi-Spectral Rrs(λ)

To characterize the model performance with multi-spectral Rrs(λ) data as inputs, a set of different
spectral band configurations were used (Table 4). This included the existing sensors of Ocean
and Land Color Instrument (OLCI), MERIS, MODIS, Visible Infrared Imaging Radiometer Suite
(VIIRS), Sentinal-2 Multispectral Instrument (MSI), Landsat-8 Operational Land Imager (OLI) and
an All-band configuration that combined all of the existing spectral bands of the different sensors.
The inclusion of the All-band configuration was intended to test the sensitivity of the algorithm to
specific spectral bands of the existing sensors. The Rrs(λ) of these multiple spectral bands were obtained
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by applying their spectral response functions (RSF) (https://oceancolor.gsfc.nasa.gov/docs/rsr/rsr_
tables/, https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_
publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses) to the in situ hyperspectral data.

Table 4. The multi-spectral bands used in this study: a composed All-band, OLCI, MERIS, MODIS,
VIIRS, MSI and OLI bands.

Index All-Band OLCI MERIS MODIS VIIRS MSI OLI

1 400 400
2 412 413 413 412 410
3 443 443 443 443 443 444 443
4 490 490 490 488 486 497 483
5 510 510 510
6 530 531
7 555 560 560 547 551 560 563
8 620 620 620
9 645 645
10 655 655
11 665 665 665 667 665
12 675 674 678 671
13 681 681 681
14 709 709 709 704
15 745 754 754 748 745 740

3. Results

3.1. aGau(λ) from Multi-Spectral Rrs(λ)

The MuPI performance was validated for multi-spectral Rrs(λ) at six different band configurations.
Table 5 shows the mean UAPD of 13 aGau(λ) for all three in situ datasets with the spectral bands of
different sensors, respectively. Table 6 provides detailed information for LE 2014 data regarding the
variation of the mean UAPD in the aGau(λ) retrieval with Rrs(λ) at different spectral configurations.
OLCI and MERIS produced similar mean UAPD, which is around 35% for all three datasets and 28%
for the LE 2014 data. Compared with MODIS, VIIRS showed slightly higher mean UAPD (All data:
VIIRS: 36%, MODIS: 34%; LE 2014: VIIRS: ≤40%, MODIS: ≤37%), which is potentially caused by the
lack of a spectral band around 665 nm in VIIRS. MSI and OLI produced the highest uncertainties for
aGau(λ) at wavelength longer than 550 nm, but, surprisingly, a ≤50% mean UAPD was achieved for
the four spectral bands of the Landsat-8 OLI sensor with the data used here, which demonstrates the
potential of applying MuPI to these high spatial resolution satellite remote sensing data.

By removing and adding specific bands such as 645 and 748 nm for MODIS, and 754 nm in MERIS,
differences in the aGau(λ) accuracy were observed. A 10% increase in mean UAPD was observed when
the 748 nm band was removed from MODIS, and a 3% decrease in the mean UAPD when adding the
745 nm band to MERIS. However, with the existence of the 748 nm band, the adding and removing of
the 645 nm band did not show a large influence (<3% mean UAPD variation). In addition, due to the
existence of the 746 nm band in VIIRS, reasonable results were obtained in aGau(λ) retrievals.

Such a result suggests, at least for this dataset of bloom waters, with MuPI there is little impact
on the retrieval of aGau(λ) when hyperspectral Rrs(λ) is degraded to multiple-spectral measurements
such as MERIS and MODIS-like sensors. This is consistent with conclusions from previous studies
that Rrs(λ) data do not need to be as fine as 1 nm in spectral resolution to obtain reliable retrievals of
inherent optical properties [41–43].

When taking a closer look at the results from the LE 2014 data (Table 6, Figure 6), a mean
UAPD of ≤35% was achieved for most of aGau(λ) from Rrs(λ) with MERIS, OLCI, and MODIS bands.
The relatively low contributions of phytoplankton absorption coefficients at longer wavelengths was
the main reason for the relatively larger uncertainties (e.g., aGau(λ) at 653 nm: ~36% for MODIS

https://oceancolor.gsfc.nasa.gov/docs/rsr/rsr_tables/
https://oceancolor.gsfc.nasa.gov/docs/rsr/rsr_tables/
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
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and MERIS). In addition, the lack of enough bands between 570 and 660 nm (only 620 nm for MERIS
and 645 nm for MODIS) made it difficult to obtain more accurate retrievals.

Table 5. The mean (Mea.), median (Med.), maximum (Max.), and minimum (Min.) of unbiased absolute
percentage differences (UAPD, %) of aGau(λ) estimated from Rrs(λ) with the spectral bands of different
sensors for the MS, LT and LE datasets. MERIS+745: MERIS with the 745 nm band; MODIS-645/748:
MODIS bands without 645 or 748 nm band.

Bands
UAPD (%)

Mea. Med. Max. Min.

ALL-band 30 32 36 23
OLCI 35 36 41 28

MERIS + 754 32 33 39 27
MERIS 35 36 41 28
MODIS 34 33 40 30

MODIS-645 34 33 43 29
MODIS-748 45 45 50 40

VIIRS 36 34 48 31
MSI 35 34 45 32
OLI 48 46 63 42
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Table 6. For LE 2014: The unbiased absolute percentage differences (UAPD, %) of aGau(λ) estimated
from Rrs(λ) with the original hyperspectral bands and those at different spectral configuration. P1–P13:
13 Gaussian peaks. MERIS+745: MERIS with the 745 nm band; MODIS-645/748: MODIS bands without
645 or 748 nm band.

UAPD (%) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

ALL-band 29 23 23 19 20 20 14 22 19 18 36 21 18
OLCI 29 23 23 19 19 21 17 21 21 22 36 24 22

MERIS + 754 26 21 20 18 20 22 16 23 23 23 37 26 21
MERIS 27 21 22 17 19 21 17 23 23 24 37 25 22
MODIS 33 27 28 23 21 22 17 22 21 18 35 24 29

MODIS-645 32 26 24 24 19 22 17 18 17 17 31 24 27
MODIS-748 45 39 40 35 31 30 27 29 25 28 32 29 40

VIIRS 33 29 28 25 25 25 24 29 26 24 40 27 28
MSI 30 26 27 21 27 27 25 31 29 28 46 33 25
OLI 31 30 32 27 33 30 26 33 35 41 46 43 29

3.2. Chl-a and PC from aGau(λ) for Lake Erie

As one of the most widely used indices for phytoplankton, concentration and light absorption
coefficients of chlorophyll a (Chl-a) have been the focus of many studies [33,44–47]. Previous
studies [9,10,17] have indicated that some Gaussian peak heights (aGau(λ)) obtained from aph(λ),
such as peaks around 390, 413, 435 and 675 nm, represent the absorption properties of chlorophyll
a. Phycocyanin (PC), the bio-marker of the blue-green cyanobacteria, is an important indicator for
cyanobacteria biomass [6,7,48]. Based on the regression analysis between aGau(λ), Chl-a and PC from
the LE dataset, the Gaussian peaks at 386.6, 414, 435 and 677 nm showed high correlation coefficients
with Chl-a concentration with R2 of 0.95, 0.96, 0.97, and 0.98, respectively; and the Gaussian peaks
at 617.6 nm showed a 0.93 correlation coefficient with PC concentration. The empirical relationships
for Chl-a and PC estimation from aGau(677) and aGau(617.6) were obtained, as shown in Figure 7.
The above results further highlight the values of using aGau(λ) as a proxy to obtain pigment absorption
or concentration, which may be used to map cyanobacteria bloom waters from ocean color imagery.
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and the Gaussian peak heights (aGau(λ)) centered at 677 and 617.6 nm; and the corresponding
relationship, R-square the mean UAPD, and the sample number (N).

3.3. aGau(λ) versus Group Composition

In analysis of the aGau(λ) and cell counts from LE 2013 measurements, we found the spectral
shapes formed by aGau(435), aGau(584.4), and aGau(617.6) vary with the composition of cyanobacteria
species at different locations in western basin of Lake Erie, as shown in Figure 8. As shown in Table 2,
the aGau(435), aGau(584.4), and aGau(617.6) contain absorption properties of pigments Chl-a, PE, and PC,
respectively. The variation of pigment compositions, especially the different intracellular Chl-a:PE:PC
ratios of the cyanobacteria at the species level is the main reason of the spectral shape variation.
This can potentially be used in separating different cyanobacteria species in the bloom waters.
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numbers for PC and Chl-a as the concentrations for these two pigments (mg·m−3), and M. as Microcystis;
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different locations in western basin of Lake Erie.

3.4. Pigment and aGau(λ) Retrieval from Satellite Imagery

3.4.1. Validation of Satellite Remote Sensing Data

Before applying MuPI to satellite imagery for aGau(λ) retrieval, the Rrs(λ) data from HICO and
MODIS imagery for Lake Erie were first assessed with in situ measurements.

Three criteria were employed to find matchups: (1) Within ±2 days; (2) median of a 3 × 3 box,
with no masks of land or clouds; and (3) coefficients of variance smaller than 0.15. The spectral response
function was applied to the in situ Rrs(λ) spectrum before comparing it with satellite data. Most of
the bands have a mean difference within 35% for Rrs(λ) for both sensors. At the shorter wavelengths
(≤500 nm for HICO, and 412 and 443 nm for MODIS), the mean UAPD was as high as 65% and some
satellite Rrs(λ) were even negative values because of the poor atmospheric correction for optically
complex inland waters [49,50]. For MODIS, the mean UAPD of Rrs(λ) at 748 nm was 52%, possibly
due to low Rrs(λ) values at this band and the influence from residual and likely uncorrected oxygen
and water vapor absorption in the atmosphere.

Since the main focus of this work is the retrieval of aGau(λ) from Rrs(λ), we took advantage of
the aGau(λ) information from the Rrs(λ) spectrum in the longer wavelengths (>500 nm for HICO and
>480 nm for MODIS) in the model application, to minimize the influence of ineffective atmospheric
correction on the shorter bands of satellite Rrs(λ). To validate this adjustment, MuPI was first applied to
in situ measured Rrs(λ) with HICO and MODIS bands but without data from the shorter wavelengths
(≤500 nm for HICO and 412 and 443 nm for MODIS). The retrieved aGau(λ) from such Rrs(λ) agreed
quite well with aGau(λ) from in situ aph(λ) decomposition, with the mean UAPD ≤38% for HICO,
and ≤48% for MODIS bands (Table 7). The estimated Chl-a concentration has a mean UAPD of 28%
which is better than the results from the standard products [45] and those shown in Pan et al. [8],
and the mean UAPD for the estimated PC concentration is 32% which is consistent or even better than
that reported in the literature [6,7,48]. Figure 9 presents one match-up of satellite and in situ Rrs(λ)
spectra and the estimated Rrs(λ) spectra from MuPI for both HICO and MODIS, as well as, the 13



Remote Sens. 2017, 9, 1309 14 of 22

derived aGau(λ) from the corresponding spectrum. The aGau(λ) from the corresponding satellite and in
situ match-up data showed the same trend.

Table 7. The mean (Mea.) and median (Med.) of unbiased absolute percentage differences of aGau(λ)
estimated from Rrs(λ) of HICO and MODIS satellite imagery.

Peaks aGau(λ)
HICO MODIS

Mea. Med. Mea. Med.

1 386.6 27 26 28 27
2 414 21 20 23 19
3 435 19 18 20 16
4 451.7 17 15 18 15
5 484 18 16 17 13
6 515.6 19 14 19 14
7 548.8 24 23 33 32
8 584.4 29 26 44 45
9 617.6 34 28 45 37

10 636 37 39 48 53
11 653 32 25 34 29
12 677 24 25 26 27
13 693.5 54 48 78 75

Remote Sens. 2017, 9, 1309  14 of 21 

 

13 derived aGau(λ) from the corresponding spectrum. The aGau(λ) from the corresponding satellite and 
in situ match-up data showed the same trend. 

 
Figure 9. (A) Example spectra of in situ and HICO measured (Rrs(λ)), and their corresponding 
estimated spectra from MuPI; (B) example spectra of in situ and MODIS measured (Rrs(λ)), and their 
corresponding estimated spectra from MuPI; and (C,D) the 13 aGau(λ) derived from in situ, HICO and 
MODIS Rrs(λ) were plotting against the aGau(λ) from decomposition of in situ measured aph(λ). 

Table 7. The mean (Mea.) and median (Med.) of unbiased absolute percentage differences of aGau(λ) 
estimated from Rrs(λ) of HICO and MODIS satellite imagery. 

Peaks aGau(λ) 
HICO MODIS

Mea. Med. Mea. Med.
1 386.6 27 26 28 27 
2 414 21 20 23 19 
3 435 19 18 20 16 
4 451.7 17 15 18 15 
5 484 18 16 17 13 
6 515.6 19 14 19 14 
7 548.8 24 23 33 32 
8 584.4 29 26 44 45 
9 617.6 34 28 45 37 
10 636 37 39 48 53 
11 653 32 25 34 29 
12 677 24 25 26 27 
13 693.5 54 48 78 75 

3.4.2. Chl-a and PC from HICO and MODIS Imagery 

We further explored the aGau(λ) distribution obtained from HICO and MODIS of the western 
basin of Lake Erie. The MuPI scheme was applied without using Rrs(λ) data at the shorter spectral 
bands (those <500 nm for HICO and <480 nm for MODIS). The power-law relationships obtained in 
Section 3.4 between aGau(677) and Chl-a, and aGau(617.6) and PC concentration were applied to the 
obtained aGau(λ) images to map the spatial distribution of Chl-a and PC concentration (Figure 10). 

The estimated spatial distributions of Chl-a and PC from MODIS showed a similar pattern with 
those from HICO. A two-day difference exists between the HICO (15 August 2014) and MODIS (13 
August 2014) observations due to the availability of satellite image, which explains the slightly 
different locations of the high biomass patches as shown in Figure 9. The non-value patches with in 
HICO image was a result of the poor Rrs(λ) quality due to the failing of the atmospheric correction. 

Figure 9. (A) Example spectra of in situ and HICO measured (Rrs(λ)), and their corresponding
estimated spectra from MuPI; (B) example spectra of in situ and MODIS measured (Rrs(λ)), and their
corresponding estimated spectra from MuPI; and (C,D) the 13 aGau(λ) derived from in situ, HICO and
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3.4.2. Chl-a and PC from HICO and MODIS Imagery

We further explored the aGau(λ) distribution obtained from HICO and MODIS of the western
basin of Lake Erie. The MuPI scheme was applied without using Rrs(λ) data at the shorter spectral
bands (those <500 nm for HICO and <480 nm for MODIS). The power-law relationships obtained in
Section 3.4 between aGau(677) and Chl-a, and aGau(617.6) and PC concentration were applied to the
obtained aGau(λ) images to map the spatial distribution of Chl-a and PC concentration (Figure 10).

The estimated spatial distributions of Chl-a and PC from MODIS showed a similar pattern with
those from HICO. A two-day difference exists between the HICO (15 August 2014) and MODIS
(13 August 2014) observations due to the availability of satellite image, which explains the slightly
different locations of the high biomass patches as shown in Figure 9. The non-value patches with in
HICO image was a result of the poor Rrs(λ) quality due to the failing of the atmospheric correction.
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(C,D) remote sensing imagery; the distribution of phycocyanin (PC) and chlorophyll a concentrations
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3.4.3. MODIS and MERIS Imagery over Lake Erie

MERIS imagery did not coincide with the in situ observations used in this study. Thus, to provide
an example of MERIS imagery, aGau(λ) were retrieved from MERIS imagery on 3 September 2011.
MODIS imagery of this day was also considered.

As shown in Figure 11, similar patterns for high and low absorption patches were noticed for
the two sensors, but the two images showed different magnitudes of aGau(λ). In further analysis of
the Rrs(λ) from these two sensors at the same locations, good agreement was observed, as shown
in Figure 12. The existence of 709 nm band in MERIS could be the main reason for the differences
in the retrieval results. The patch of high values in the MERIS (marked with solid star: F) imagery
was not included in MODIS because the standard L1B to L2 processing in SeaDAS masked those
pixels as clouds. Further validation and evaluation of MERIS and MODIS Rrs(λ) with in situ data are
necessary to have a better understanding of the differences in the results, which is beyond the scope of
the current work.
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Figure 11. The spatial distributions of aGau(435) and aGau(617.6) in western basin of Lake Erie estimated
from: MERIS (3 September 2011, 15:43:50 UTC) (A,B); and MODIS (3 September 2011, 18:55:00 UTC)
(C,D) remote sensing reflectance imagery. The stars on (A) shows the locations of the mismatch between
MERIS and MODIS imagery.
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3.4.4. The Seasonal Variation of aGau(λ) from MERIS Imagery

We further explored the seasonal variation of aGau(435) and aGau(617.6) in Lake Erie retrieved from
MERIS seasonal composed 4 km Rrs(λ) imagery (Figure 13). The differences in the spatial distribution of
high pigment absorption patches in Spring, Summer, Autumn and Winter were captured. An obvious
summer bloom in western basin of Lake Erie is shown in the figure.
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4. Discussion

4.1. Spectral Requirements for aGau(λ) Retrieval

In the retrieval of aGau(λ) from in situ Rrs(λ) data, we found that a band around 695–715 nm is
important for accurate aGau(λ) estimation in bloom waters. This is consistent with previous studies
for the estimation of Chl-a in turbid productive waters [51–54]. Fundamentally, for phytoplankton
bloom waters, the reflectance at wavelengths 695–715 nm can be augmented in the same way as occurs
with terrestrial plants [51–53]. Lacking a proper spectral band within this spectral region for MODIS,
the near-infrared band at 748 nm was included when inverting MODIS Rrs(λ). Although higher
uncertainties at 748 nm band were noticed (Section 3.4.1), the inclusion of the band at 748 nm results in
much more reasonable aGau(λ) retrieval from MODIS-Aqua measured Rrs(λ) (Figure 9, Table 7) versus
without Rrs(λ) at this band. The same results were noticed in Section 3.1 for the aGau(λ) retrieval from
Rrs(λ) at VIIRS and MSI spectral bands.

4.2. The seasonal aGau(λ) Variation in Lake Erie

The MERIS derived seasonal aGau(435) and aGau(617.6) variation in Lake Erie follows the pattern
recorded in the literature [55,56]. In the central basin of Lake Erie, the different patterns, as shown
in Figure 13, are due to the greater nutrients in the spring and autumn, and lower availability in
the summer as a result of water stratification. The nutrient inputs due to agricultural activities as
well as an expanding non-native mussel population, along with the light and temperature changes
in different seasons form the main drivers for the different algal bloom patterns in Lake Erie during
the four seasons [55–59]. As discovered in Moon [55], the biomass and taxonomic composition and
the dominant taxa of surface assemblages varied in different seasons, which can be explained by the
light, temperature and nutrient combinations in different seasons, and the strong spatial variability
associated with mesoscale physical processes such as upwelling and basin-scale circulation [59].

4.3. Pigment Retrieval and HABs Detection

In this study, MuPI as a semi-analytical inversion scheme was applied to retrieve multiple
Gaussian curves from satellite remote sensing data. As demonstrated in previous study [10],
these Gaussian curves are related to the different phytoplankton pigments.

This phytoplankton pigment information has been used in the quantification of phytoplankton
community composition, at least to a functional group level ([5] and the references therein),
because many pigments are particular to specific taxonomic groups or even species [1]. However,
only limited work has been conducted to obtain these phytoplankton pigments from satellite remote
sensing data. Pan et al. [8] and Moisan et al. [60], as two of them, attempted to obtain 12 and 18 different
phytoplankton pigments from satellite remote sensing data, respectively, but both of them are empirical
approach based. Pan et al. [8] proposed using empirical relationships of 12 different phytoplankton
pigments with the same band ratios of satellite Rrs(λ) around 490 nm to 550 nm. However, using
490 and 550 nm alone is not a good strategy for multiple pigments, as different pigments have
different absorption peaks and troughs at different wavelengths [1]. Compared with Pan et al. [8],
Moisan et al. [60] directly used the Chl-a product of satellite remote sensing to estimate aph(λ),
then decompose this aph(λ) to 18 pigments based on their specific absorption coefficients. However,
this satellite Chl-a product used similar empirical algorithm and spectral bands as in Pan et al. [8].
As both works were focused on coastal waters, another large uncertainty comes from non-algal
particles and gelbstoff in these waters, which have a big influence on wavelengths shorter than 550 nm,
and this influence cannot be eliminated by the band-ratio based algorithm. Compared with these
works, MuPI not only considers the contribution of non-algal particles and gelbstoff in the coastal or
inland waters, but also the different absorption properties of pigments, as shown in Tables 1 and 2.

Another application of the pigment information is in HAB detection. The algorithms for HAB
detection are usually based on Chl-a and its anomalies [47], or marker pigments, such as phycocyanin
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(PC) for cyanobacteria [6,7,18,48,61]. With MuPI, a successful discrimination of phycocyanin (PC) and
Chl-a was achieved in this study. Limited by the dataset, the estimation of other pigment concentrations
(phycoerythrin, chlorophyll b and c, carotenoids) from aGau(λ), as demonstrated in Hoepffner and
Sathyendranath [10], could not be conducted here.

Cyanobacteria dominated HABs are increasing globally and presenting a major environmental
and human health issue. Extensive Microsystis blooms with toxin production occur during summer
and fall in different regions around the world and Microcystis contamination has been documented at
many regions including Pinto Lake (California), Lake Erie (U.S.A.) and Lake Taihu (China) [6,7,21,61].
Other common bloom-forming pelagic genera include Aphanizomenon, Anabaena, Rhodomonas and
Planktothrix. However, since toxicity is primarily associated with Microcystis, these other cyanobacteria
blooms are generally considered nuisance blooms which will not cause acutely dangers to humans
and wildlife [62], but they are frequently present in impacted water bodies (Figure 8). However,
the ability to discriminate the different bloom-causing species is one of the challenges that existing
algorithms are facing. In our analysis with aGau(λ) in Section 3.3, the possibility of discriminating
different cyanobacteria species was shown. The variation of the spectral shape defined by aGau(435),
aGau(584.4), and aGau(617.6) was found vary with different species and their composition in the water
body as a result of the variation in pigment ratios [6]. This result showed the potential of MuPI in the
application of separating species in HAB waters, which will be useful in detecting and monitoring
potential toxin producers. However, because of data limitation, this potential is not fully addressed in
this study, but it will be further explored with a larger dataset in the future.

5. Conclusions

In this study, the MuPI model was validated for obtaining the peak heights of Gaussian curves
(aGau(λ)) from multi-spectral satellite remote sensing data. The model performance was validated in
the retrieval accuracy of aGau(λ) with Rrs(λ) of six multi-spectral band configurations, and the spectral
requirements were discussed. Less than 35% of mean unbiased absolute percentage differences were
achieved for aGau(λ) from Rrs(λ) spectra with OLCI, MERIS and MODIS bands, and less than 45% for
VIIRS, MSI and OLI bands. Using data from the western basin of Lake Erie as an example, the Rrs(λ)
obtained from HICO and MODIS satellites were validated with in situ data over cyanobacterial bloom
waters in Lake Erie, and the spatial distributions of aGau(λ) and the concentrations of chlorophyll a
and phycocyanin were obtained, where the patches of cyanobacteria bloom were clearly presented.
A seasonal distribution of pigment absorption coefficients was obtained from MERIS seasonal
composed imagery of 2011 for Lake Erie. These results demonstrate that, with MuPI, it is possible
to analytically retrieve information of not only Chl-a, but also PC and potentially other pigments,
which will significantly enhance our capability to characterize and evaluate the status of phytoplankton
blooms and discriminate phytoplankton groups using satellite ocean color remote sensing.

Supplementary Materials: The algorithm code is available online at www.mdpi.com/2072-4292/9/12/1309/s1.
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