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Abstract: The NDVI3g time series is an improved 8-km normalized difference vegetation 

index (NDVI) data set produced from Advanced Very High Resolution Radiometer 

(AVHRR) instruments that extends from 1981 to the present. The AVHRR instruments 

have flown or are flying on fourteen polar-orbiting meteorological satellites operated by 

the National Oceanic and Atmospheric Administration (NOAA) and are currently flying on 

two European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 

polar-orbiting meteorological satellites, MetOp-A and MetOp-B. This long AVHRR record 

is comprised of data from two different sensors: the AVHRR/2 instrument that spans July 

1981 to November 2000 and the AVHRR/3 instrument that continues these measurements 

from November 2000 to the present. The main difficulty in processing AVHRR NDVI  

data is to properly deal with limitations of the AVHRR instruments. Complicating  

among-instrument AVHRR inter-calibration of channels one and two is the dual gain 

introduced in late 2000 on the AVHRR/3 instruments for both these channels. We have 

processed NDVI data derived from the Sea-Viewing Wide Field-of-view Sensor 

(SeaWiFS) from 1997 to 2010 to overcome among-instrument AVHRR calibration 

difficulties. We use Bayesian methods with high quality well-calibrated SeaWiFS NDVI 

data for deriving AVHRR NDVI calibration parameters. Evaluation of the uncertainties of 

our resulting NDVI values gives an error of ± 0.005 NDVI units for our 1981 to present 

data set that is independent of time within our AVHRR NDVI continuum and has resulted 

in a non-stationary climate data set. 
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1. Introduction 

The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High 

Resolution Radiometer (AVHRR) instruments has been crucial to study a variety of global land 

vegetation processes and how they vary in time [1–8]. The 1981 to present record of AVHRR NDVI 

data are formed from two AVHRR instruments, the AVHRR/2 that flew from July 1981 to November 

2000 and the AVHRR/3 instrument that is flying/has flown since November 2000 to present. These 

instruments have flown or are flying on fourteen National Oceanic and Atmospheric Administration 

(NOAA) polar-orbiting platforms in the TIROS-N/NOAA (A-D) series and in the Advanced TIROS-N 

(ATN)/NOAA (E-N’) series (The National Oceanic and Atmospheric Administration (NOAA) and the 

National Aeronautics and Space Administration (NASA) have jointly developed this valuable series of 

polar-orbiting Operational Environmental Satellites (POES). NASA’s Goddard Space Flight Center 

has managed the development and launch of the mission that encompasses the NOAA (A-N Prime) 

series of platforms After NASA transferred operational control to NOAA, the name of the satellite 

changed from NOAA (A-N Prime) to NOAA [6–19] (see Table 1 for renaming). NOAA-B had a 

launch failure in 29 May 1980) and on two polar-orbiting satellites in the MetOp series operated by the 

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) (Table 1). 

Although AVHRR sensors were not originally intended as a climate mission [1], their early success for 

vegetation studies was due to a reconfiguration of the instruments to have non-overlapping (“visible”) 

channel one (0.58–0.68 µm) and (near-infrared) channel two (0.725–1.10 µm) spectral bands [17,18]. 

The reconfiguration enables the calculation of spectral vegetation indices such as the NDVI which is 

calculated as: (channel 2 − channel 1)/(channel 2 + channel 1) [19]. Since spectral vegetation indices, 

reviewed in [20], are a surrogate for photosynthetic potential [19,20], the long record of AVHRR 

NDVI data has become particularly relevant for continued long-term monitoring of land surface. 

However, the difficulties in processing AVHRR NDVI data are to properly deal with several 

limitations of the AVHRR instrument or operation, e.g., vicarious post-launch calibration, atmospheric 

and cloud correction, and bias correction for the systematic orbital drift during the life of the individual 

TIROS-N missions. Among-instrument calibration is a prerequisite to observing and documenting the 

land variability and it is particularly challenging for the AVHRR because, by design, the instrument 

does not have fully onboard calibration for the visible and near-infrared (VNIR) channels and must 

rely on external references (i.e., vicariously calibrated). Several sources of radiation have been used as 

external references for the AVHRR VNIR calibration methods, including stable earth targets such as 

selected deserts [21–24], molecular scattering from sea surface and reflection from sun glint or  

clouds [25–27], and glaciers from Antarctica and Greenland [28]. The VNIR channels are sensitive to 

atmospheric conditions since they are spectrally broad and thus both require additional data for 

correcting aerosol effects and cloud contamination. Orbital drift of the NOAA-7 to NOAA-14 satellites 
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carrying AVHRR/2 instruments adds to the challenge since the NOAA satellite overpass times drifted 

from the nominal 1:30 pm overpass time by as much as 4.5 hours toward evening, creating variable 

illumination and view angles (orbits were stabilized beginning with NOAA-16). The AVHRR global 

area coverage (GAC) data have a unique sampling method.  

Table 1. General characteristics of the global coarse-resolution satellite spectral vegetation 

index instruments, their host satellite, and period of operation. As the satellite orbits the 

Earth, data are both broadcast continually and recorded on board for subsequent download 

at the operating Command and Data Acquisition (CDA) ground stations—two in the case 

of NOAA CDA ground stations in Wallops, VA, and Fairbanks, AK—for relay to the 

national data centers that are responsible for data processing and the generation of 

environmental products on a timely basis (Collecting the data from Earth observing 

missions, deriving information from them, preserving and providing the data and 

information to all users are very important activities that are supported by the ground 

stations. People began thinking about satellite environmental data and information services 

not long after the widespread use of punched cards had become obsolete, i.e., the World 

Wide Web as we know it today was yet to be created. Although specific numbers are trivial 

today, the design principles and architecture considerations, e.g., modularity, scalability, 

adaptive flexibility, evolvement, are still essential to ensure continued improvements in the 

data and information systems, e.g., the NOAA National Environmental Data, and 

Information Service (NESDIS) or the twelve Distributed Active Archive Centers (DAAC)s 

of NASA’s Earth Science Data and Information System (ESDIS)). The spatial resolution 

(at nadir in km), number of spectral bands, global data volume (GB/day) and equally 

important the associated ground system corresponding to each satellite are provided in that 

order in parenthesis. One of the unique features of the MODIS and VIIRS instruments is 

their direct broadcast (DB) capability in addition to storing data for later download. The 

Terra MODIS instrument was one of the first satellites to constantly broadcast data for 

anyone with the right equipment and software to download data. The SeaWiFS project 

includes 3 ground support systems and 135 additional NASA approved HRTP stations (in 

parenthesis). To achieve science-quality data, every satellite record has been reprocessed 

several times. The only exception to this is VIIRS that has no reprocessing capability at 

this time, a major limitation of the current VIIRS system. 

Instrument 

(km, n, GB/day, Ground System) 
Dates of Operation References, Comments 

NOAA AVHRR/2 

(4, 5, 0.6, 2) 
 [9–11] 

NOAA-7 (C) July 1981–February 1985 Deactivated June 1986 

NOAA-9 (F) February 1985–September 1988 Deactivated February 1998 

NOAA-11 (H) September 1988– September 1994 No data after September 1994 

NOAA-9 (F)-d September 1994–January 1995 Descending node, 9 am 

NOAA-14 (J) January 1995–November 2000 Late overpass after January 2001 
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Table 1. Cont. 

Instrument 

(km, n, GB/day, Ground System) 
Dates of Operation References, Comments 

NOAA AVHRR/3 

(4, 5, 0.6, 3) 
 [11,12] 

NOAA-16 (L) November 2000–December 2003 Data failures after January 2004 

NOAA-17 (M) December 2003– January 2009 No data after April 2010 

NOAA-18 (N) 08/2005–present Data used after December 2007 

NOAA-19 (N’) 06/2009–present Data used after December 2011 

MetOp-A 10/2006–present  

MetOp-B September 2012–present  

MetOp-C 2018 launch  

SeaWiFS  

(4, 8, 0.4, 3 (135)) 
September 1997– December 2010

[13] 

No data after January 2011 

SPOT-4 & -5 Vegetation 

(1, 4, 1, 4) 
May 1998– July 2013 

[14] 

No data after July 2013 

PROBA Vegetation 

(0.33, 4, 15, 2) 
May 2013–present 

[14] 

Follow-on to Vegetation 

MODIS 

(0.25-1, 32, 194, 12 (DB)) 
 [15] 

Terra February 2000–present  

Aqua July 2002–present  

Suomi-NPP VIIRS  

(0.75, 21, 93, 12 (DB)) 
October 2012–present [16] 

In order to reduce on-board global AVHRR data storage circa the late 1970s, the 1.1 km AVHRR 

spatial resolution data are partially resampled at a 4 km spatial resolution. Within each block of three 

across-track scan lines by five along-track 1.1 km AVHRR pixels, the first four pixels in the first scan 

line are averaged and the other eleven pixels are skipped. Thus, the AVHRR GAC data are a 4/15 

sampling of every three by five pixel block (that being close to the square of four) and are referred to 

as “4 km” data. The entire global day and night global area coverage of AVHRR data totals 0.6 GB, a 

large volume in the late 1970s but trivial today (Table 1). 

In the early 1990s, the development of stable long-term data records for land studies became a high 

priority and several joint NOAA-NASA recalibration efforts emerged to capitalize on the extended 

temporal coverage of AVHRR/2 data as its primary source [29–34]. Despite some general agreement, 

global and regional analyses have found important differences between NDVI time series derived from 

the different methods [35–38]. Therefore, it was and still is important to specify the source of the data 

processing in each method to certify that the measurements made are traceable and consistent, ensuring 

thus that potential users can decide whether a given product will suit their needs [39]. Nevertheless, 

this experience with the AVHRR/2 sensor has led to the design and construction of new coarse 

resolution global instruments, with better radiometric, spatial, and spectral specifications, that have 

extended and improved upon the measurements of surface land conditions initiated by the AVHHR/2 

instrument series [40]. They include the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS); the 
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Vegetation instruments on SPOT-4, SPOT-5 and Proba-V; the Terra and Aqua Moderate Resolution 

Imaging Spectro-radiometer (MODIS) instruments on NASA’s Terra and Aqua satellites, and the 

NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi-NPP satellite 

(Table 1).  

Despite the limitations of the AVHRR/2 design features, the over-riding requirement for data 

consistency to study potentially varying effects of climate on vegetation can result in their persistence 

over the lifetime of the instrument series and it could even preclude new ideas to improve the design if 

they would affect data continuity [38]. However, in the mid-1990s a growing database of accurate and 

frequent estimates of aerosol optical thickness (AOT) provided by a worldwide sun photometer 

network [41,42] opened up a new era of improved monitoring of aerosol effects on climate and the 

validation and improvement of global AOT data sets derived from the new satellite sensors [43–45]. 

NOAA introduced two new features to the new series carrying the AVHRR/3 instrument [12]. First, 

orbits for the NOAA/K-N Prime, aka NOAA/15–19, platforms were stabilized to provide consistent 

scene illumination for the AVHRR VNIR channels. Second, sensitivity at the lower end of the 

dynamic range of the radiances was increased by using a dual-gain quantization in the VNIR channels 

of the AVHRR/3 instruments [12] to improve aerosol detection for long-term ocean aerosol  

retrievals [46–48]. The albedo range from 0% to 25% is quantized from 0 to 500 counts while  

25%–100% surface reflectance is quantized from 500 to 1023 digital numbers [12]. On the AVHRR/2 

sensors, the counts uniformly represent the 0%–100% albedo range. The Kaufman et al. (1997) dark 

target approach (The Kaufman et al. approach uses the fact that the very dark pixels with spatial 

resolution (250 m) contain mostly radiance backscattered by aerosols—the darker the surface the 

higher the accuracy of the retrieved aerosol optical thickness [44]) was used to derive optical thickness 

values over dark targets where surface contribution in channel 1 is low [47,49]. However, the AVHRR 

ocean aerosol product [46,47,49] has been a reminder of how challenging it is to retrieve aerosol 

properties from space [50]. The uncertainty in AVHRR calibration has been the major limiting factor 

of ocean aerosol retrievals with this instrument [50]. Thus, the overwhelming majority of satellite-based 

aerosol retrievals use the new sensors data, e.g., MISR, MODIS, or SeaWiFS, combined with those of 

the international ground-based remote sensing aerosol networks, the AErosol RObotic NETwork 

AERONET [41,42]. Moreover, the dual-gain quantizing feature coupled with differences between the 

AVHRR/2 and AVHRR/3 VNIR spectral response function (SRF) [11,51] have complicated among-

instrument AVHRR inter-calibration of VNIR channels [52] and derived products like the AVHRR 

NDVI (See Appendix A for details). Considering the uses of AVHRR data, the AVHRR NDVI is used 

orders of magnitude more often than AVHRR aerosol retrievals. The introduced design changes on the 

AVHRR/3 critically jeopardize the use of AVHRR NDVI data in long-term time series trend analysis. 

Current efforts seek consistency on the AVHRR NDVI data record. Some of these efforts, like the 

NOAA Global Vegetation Index (GVI) [53], assume a stationary NDVI dynamics to establish consistency 

on the long-term data set at the expense of not being able to detect trends. In the GVI the pre-flight 

AVHRR channel one and two calibration coefficients are applied, and by assuming a “stable global 

maximum” NDVI it normalizes averages every time period for every pixel to adjust anomalous trends [53], 

even those due to non-stationary natural variability. Several other calibration efforts are focused on 

inter-calibration with the most advanced sensors, with on-board calibration, to estimate the calibration 

parameters. These studies include, inter-calibration with SPOT-4 for the NASA-GIMMS NDVIg 
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dataset [54], inter-calibration with Meteosat-8 for AVHRR/3 [52], inter-calibration with MODIS based 

on synchronized nadir overpass (SNO) [55] for assessing consistency of AVHRR on NOAA-16  

and NOAA-17 [56], or for providing calibration coefficients to every AVHRR instrument flown on the 

morning and afternoon NOAA or EUMESAT satellites and derive the Pathfinder Atmospheres 

Extended (PATMOS-x) reflectance dataset [57]. Others studies are focused on combining previous 

AVHRR processing with atmospheric corrections used in MODIS as in the Land Long Term Data 

Record (LTDR-V3) [58] or focused on techniques for correction of systematic errors based on 

synchronized nadir overpass (SNO) of TIROS-N observations using sources of reference calibration 

targets as processed in the Canada Center for Remote Sensing (CCRS) dataset [59]. However, 

integration of data sets to produce long-term records has been problematic because of differences 

between sensor characteristics of AVHRR-2 and AVHRR-3 themselves (see appendix A) and the more 

advanced sensors. For example, the NDVI vegetation index produced with the broad VNIR spectral 

bands on the AVHRR is different than the NDVI produced with the new sensors that have avoided the 

water absorption effects in the near infrared channels by narrowing its band pass [13–15]. The 

approaches using MODIS or SNO to produce a long-term dataset would have insufficiently reliable 

data for the estimation of the inter-calibration parameters of the NOAA-14 AVHRR/2 sensor since, 

during their overlapping periods, the NOAA-14 platform has a later overpass due to its drift (Table 1). 

It is possible as a result that cross-sensor differences or incompatibilities would still remain between 

AVHRR/2 and AVHRR/3. Incompatibilities are also expected in the LTDR-V3 time series that have 

replaced the AVHRR/3 component with the best available MODIS data [58].  

The aforementioned inter-calibration approaches all follow a traditional (frequentist) approach to 

find optimal parameters—that is, parameters are considered to be unknown, but fixed; hence they are 

deterministic and they are estimated by finding the best set of parameters C* among all parameters C, 

i.e., those values that best match the actual measurements. Of course, there are different competing 

ways to define “best parameters”, but any approach that only produces a single best value C*, cannot 

explain the fact that measurements contain noise. In other words, deterministic inversion methods do 

not explain the uncertainty in parameter estimates [60]. In this paper, we consider an alternative, 

statistical approach to parameter estimation in inter-calibration problems—the Bayesian method—that 

takes a different viewpoint. Rather than trying to find a single best parameter value C*, parameters are 

considered to have a distribution P(C) that can be updated to reflect new information. We use SeaWiFs 

data from 1998 to 2008 to characterize the NDVI probability density function and inter-calibrate the 

NDVI probability density estimated from NOAA AVHRR/2 and AVHRR/3. This study grew from the 

Global Inventory Modeling and Mapping Studies (GIMMS) early calibration research that results in 

the first generation AVHRR/2 GIMMS NDVI dataset [32] and the second generation GIMMS NDVIg 

that inter-calibrates AVHRR/2 and AVHRR/3 with SPOT-4 Vegetation data to produce a bi-monthly 

time series from 1981 to 2006 [54]. Studies using the NDVIg time series reported the stability of the 

dataset [61–64] that fares well when compared to other data sets [36–38]. The inter-calibrated 

AVHRR/2 component of the NDVIg, from July 1981 to September 2000, was also recommended for 

time series analysis as being a consistent non-stationary dataset [38]. However, some inconsistencies 

were found at northern high latitudes in its AVHRR/3 record [65,66]. Investigating them, we found 

that recalibration was not possible using SPOT-4 Vegetation NDVI data at very high northern latitudes 

due to the truncation of SPOT-4 data above 72° N latitude. Substituting SPOT-4 NDVI (NDVISP4) 
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with SeaWiFS NDVI (NDVISW) data in the Bayesian inter-calibration process, we compensated for the 

northern latitude inconsistencies, and obtained robustness that resulted in an improved consistent  

non-stationary NDVI3g dataset. The goal of our work is to produce a consistent non-stationary NDVI 

data set to quantify climate-driven seasonal and inter-annual variability in photosynthetic capacity. 

In this paper, we show how to build a consistent non-stationary NDVI dataset derived from 

AVHRR/2 and AVHRR/3 sensors based on Bayesian methods and the SeaWiFS NDVI dataset. We 

characterized the NDVI probability density function through SeaWiFS data and corrected the 

inconsistencies (Due to sensor design differences between the AVHRR/2 and AVHRR/3 instruments 

(see Appendix A)) of the AVHRR probability density functions, known as “priors” in Bayes theory. 

To this end, in Section 2.1, we review the processing of our data sets, NDVIg and NDVI3g, to ensure 

that the results are traceable and consistent. We follow in Sections 2.2–2.4 with a brief introduction of 

Bayesian analysis in the context of sensor inter-calibration. We present a first set of results in Section 3.1 

and extend them to discuss parameter and data uncertainties. In Section 3.2, we discuss data stewardship 

and the additional steps taken to ensure the integrity, accessibility and maintenance of our research 

NDVI3g dataset. Finally, we draw data quality conclusions in Section 4. 

2. Methods 

In this section, we review the inter-calibration processing chain developed for the NDVIg and 

current NDVI3g dataset versions to minimize AVHRR/2 and AVHRR/3 NDVI incompatibilities. 

2.1. Bayesian Description of Inverse Problem 

To infer parameters from indirect measurements, as on these inter-calibration efforts, is an inverse 

problem in the field of parameter estimation, since we used to convert the observed measurements into 

information about the parameters of a physical system [60]. Our goal is to describe Bayes’ learning 

rule that updates prior knowledge in light of measurement evidence data. In its most common form, the 

Bayes’ rule p(A|B) = p(B|A) p(A)/p(B), describes learning about proposition A, based on the evidence 

data B, where p(A) is our initial degree of belief or prior probability distribution, and p(A|B) is our 

degree of belief or posterior probability distribution after accounting for the evidence data. Several 

terms that enter the Bayes’ formula need to be defined [67]:  

 The prior probability p(A), in the Bayesian interpretation, encodes prior knowledge about the 

parameters A, such as the degree of correspondence between our two AVHRR/2 and AVHRR/3 

NDVI prior distributions (NDVIpd). 

 The probability p(B) describes our knowledge about evidence data B, such as the SeaWiFS 

NDVI data (NDVISW). 

 The likelihood p(B/A) encodes our ability to predict how the system would behave as a function 

of A with a fixed value B. 

 The ratio p(B|A)/p(B) is a way to quantify how much support evidence B provides for 

proposition A.  

 The Learning p(A|B), in a Bayesian model, is the shifting of distribution in a proposition before 

and after accounting for evidence using Bayes’ rule.  
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The Bayesian perspective is natural for uncertainty quantification since it provides densities that can 

be propagated through models [68]. First, in the Bayesian framework, probabilities are treated as 

possibly subjective and they can be updated to reflect new information; second, they are considered to 

be a distribution rather than a single frequency value; and third, parameters are considered to be 

random variables with associated densities and the solution of the inverse problem is the posterior 

probability density. 

2.2. Input Data—NDVIpd 

Our AVHRR NDVI3g data set was formed exclusively from AVHRR/2 and AVHRR/3 instruments 

onboard NOAA-7 through NOAA-19 satellites (Table 1). The processing system of the current 

NDVI3g data set inherits many of the steps of its predecessor NDVIg. In particular, the resulting 

AVHRR/2 and AVHRR/3 NDVI data from steps 1–4 (below) are the same input NDVI prior data 

(NDVIpd) to the Bayesian inter-calibration analysis for the NDVIg and NDVI3g datasets. 

The AVHRR NDVI data is processed using the following algorithms aimed at reducing the 

aforementioned effects on the NDVI signal:  

(1) Updated orbital models were used for better prediction of satellite position, thus minimizing 

navigation errors that result in less accurate co-registration [33,69]; 

(2) Time-varying channel 1 and channel 2 vicarious calibrations were applied to AVHRR using 

(a) Atmospheric Rayleigh scattering over oceans approach of Vermote and Kaufman [27], 

followed by calibration of the NDVI itself using the desert calibration of Los [23] for the 

AVHRR/2 sensors and, 

(b) Operational NOAA-NESDIS (desert) vicarious calibration coefficients [56,70] for the 

AVHRR/3 data acquired from NOAA-16 to NOAA-19;  

(3). NDVI composites were assembled via maximum value compositing (Maximum value NDVI 

composites were formed globally with a bimonthly time step, from the 1st day of the month 

through the 15th and from day 16 to the end of each month [54]. It should be noted that 

maximum NDVI compositing does not completely remove atmospheric effects. The broad 

bands of the AVHRR/2 and AVHRR/3 channel 1 and 2 bands, coupled with varying on-orbit 

channel spectral response function changes of these channels, also makes it difficult to 

deterministically remove atmosphere effects in the AVHRR NDVI even if correction fields 

existed in the earlier part of the AVHRR record) to minimize effects of atmospheric water 

vapor, non-volcanic aerosols, and cloud-cover [71]; 

(4). NDVI composites from AVHRR/2 were processed with 

(c) A radiative-transfer volcanic aerosol correction for the El Chichon and Mt. Pinatubo 

stratospheric aerosol periods [72];  

(d) An adaptive empirical mode decomposition/reconstruction procedure to reduce latitude 

varying solar zenith angles effects in the AVHRR/2 record due to orbital drift to later 

equatorial crossing times in the NOAA-7, NOAA-9, NOAA-11, and NOAA-14 platforms [73]. 
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It should be noted that the NDVI, as a ratio, implicitly contains a directional correction since 

the effects in the two channels are similar [74]. 

The resulting NDVI data from steps 1–4 is input to the Bayesian approach as prior knowledge 

information and it is called NDVIpd hereafter. Although steps 1–4 produce a consistent non-stationary 

AVHRR/2 NDVIpd data set for the period 1981–2000, the dual-gain quantizing feature coupled with 

differences between the AVHRR/2 and AVHRR/3 VNIR spectral response function (SRF) has  

resulted in bias discontinuities in the complete NDVIpd that are NDVI dependent (Figure 1). Thus, an 

inter-calibration step is necessary to achieve a non-stationary consistent NDVI data set: 

(5). A Bayesian analysis was applied to update and minimize discrepancies that still remained from 

steps 1–4 between the AVHRR/2 and AVHRR/3 components of the NDVIpd.  

Figure 1. This figure displays the temporal dynamics for seven representative regions 

within Africa (A–G) of the input AVHRR NDVIpd data before any compensation for 

AVHRR channels one and two dual-gain quantizing. The seven time series are NDVI 

averages of a 3 × 3 element array for the coordinate location noted and indicated in the map 

at the bottom. Areas were selected to represent different vegetation densities and types.  

 

2.3. Bayesian Inter-Calibration Analysis 

The NDVIpd dynamic range depends on surface conditions and, as Figure 1 shows, on AVHRR 

instrument type. The NDVIpd tends to have values between −0.1 and 0.6, a shorter range than the 

NDVI from more recent and advanced sensors that tend to vary from −0.1 to 0.9 [54]. A continuous 

probability density function of global NDVI, e.g., a function p that has only non-negative values and 
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integrates to 1, would describe the relative frequencies of the values from each sensor. As in many 

real-world situations, there is not a closed form expression p(NDVI) for this probability distribution 

function and we need to perform an extensive exploration of the data and model space. Instead, we 

have well-designed pseudo-random explorations that allow us to approximate this probability 

distribution function accurately on a dense grid of points spanning the range of global NDVI values. 

These random methods were called Monte Carlo techniques [75]. Monte Carlo methods provide us 

with a powerful tool for simulating NDVI distributions and creating a model of these data [67,75]. A 

large number of narrow NDVI intervals, e.g., Δ(NDVI) = 0.005, were used to approximate the area 

under the probability distribution function in each interval for the NDVIpd and the SeaWiFS NDVI 

data (NDVISW) (Figure 2). In Figure 2a, differences in the NDVI dynamic range from both the 

AVHRR/2 and AVHRR/3 instruments are apparent. The dual/single gain and SRF differences between 

the AVHRR/2 and AVHRR/3 instrument show the unintended consequence of expanding the NDVI 

dynamic range of the AVHRR/3 toward much more negative values. Using a Bayesian method, we 

aim to compensate for this unintended bias and produce a consistent AVHRR NDVI over the entire 

AVHRR/2 and AVHRR/3 combined records. 

Figure 2. We use a fine-grid δ(NDVI) of 0.005 to represent the NDVI probability density 

function from −0.2 to 1 using (A) NDVI derived from AVHRR in steps 1–4 (NDVIpd) and 

(B) NDVI from SeaWiFS (NDVISW) at two different periods, 1998–1999 and 2004–2005. 

The shifting in the probability distribution functions illustrates the discontinuities shown in 

Figure 1. The NDVISW does not show a shift from 1998 to 1999 and 2004–2005. Thus 

AVHRR NDVI shift in (A) is an indication of a spurious bias and the differences in the 

dynamic ranges from both sensors. The slight difference between the SeaWiFS NDVISW at 

two different periods in (is the global difference in surface conditions between these two 

time intervals. 

 
(A) 

 
(B) 
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2.4. Prior and Posterior Distributions 

To convey the idea of shifting or adjusting probability distribution functions to the AVHRR 

single/dual gain problem, we express Bayes’ rule slightly differently from its most common form as in 

Equation (1): 

( | ) ( ) ( | ) ( )
( | )

( | ) ( )
pd

p SW pd p pd p SW pd p pd
p pd SW

p SW pd p SW

 
 


 (1)

We use only NDVI subscripts to represent sensors, i.e., SW and pd for NDVISW and NDVIpd 

respectively. Equation (1) provides the means to correct the AVHRR data from bias using NDVISW as 

evidence. For example, the AVHRR/3 dual gain shifts NDVI values to more negative values than the 

regular AVHRR/2 single gain situation (Figure 2). This is unintended bias. NDVISW confirms that the 

shift in (A) does not represent changes on the ground. Furthermore, NDVISW provides the probability 

distribution function to transform the biased NDVIpd into a consistent and unbiased AVHRR NDVI 

(NDVI3g) over the 1981 to 2012 time period among the various AVHRR instruments. The Bayes’ rule 

(Equation (1)) is the means to shift from an NDVIpd biased prior probability distribution function to an 

unbiased posterior probability distribution function, p(NDVI3g). Figure 3 summarizes the Bayes’ rule 

process when it is applied four times, one for each overlapping period between corresponding NDVISW 

and NDVIpd values during 1998–1999 (NOAA-14, N14), 2002–2003 (NOAA-16, N16), 2004–2005 

(NOAA-17, N17), and 2007–2008 (NOAA-18, N18) to derive corresponding recalibration parameters.  

While the recalibration parameters found for NOAA-14 are applied to the consistent AVHRR/2 

calibrated component of the NDVIpd data (NOAA-7 through NOAA-14, 1981 to 2000 (Table 1)), 

NOAA-16 through NOAA-18 have their own recalibration AVHRR/3 parameters. The recalibration 

parameters of NOAA-18 are applied to all new NDVI data that are derived from its AVHRR/3 

instrument. NDVI data derived from AVHRR/3 instruments on board satellites that overlap the 

orbiting NOAA-18 period can apply a similar process using the corresponding recalibrated NDVI3g 

data as reference to recalibrate the new sensor and integrate the resulting NDVI into the multi-instrument 

AVHRR NDVI continuum. Again, a Monte Carlo method, applied on a dense grid for approximation, 

provides an estimation of priors, likelihoods, and posteriors with high accuracy. 

It is intrinsic to any inferential statistical method to explore and describe data from observations [67]. 

This is also referred to as moving from passive to active learning. A passive perspective assumes that a 

learner is a passive observer with no indication of which of the observations are more or less certain 

than the others. On the other hand, a learner, in most of the real learning situations, has the opportunity 

to explore, compare and extract information that, if done properly, will be useful to improve data under 

consideration. In our AVHRR problem, Bayes rule not only allows us to correct the NDVIpd dual gain 

quantizing bias, but it also enables the AVHRR NDVI values to be transformed to the dynamic range 

of NDVISW values. 
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Figure 3. This diagram summarizes the Bayes’ rule process and the four different 

probability distribution functions when it is applied for each overlapping period between 

corresponding NDVISW and NDVIpd values during 1998–1999 (NOAA-14), 2002–2003 

(NOAA-16), 2004–2005 (NOAA-17), and 2007–2008 (NOAA-18). The middle panel shows 

the likelihoods or the actual probability distribution functions P(SW/pd) corresponding to 

each overlapping period. The shifting observed in the prior NDVI data (plots at bottom 

panel) are corrected in the computed posterior (plots at right panel). Notice the small 

population of anomalous values in the N14 panels with an NDVIpd value of zero that 

corresponds to NDVISW values between the range of 0.5 and 0.7. These values indicate that 

there are points in the AVHRR/2 record that were flagged as missing data. Users should 

note flag values to avoid mis-interpretations in their analysis (see Appendix B or 

README file provided with the data). Also notice the comparable dynamic range and 

degree of probability distribution functions between the evidence NDVIsw (plots at left 

panel) and the posterior AVHRR NDVI data. Concurrently mapped SeaWiFS NDVI data 

enabled these corrections to be made at the same time intervals and same spatial resolution. 

 

2.5. Correcting Bias 

Figure 3 shows the dual-gain quantizing and SRF bias of the AVHRR/3 NDVI, not only on the low 

end of the NDVI dynamical range, but also elsewhere in the NDVI probability distribution function. 

The central tendency of these likelihoods prompts the definition of their corresponding biases  

as the values BSW-pd that minimizes the expected distance between it and all other normalized  
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Xbias = NDVIpd/σpd − NDVIsw/σSW values. We use the common squared difference (X − B)2 to represent 

distance between X and B. This tractable algebraic feature enables a closed form for the bias 

adjustment as in Equation (2): 

min (XbiasXbias
 BSWpd )2 
(XbiasXbias

 BSWpd ) 0

BSWpd 
XbiasXbias


N


NDVIpdXbias


N pd


NDVISWXbias


N SW

BSWpd 
E NDVIpd
 
 pd


E NDVISW 

 SW

 (2)

The value BSW-pd that minimizes the squared distance is the difference between the expected values 

of the normalized E[NDVIpd]/σpd and E[NDVIsw]/σSW (If the distance between X and B is defined as  

|X − B|, then the value that minimizes the expected distance is the median. Similarly, the mode is the 

value if a distance is defined as zero for any exact match and one for mismatches [67]). A bias 

correction is obtained by a rearrangement of terms. We want an NDVI3g that eliminates the bias term 

from the NDVIpd and that matches NDVIsw dynamical range provided by σSW, as in Equation (3): 

NDVI3g

 SW


NDVIpd

 pd

BSWpd

NDVI3g 
 SW NDVIpd E NDVI pd

  
 pd

E NDVISW 
 (3)

This posterior mean provides some information on where the bias is centered and information about 

the scatter around the posterior mean is given by the posterior standard deviation. However, the 

posterior density, p(NDVI3g), contains more information than just the posterior mean and standard 

deviations that help avoid common interpretation pitfalls, for example if the posterior is multimodal, 

i.e., there is more than one local maximum, the posterior mean may lie in a region where parameters 

are altogether unlikely [67]. 

Our purpose in creating a consistent non-stationary NDVI3g time series is to enable trend analysis 

for climate or other long-term studies with a consistent NDVI data set from multiple instruments with 

the same spectral band passes and the same spatial sampling of the surface. While NDVIpd fares badly 

in Figure 1, the NDVI3g appears to pass a first qualitative test, that the AVHRR/2 to AVHRR/3 NDVI 

bias has been attenuated and the resulting combined AVHRR NDVI dynamic ranges match those in 

NDVISW (Figure 4).  
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Figure 4. This figure displays the temporal dynamics for the same seven representative 

regions within Africa (A–G) of the corrected AVHRR/2 and AVHRR/3 NDVI3g data after 

Bayesian adjustment for the AVHRR/3 instrument dual-gain quantizing for channels one 

and two. The seven time series are NDVI averages of a 3 × 3 element 8-km pixel array for 

the coordinate location noted and indicated in the map at the bottom. Areas were selected 

to represent different vegetation densities and types. Refer to Figure 1 for the NDVIs from 

the same areas without Bayesian compensation (NDVIpd). The differences are especially 

striking for the Sahel (A), the Sahara (D), and Kenya (E) while being significant for all 

seven areas in this figure. 

 

2.6. High Density Interval (HDI)  

We now focus on the uncertainty associated with our Bayesian NDVI adjustment process. The 

standard deviation σx, since it measures how far the distribution of X is dispersed, is a measure of 

uncertainty and can be expressed by confidence intervals. If it is small, then we have more confidence 

in values near the mean. If it is large, we are less certain about the reliability of X. In Bayesian 

analysis, values that are close to the mean are more strongly preferred. Thus, they provide the highest 

density interval, an alternative to summarize uncertainty, variability, and confidence in the resulting 

probability distribution [67].  

The highest density interval summarizes the distribution by specifying an interval that spans most 

of the distribution, usually 95% of it, such that every point inside the interval has higher believability 

or confidence than any point outside the interval [67]. Figure 5 illustrates the highest density interval 

concept using NDVI3g data. We plot three individual probability density functions, p(δxy | NDVI), on 
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top of the parent NDVI probability density function. The average length of the highest density interval 

is 0.0036 resulting an uncertainty of about ±0.002 NDVI units. The way of displaying all individual 

p(δxy | NDVI) on top of the parent NDVI probability density function is equivalent to the way chosen 

to display likelihoods in the middle panel of the Bayes’ rule diagram in Figure 3. 

Figure 5. The top panel (A) shows an example of a 95% highest density interval (HDI) 

found from a fine grid approximating the probability density function, p(δxy | NDVI), using 

(B) NDVI3g data from the bottom panel’s NDVI value of 0.5. All the NDVI values inside 

the highest density interval region, the red line in the top panel, have higher density than 

any other value outside the distribution envelope. The area under the curve through the 

highest density interval line comprises 95% of all the data. Every NDVI value within the 

effective NDVI3g dynamical range would have its corresponding p(δxy | NDVI) distribution. 

In the bottom panel (B), NDVI values are centered at 0.3, 0.5 and 0.7 of the NDVI 

probability distribution function, in green, and their respective highest density intervals are 

represented by the smaller dotted curves. The top panel (A) is an expansion of the 2nd 

distribution p(δxy | NDVI = 0.5) and its respective highest density interval (−0.003, 0.002). 

The average width of all highest density intervals is 0.0036 giving an average uncertainty 

of ~ ±0.002 NDVI units.  

(A) 

(B) 

3. Results and Discussion 

The quality of the NDVI3g in terms of highest density intervals for different NDVI components, 

e.g., the spatial and temporal intrinsic coherence, the climate-related seasonal and inter-annual 

variability, provides intrinsic dynamic characteristics of this non-stationary NDVI data set. To assess 

this, we evaluate the stability of the Bayesian transformation (Btr) at reducing the dual-gain 

quantification and SRF bias. For each NDVI value within the effective NDVI3g dynamic range, the 
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resulting distributions were grid-approximated using Monte Carlo techniques—one of the advantages 

of grid-based estimation. We do not need to rely on formal analysis to derive a specification of any 

distribution because we have spatially continuous bimonthly data for three decades. Another advantage 

of grid-based estimation of a distribution is that its highest density intervals can also be approximated. 

As in many practical situations, specifying a variable’s distribution and finding its corresponding 

highest density intervals by formal analysis can be challenging, but estimating them through Monte 

Carlo methods in a fine grid approximation is straightforward. 

We computed these NDVI components for our evaluation at 0.005 NDVI intervals: 

a) Spatial coherence (δxy): for each pixel, δxy is the average of the differences between that element’s 

NDVI and the one from the surrounding eight pixels inside of a three by three pixel array;  

b) Temporal coherence (δt): for each pixel, δt is the average of the absolute NDVI values between 

consecutive composites for the same time interval within the entire 30+ years NDVI time series. 

c) Climate seasonal variability (Svc): for each pixel, is represented the average NDVI value for 

each bimonthly composite over the entire 30+ years NDVI time series. 

d) Climate inter-annual variability (IAvc): for each pixel, IAvc is the NDVI time series minus its 

Svc component and averaged for each year. 

Similarly, the stability of the Bayesian transformation is given by highest density intervals of the 

distribution of the transformed values for each NDVI within the effective NDVI3g dynamical range. 

3.1. Distributions Specified at a Fine Grid 

Figure 6 shows the estimated distributions at each NDVI value within the effective NDVI3g 

dynamical range represented graphically by the vertical segments for deviations from the mean of  

(A) the combined spatial and temporal coherent components (δxy + δt); (B) the Bayesian transformation 

(Btr); (C) the climate-related seasonal (Svc); and (D) inter-annual (IAvc) variability components. The 

distribution for (δxy + δt) at any NDVI value concentrates values around zero implying high spatial and 

temporal homogeneity within small neighborhoods, which is compatible with the high spatial and 

temporal coherence found on NDVI images [76]. Small uncertainties are expected, are infrequent and 

unavoidable, and result from unusual episodes of biomass burning, volcanic eruptions, hurricanes, 

deforestation, droughts, etc. 

Our Bayesian transformation concentrates its mass around zero for low and high NDVI values. In 

the interval from 0.1 to 0.6, the distribution is more dispersed as expected from the likelihood 

p(SW|pd) (central panel in Figure 3) which shows higher discrepancies between the sensors. At the 

low and high ends, an apparent functionality can be derived. The SeaWiFS instrument has much better 

spectral resolution with narrower bands in the visible and near infrared spectrum, has much better 

radiometric calibration and characterization, resulting in better NDVI discriminating features than the 

same for the AVHRR instruments [54]. This is the reason we use coincident SeaWiFS NDVI data to 

adjust the AVHRR NDVI through our Bayesian analysis. 

The climate-related seasonal Svc component dominates our NDVI variability reflecting variable 

vegetation phenology in NDVI within the interval 0.3 to 0.7 for those areas that experience seasonality 

from wet to dry seasons and/or from warm to cold temperatures. Note that the inter-annual variation 
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increases proportionally to NDVI values, as the vertical distribution is more dispersed at larger NDVI 

values. This feature has been key for identifying droughts and their real magnitude in many regions 

and would be near zero for a stationary NDVI data set [77]. In contrast, the non-surface uncertainty 

remaining in other AVHRR NDVI data has been questioned in previous papers [78,79]. Papers in this 

issue and elsewhere compare our data set to geophysical variables to independently establish the utility of 

our data set for monitoring non-stationary or climate phenomena at northern high latitude regions [80–84]. 

However, the preparation of the NDVI3g data for northern high latitude monitoring offers new 

challenges that we will revise in a future release of the data. Bhatt et al. [84] conclude that the NDVI3g 

data should be viewed as the best possible version at this time that will be improved in the future, as 

more high quality data are accumulated to guide improvements. We conform to Bayes rule, where new 

data present new opportunities for new information, depending upon their Bayesian comparison. 

Figure 6. All panels show, at each NDVI value within the effective NDVI3g dynamical 

range, the distribution (vertical segments) for deviations from the mean of (A) the combined 

spatial and temporal coherent components (δxy + δt); (B) the Bayesian transformation (Btr); 

(C) the climate seasonal (Svc); and (D) inter-annual (IAvc) variability components. The 

color bar represents the mass or variable density concentration along the vertical lines.  

This figure confirms that the temporal and spatial NDVI coherence of our data are high, 

shows that the aggregate error of our Bayesian transformation is ±0.002 NDVI units, and 

demonstrates that seasonal variation is higher and inter-annual variation is lower. 
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3.2. High Density Intervals 

The distributions in Figure 6 have an equivalent high-density interval representation as we show in 

Figure 5. A visualization of the high-density interval allows us to explicitly define uncertainty. Figure 7 

shows the correspondent high-density interval probability distributions for (A) IUδxy or spatial 

coherence and IUδt or temporal coherence plotted together; (B) Btr or the Bayesian transformation 

probability distribution; (C) Svc or the seasonal variability; and (D) IAvc or the inter-annual variability.  

Figure 7. The top panel shows an example 95% highest density interval (HDI) found from 

the fine grid approximated probability density functions: (A) δxy or spatial coherence and δt 

or temporal coherence plotted together; (B) Btr or the Bayesian transformation probability 

distribution; (C) Svc or the seasonal variability; and (D) IAvc or the inter-annual variability, 

all as presented differently in Figure 6. All the x values inside the density interval regions, 

the red horizontal lines, have much higher density (95%) than any other x value outside 

(5%). Every NDVI value within the effective NDVI3g dynamical range would have its 

corresponding p(x | NDVI) distribution. In the bottom panels, centered at 0.1, 0.3, 0.5 and 

0.7 NDVI units, are the correspondent four probability density functions represented by the 

smaller dotted horizontal curves on top of the parent NDVI3g’s probability distribution 

function, in green. The top panels in each subfigure are the labeled expansions in the 

vertical of the respective distributions at 0.5 NDVI units for the four probability 

distribution functions. Note the very high spatial and temporal coherence, the large seasonal 

variation, and the lower inter-annual variation that have resulted from the Bayesian 

adjustment of the AVHRR NDVI data using SeaWiFS NDVI.  
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The high-density interval regions, shown in Figure 7, help to define uncertainties in the NDVI3g 

time series. Small contributions to the overall NDVI3g uncertainty come from spatial and temporal 

coherence variability: combined they are ±0.002 NDVI units and this low uncertainly enables 

application of our data to study seasonal and inter-annual non-stationary phenomena. Seasonal 

variability comprises most of the non-stationary uncertainty, as it should, and is greater than the  

inter-annual variability that it is also expected.  

3.3. Data Stewardship 

As digital technologies expand the power and reach of research, they also raise complex issues 

affecting research data with respect to ensuring its integrity, accessibility, and stewardship [85,86]. At 

the same time these advances in knowledge depend on the open flow of information from other 

researchers to check the quality of the data, verify analyses and conclusions. With this spirit in mind, 

we needed a platform that provides the information technology and management for meaningful access 

and reuse of our research data. Our prime goal is to support users’ science-driven demands while 

taking advantage of existing data system components. We found such a platform—the NASA Earth 

Exchange (NEX), a platform for scientific collaboration, knowledge sharing and research for the Earth 

science community, has welcomed our research data at: 

https://nex.nasa.gov/nex/projects/1349/wiki/general_data_description_and_access/. 

The data described here are available in the NEX data-pool for NEX users who obtained their 

credentials for supercomputing access. It also provides direct access to non-NEX users at: 

http://ecocast.arc.nasa.gov/data/pub/gimms/3g/. 

Future updates are expected expanding the time series at least 36 years and potentially 40+ years by 

integrating EUMESAT MetOp data—work towards this goal has been initiated. 

4. Conclusions 

We describe our July 1981 to December 2012 AVHRR NDVI3g global data set and the various 

steps included in producing it. Figure 8 provides a graphical summary of our non-stationary NDVI3g 

data set: there is minor error with respect to spatial and temporal coherence, on the order of ±0.001 for 

both; the error or uncertainty resulting from our Bayesian transmission ε(tr) varies from ±0.001 to 

±0.004 depending upon NDVI3g value; the seasonal NDVI3g variation is 0.01 to 0.015 for NDVI3g 

values between 0.25 and 0.75, reflecting that our data set captures seasonal variation where phenology 

is variable; and the among year variation is on the order of ±0.008, all units in NDVI3g units. Thus, our 

NDVI3g data set has a conservative measurement uncertainty on the order of ±0.005. This low 

measurement uncertainty suggests detection of non-stationary seasonal and inter-annual climate 

forcing using the NDVI3g data are possible. Specific comparisons between NDVI3g and independently 

measured appropriate climate phenomena are needed to improve our understanding of uncertainty and 

to substantiate these findings. In addition, we hope to continue adding to our AVHRR NDVI3g 

continuum while AVHRR/3 instruments continue operation on the MetOp satellites. 
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Figure 8. This figure shows the accumulated spatial coherence, temporal coherence, 

Bayesian, seasonal, and interannual uncertainties sum to an average 0.023 NDVI units  

(δxy + δt + Btr + Svc + IAvc, respectively). The inter-annual variation increases 

proportionally to NDVI values but still it is lower than ±0.012 NDVI units. The major 

contributions to the uncertainty from seasonal variation occur within the NDVI interval 

from 0.3 to 0.7 where effects of vegetation phenology are greatest. 
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Appendix A. AVHRR Single/Double Gain and Spectral Response Function 

It has been more than 50 years since the publication of the first thorough analysis of the effects  

of rounding errors in numerical algorithms, Wilkinson’s book “Rounding errors in algebraic 

processes” [87], and almost 20 years of the first edition of Higham’s book “Accuracy and stability of 

numerical algorithms” that provided an up-to-date treatment in finite precision arithmetic [88]. Both 

books remind us that uncertainty in data may arise in several ways, from accuracy errors of measuring 

physical quantities, or from errors in storing the data (rounding errors), or from precision errors 

processing the data even if the data are themselves a solution to another problem. The terms accuracy 

and precision should not be confused or use interchangeably. While accuracy refers to the absolute or 

relative error of an approximate quantity, precision is the accuracy with which the basic arithmetic 

operations (+, −, *, /) are performed. For many cases, these errors depend on design parameters whose 

values are a compromise between obtaining small error and a fast computation or small error and 

limited storing capacity [88]. The design changes in the AVHRR VNIR channels from single to double 

gains coupled with differences between the AVHRR/2 and AVHRR/3 VNIR spectral response 

function (SRF) [11,51], are examples of these compromises. The value for the radiance measured for 

each of the AVHRR bands is calculated directly from the radiometric calibration equations that the 

manufacturer characterized before launch from laboratory measurements. These equations are identical 

in form for each of the AVHRR/2 and AVHRR/3 bands. 

Figure A1 shows the differences in spectral response functions between the AVHRR/2 and 

AVHRR/3 instruments that are reported by Wu [11] and Thrishchenko [51]. On orbit, however, there 

will be no mechanism for monitoring changes of individual components within the radiometers. 

Among other things, there will be no means of determining spectral shifts in the instruments after 

launch or changes in their sensitivity or absolute accuracy of the measured radiances. But, on orbit, it 

is possible to monitor relative changes in the output of the radiometer’s bands through the calibration 

equation parameters. Measurements on orbit give only the changes in the instrument’s sensitivity 

relative to that at launch. For practical considerations, we will assess the contribution to the  

NDVI discontinuities from the parameter values (single/double gains and offsets) determined by the 

manufacturer. Again, these values are determined solely through measurements by the manufacturer 

and cannot be checked after launch. 

A.1. AVHRR Single and Double Gains 

It is tempting to assume that calculations were free from errors and therefore, they must be accurate 

and stable, especially since they involve only a small number of simple operations, e.g., doubling 

sensitivity of the VNIR channels in the low albedo range (0%–25%) and reducing it 2/3 for high 

albedo (greater than 25%) in an instrument that responds nearly linearly to spectral radiance. Ideally, 

the instrument requires four input signals for calibration, two on each of its linear segments as the 

bilinear gain is implemented in SeaWiFS [13], but since the instrument only has one sensor for each 

channel, the dual gain is generated in the electronic subsystem that is identical for both low and high 

gain modes [70]. For calibration, it is assumed that instrument degradation is identical for both low and 
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high gain modes [70]. With this assumption, one can express a single-gain count Cs in terms of  

dual-gain counts (Cd) in the low and high counts regions: 
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   (A1) 

where the dual-gain switch and interception are Tdg ≈ 500, Bsg = Dsg + ½ (Tdg − Ddg) ≈ 250, and the 

single-, dual-count dark thresholds, Dsg and Ddg respectively, are approximately 40. In the ideal case, 

the dual-gain implementation does not introduce any more sensitivity to perturbation than is inherent 

in the underlying problem. In assessing the effectiveness of the dual-gain implementation,  

we model the output radiances derived from the single-gain pre-launch calibration coefficients of 

NOAA-14 AVHRR/2 for channel-1 and channel-2 and compared with radiances derived from the 

double-gain coefficients of NOAA-18 (Figure A2). The high gain line does not intercept with the 

single-gain line, thus noticeable discrepancies are expected in channel-2.  

Figure A1. The spectral response functions (SRF) of the VNIR channels for the  

(A) NOAA-7/9/11/14 AVHRR/2 and (B) NOAA-16/17/18/19 AVHRR/3 instruments are 

consistent among themselves but are slightly different from each other. In particular, the 

integrated spectral response function for the visible channel in the AVHRR/2 is about  

0.11 μm compared to the AVHRR/3 integrated spectral response function of 0.08 μm 

bandwidth. The integrated spectral response functions for channel 2 for AVHRR/2 and 

AVHRR/3 are very similar. 

 

When the single-gain count substitutes the correspondent double gain count as in equation A1, we 

can compute the absolute difference between radiances from single-gain NOAA-14 AVHRR/2 counts 

and radiances from NOAA-18 single-equivalent AVHRR/3 counts. Ideally, the lower and upper 
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bounds of the difference are −0.05% and 0.05% respectively (Figure A3). The difference between the 

simulated NOAA-14 and NOAA-18 single-gain counts are 4 times higher than ideal in channel-1 and 

40 times higher in channel-2 (Figure A3). Notice the change of slope from the low to the high gain 

counts in the differences between single- and double-gain in channel-1. This indicates difficulties on 

calibration since the low and high gain modes would have different degradation rates. 

Figure A2. This figure shows the AVHRR/2 radiances derived from a single-gain count 

using NOAA-14 pre-flight coefficients and AVHRR/3 radiances using both low and high 

gain counts NOAA-18 pre-flight coefficients for (A) channel-1 and (B) channel-2. 

 

Figure A3. We show, (left) the lower and higher bounds for the differences between ideal 

dual- and single-gain implementation in both channels and, (right) the differences between 

the simulated NOAA-14 and NOAA-18 single-gain counts. In the ideal case, the lower and 

higher bounds of the difference are −0.05% and 0.05% respectively (left). The difference 

between the simulated NOAA-14 and NOAA-18 single-gain counts are 4 times higher than 

ideal in channel-1 and 40 times higher in channel-2. Notice the change of slope from the 

low to the high gain counts in the differences between single- and double-gain in channel-1 

signaling difficulties on calibration when identical instrument degradation for both low and 

high gain modes is assumed. 

 

Simulating NOAA-14 radiances from the actual count measurements of NOAA-18 AVHRR/3 and 

computing their associated NDVI to assess the effects on the differences on NDVI (Figure A4), we 
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find a negative bias in the error budget that is compatible to the negative shift observed in Figure 1. 

Figure A4 also shows for comparison the error budget from NOAA-16 NDVI when their low- and 

high-gain are computed using the actual counts from NOAA-18. 

As we have done in Figure 6, we can disaggregate the NDVI error budget as a function of NDVI 

(Figure A5). The higher errors in these NOAA-14 simulations might well explain the NDVIpd 

discontinuities due to design changes reported in the main document. However, it is not possible to 

separate this contribution from changes on orbit in the instrument sensitivity. All that can be derived 

and corrected with the Bayesian approach is the combined effects on NDVI due to changes in the 

design and in the instrument sensitivity when on orbit. 

Figure A4. Simulations of NOAA-14 NDVI from the actual count measurements of 

NOAA-18 AVHRR/3. A negative bias in the error budget is observed (red X points) that is 

compatible to the negative shift reported in Figure 1. The Figure also shows, for comparison, 

the error budget from NOAA-16 NDVI (blue circles) and the ideal error budget (green 

crosses) when their low- and high-gain are computed using the actual counts from  

NOAA-18. The NOAA-14 error is 3 times higher than the NOAA-16 and about 55% of the 

NDVI uncertainty (Figure 8).  

 

Figure A5. NDVI error budget is disaggregated by NDVI values for simulated NOAA-14 

(left) and NOAA-16 (right). The error budget ranges from −0.025 in the low NDVI values 

(high-gain mode in channel-2) to -0.01 in the high NDVI values. The channel-2 slope 

discrepancy in Figure A2 might account for this tendency. 
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Appendix B. Readme File 

GIMMS AVHRR Global NDVI 1/12-degree Geographic Lat/Lon 

host: http://ecocast.arc.nasa.gov/data/pub/gimms/3g/ 

README 2014 June 2014 

________________________________________________________________________________ 

 

1. Description 

2. File Naming Convention 

3. Grid Parameters 

4. Data Format VI3g  

5. Flags 

________________________________________________________________________________ 

 

1. Description 

 

This dataset is an inverse cartographic transformation and mosaicing of the  

GIMMS AVHRR 8-km Albers Conical Equal Area continentals AF, AZ, EA, NA, and 

SA to a global 1/12-degree Lat/Lon grid.  

 

Continent demarcation and pixel selection is predetermined with an ancillary 

NDVI-3G based land-water mask. 

 

2. File Naming Convention 

 

geo[year][month][period].n[sat][-[VI][version]g 

 

where  

year 2-int 2 digit year 

month 3-char abbr. lower case month name 

period 3-char alphanum period: bimonthly 15[ab] 

sat 2-int satellite number 

version n-int version number (3) 

 

For example, 

geo09jan15a.n17-VI3g 

 

3. Grid Parameters 

 

grid-name: Geographic Lat/Lon 

pixel-size: 1/12=0.0833 degrees 
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size-x: 4320 

size-y: 2160 

 

upper-left-lat : 90.0 (center of pixel 90.0 − 1/24) 

upper-left-lon : −180.0 (center of pixel −180.0 + 1/24) 

lower-right-lat : −90.0 (center of pixel − 90.0 + 1/24) 

lower-right-lon: 180.0 (center of pixel 180.0 − 1/24)* 

 

 *coordinates located at center of pixel 

 

4. Data Format-VI3g * 

 

datatype: 16-bit signed integer 

byte-order: big endian 

 

scale-factor: 10000 

min-valid: −10000 

max-valid: 10000 or 10004 

mask-water: −10000 

mask-nodata: −5000 

 

*values include embedded flags (see full NDVI-3G documentation - in preparation) 

 

5. Flag Values 

Each NDVI data set (ndvi3g) is an INT16 file saved with ieee-big_endian 

it ranges from −10000 to 10000 or 10004 

with the flagW file added to the ndvi values as follows: 

 ndvi3g = round(ndvi × 10000) + flagW − 1; 

 flagW ranges from 1 to 7; 

 to retrieve the original ndvi and flagW values 

 flagW = ndvi3g – floor(ndvi3g/10) × 10 + 1; 

 ndvi = floor(ndvi3g/10)/1000 

The meaning of the FLAG: 

 FLAG = 7 (missing data) 

 FLAG = 6 (NDVI retrieved from average seasonal profile, possibly snow) 

 FLAG = 5 (NDVI retrieved from average seasonal profile) 

 FLAG = 4 (NDVI retrieved from spline interpolation, possibly snow) 

 FLAG = 3 (NDVI retrieved from spline interpolation) 

 FLAG = 2 (Good value) 

 FLAG = 1 (Good value) 

END 
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