Identification and Segmentation of Internal Solitary Waves in the East China Sea: A TransUNet Approach Using Multi-Source Satellite Imagery
Highlights
- A TransUNet-based deep learning framework was applied to multi-source satellite imagery (MODIS and SAR), achieving pixel-level ISW segmentation with a Dice coefficient of 71.0% and precision of 72.7%.
- The study generated the first 22-year (2002–2024) high-resolution spatiotemporal map of ISWs in the East China Sea, revealing two distinct hotspots and a significant summer peak in occurrence frequency.
- The data-driven seasonal patterns align perfectly with the physics of internal tide generation body force, confirming stratification as the dominant control mechanism for ISW variability in this region.
- This study demonstrates the potential of Transformer-based models in mining massive historical remote sensing archives, providing an efficient tool for large-scale oceanographic big data analysis.
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Data Sources
2.1.2. Dataset Construction and Pixel-Level Labeling
2.1.3. Data Augmentation
2.2. Model
2.2.1. TransUNet
2.2.2. Model Training Optimization
2.3. Experimental Setup
3. Model Training Results
3.1. Analysis of Model Result Metrics
3.2. Model Performance Comparative Analysis
3.3. Visualization Results
3.4. Large-Scale Image Stitching and Model Application Verification
4. Results and Discussion: Spatiotemporal Distribution of ISWs
4.1. Spatial Distribution
4.2. Seasonal Variation
4.3. Internal Tide Generation Body Force
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ECS | East China Sea |
| ISWs | Internal Solitary Waves |
| SAR | Synthetic Aperture Radar |
| MODIS | Moderate Resolution Imaging Spectroradiometer |
| CNN | Convolutional Neural Network |
| FCN | Fully Convolutional Network |
| SegNet | Segmentation Network |
| ASPP | Atrous Spatial Pyramid Pooling |
| TransUNet | Transformer-based U-Net |
| IoU | Intersection over Union |
| BCE | Binary Cross-Entropy |
| GRD | Ground Range Detected |
| IW | Interferometric Wide Swath |
| VV | Vertical–Vertical (polarization) |
| GMT | Greenwich Mean Time |
| VRAM | Video Random Access Memory |
| NOAA | National Oceanic and Atmospheric Administration |
| ESA | European Space Agency |
| WOA23 | World Ocean Atlas 2023 |
| TPXO | TOPEX/Poseidon Global Tidal Model |
References
- Osborne, A.R.; Burch, T.L. Internal solitons in the Andaman Sea. Science 1980, 208, 451–460. [Google Scholar] [CrossRef]
- Lavrova, O.Y.; Mityagina, M.I.; Serebryany, A.N.; Sabinin, K.D.; Kalashnikova, N.A.; Krayushkin, E.V.; Khymchenko, I. Internal waves in the Black Sea: Satellite observations and in-situ measurements. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014; SPIE: Amsterdam, The Netherlands, 2014; Volume 9240, pp. 248–260. [Google Scholar]
- Alpers, W. Theory of radar imaging of internal waves. Nature 1985, 314, 245–247. [Google Scholar] [CrossRef]
- Hsu, M.-K.; Liu, A.K.; Liu, C. A study of internal waves in the China Seas and Yellow Sea using SAR. Cont. Shelf Res. 2000, 20, 389–410. [Google Scholar] [CrossRef]
- Jackson, C. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. 2007, 112, C004220. [Google Scholar] [CrossRef]
- Jackson, C.R. An empirical model for estimating the geographic location of nonlinear internal solitary waves. J. Atmos. Ocean. Technol. 2009, 26, 2243–2255. [Google Scholar] [CrossRef]
- Rodenas, J.A.; Garello, R. Internal wave detection and location in SAR images using wavelet transform. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1494–1507. [Google Scholar] [CrossRef]
- Simonin, D.; Tatnall, A.R.; Robinson, I.S. The automated detection and recognition of internal waves. Int. J. Remote Sens. 2009, 30, 4581–4598. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, X.; Zhang, X. Internal wave signature extraction from SAR and optical satellite imagery based on deep learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4203216. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar] [CrossRef]
- Bao, S.; Meng, J.; Sun, L.; Liu, Y. Detection of ocean internal waves based on Faster R-CNN in SAR images. J. Oceanol. Limnol. 2020, 38, 55–63. [Google Scholar] [CrossRef]
- Tao, M.; Xu, C.; Guo, L.; Wang, X.; Xu, Y. An internal waves data set from Sentinel-1 synthetic aperture radar imagery and preliminary detection. Earth Space Sci. 2022, 9, e2022EA002528. [Google Scholar] [CrossRef]
- Cui, G.; Cai, Z.; Yang, X. IWResNet-MA: A deep learning framework for extracting internal wave stripe and propagation direction from SAR imagery. Ocean Eng. 2025, 328, 121030. [Google Scholar] [CrossRef]
- Zheng, Y.; Qi, K.; Zhang, H. Stripe segmentation of oceanic internal waves in synthetic aperture radar images based on Mask R-CNN. Geocarto Int. 2022, 37, 14480–14494. [Google Scholar] [CrossRef]
- Cai, J.; Hu, W.; Yan, H.; Yang, J.; Zhang, X. Automatic Extraction of Internal Wave From Complex Background Using Polarimetric SAR and Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1856–1867. [Google Scholar] [CrossRef]
- Barintag, S.; An, Z.; Jin, Q.; Chen, X.; Gong, M.; Zeng, T. MTU2-Net: Extracting internal solitary waves from SAR images. Remote Sens. 2023, 15, 5441. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, X.; Wen, X.; Li, X.; Dong, H.; Zang, S. Learning a 3D-CNN and Convolution Transformers for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Duda, T.; Newhall, A.; Gawarkiewicz, G.; Caruso, M.; Graber, H.; Yang, Y.; Jan, S. Significant internal waves and internal tides measured northeast of Taiwan. J. Mar. Res. 2013, 71, 47–81. [Google Scholar] [CrossRef]
- Liu, H.; Yang, W.; Wei, H.; Jiang, C.; Liu, C.; Zhao, L.; Liu, H.; Yang, W.; Wei, H.; Jiang, C.; et al. On characteristics and mixing effects of internal solitary waves in the northern Yellow Sea as revealed by satellite and in situ observations. Remote Sens. 2022, 14, 3660. [Google Scholar] [CrossRef]
- Lee, J.H.; Lozovatsky, I.; Jang, S.; Jang, C.J.; Hong, C.S.; Fernando, H.J.S. Episodes of nonlinear internal waves in the northern East China Sea. Geophys. Res. Lett. 2006, 33, L18601. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, W.; Jiang, C.; Wang, T.; Wei, H. Observations of turbulent mixing and vertical diffusive salt flux in the Changjiang Diluted Water. J. Oceanol. Limnol. 2022, 40, 1349–1360. [Google Scholar] [CrossRef]
- Lee, S.; Nam, S.; Noh, S. New generation site and estimated propagation of nonlinear internal waves under varying background stratification in the northeastern East China Sea. J. Geophys. Res. Ocean. 2024, 129, e2024JC021497. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Han, Z.; Xu, L. Internal solitary waves in the East China Sea. Acta Oceanol. Sin. 2008, 27, 51–59. [Google Scholar]
- Yang, W.; Wei, H.; Zhao, L.; Zhang, J. Turbulence and vertical nitrate flux adjacent to the Changjiang Estuary during fall. J. Mar. Syst. 2020, 212, 103427. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, J.; Zhang, W.; Lin, F.; Xie, X.; Zhou, F. Observations of intense turbulent mixing by unsteady mode-2 internal lee waves off the Yangtze River Estuary. J. Geophys. Res. Ocean. 2025, 130, e2025JC022410. [Google Scholar] [CrossRef]
- Alford, M.H.; Peacock, T.; MacKinnon, J.A.; Nash, J.D.; Buijsman, M.C.; Centurioni, L.R.; Chao, S.-Y.; Chang, M.-H.; Farmer, D.M.; Fringer, O.B.; et al. The formation and fate of internal waves in the South China Sea. Nature 2015, 521, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.A.; Chen, L.; Xiong, X.J. Research frontiers and highlights of internal waves in the South China Sea. Adv. Mar. Sci. 2022, 40, 564–580. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X. Constructing a 22-year internal wave dataset for the northern South China Sea: Spatiotemporal analysis using MODIS imagery and deep learning. Earth Syst. Sci. Data 2024, 16, 5131–5144. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, L.; Sun, Y.; Xu, J.; Chen, Z.; Cai, S. Strong hazardous internal waves in the South China Sea and along the maritime silk road. Adv. Earth Sci. 2025, 40, 289–302. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes Seas. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2822–2832. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Zhou, L.; He, S.; He, Z.; Xiao, Q.; Liu, A.K.; Hsu, M.K. Distribution of internal waves in the Andaman Sea and its adjacent waters based on multi-satellite remote sensing data. J. Mar. Sci. 2019, 37, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zheng, Q. A machine-learning model for forecasting internal wave propagation in the Andaman Sea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9387–9396. [Google Scholar] [CrossRef]
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [Google Scholar] [CrossRef]
- DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with Cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar] [CrossRef]
- Yun, S.; Han, D.; Chun, S.; Oh, S.J.; Yoo, Y.; Choe, J. CutMix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6022–6031. [Google Scholar]
- Qi, K.; Zhang, H.; Lu, J.; Zheng, Y.; Zhang, Z. Strip segmentation of oceanic internal waves in SAR images based on TransUNet. Acta Oceanol. Sin. 2023, 42, 67–74. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Quan, Q.; Mao, X.; Yang, X.; Hu, Y.; Zhang, H.; Jiang, W. Seasonal variations of several main water masses in the southern Yellow Sea and East China Sea in 2011. J. Ocean Univ. China 2013, 12, 524–536. [Google Scholar] [CrossRef]
- Baines, P.G. On internal tide generation models. Deep Sea Res. Part A 1982, 29, 307–338. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center: Boulder, CO, USA, 2009. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Reagan, J.R.; Boyer, T.P.; García, H.E.; Locarnini, R.A.; Baranova, O.K.; Bouchard, C.; Cross, S.L.; Mishonov, A.V.; Paver, C.R.; Seidov, D.; et al. World Ocean Atlas 2023; NOAA National Centers for Environmental Information: Silver Spring, MD, USA, 2024. [Google Scholar] [CrossRef]
- Da Silva, J.C.B.; New, A.L.; Magalhaes, J.M. Internal solitary waves in the Mozambique Channel: Observations and interpretation. J. Geophys. Res. Ocean. 2009, 114, C05001. [Google Scholar] [CrossRef]
- Yang, T.; Yang, W.; Zhang, J.; Xu, Z.; Wang, W.; Guo, J.; Wei, H. Energetics and variability of semidiurnal internal tides across the East China Sea shelf: Local generation versus remote forcing. Prog. Oceanogr. 2025, 238, 103563. [Google Scholar] [CrossRef]
- Bai, X.; Liu, Z.; Li, X.; Hu, J. Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations. Int. J. Remote Sens. 2014, 35, 4086–4098. [Google Scholar] [CrossRef]
- Huang, L.; Yang, J.; Ma, Z.; Liu, B.; Ren, L.; Liu, A.K.; Chen, P. Generation of diurnal internal solitary waves (ISW-D) in the Sulu Sea: From geostationary orbit satellites and numerical simulations. Prog. Oceanogr. 2024, 225, 103279. [Google Scholar] [CrossRef]













| Model | Dice (F1-Score) | IoU | Precision | Recall |
|---|---|---|---|---|
| FCN | 0.625 | 0.162 | 0.595 | 0.550 |
| SegNet | 0.651 | 0.199 | 0.661 | 0.615 |
| U-Net | 0.672 | 0.201 | 0.695 | 0.655 |
| DeepLabV3+ | 0.686 | 0.225 | 0.701 | 0.682 |
| TransUNet | 0.710 | 0.246 | 0.727 | 0.705 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, J.; Liu, X.; Yang, W.; Yang, T.; Sha, R.; Wei, H. Identification and Segmentation of Internal Solitary Waves in the East China Sea: A TransUNet Approach Using Multi-Source Satellite Imagery. Remote Sens. 2026, 18, 131. https://doi.org/10.3390/rs18010131
Xu J, Liu X, Yang W, Yang T, Sha R, Wei H. Identification and Segmentation of Internal Solitary Waves in the East China Sea: A TransUNet Approach Using Multi-Source Satellite Imagery. Remote Sensing. 2026; 18(1):131. https://doi.org/10.3390/rs18010131
Chicago/Turabian StyleXu, Jiabao, Xuanming Liu, Wei Yang, Tianyu Yang, Ruixuan Sha, and Hao Wei. 2026. "Identification and Segmentation of Internal Solitary Waves in the East China Sea: A TransUNet Approach Using Multi-Source Satellite Imagery" Remote Sensing 18, no. 1: 131. https://doi.org/10.3390/rs18010131
APA StyleXu, J., Liu, X., Yang, W., Yang, T., Sha, R., & Wei, H. (2026). Identification and Segmentation of Internal Solitary Waves in the East China Sea: A TransUNet Approach Using Multi-Source Satellite Imagery. Remote Sensing, 18(1), 131. https://doi.org/10.3390/rs18010131

