Seagrass Mapping in Cyprus Using Earth Observation Advances
Highlights
- Scalable workflow was developed for local-scale seagrass mapping in Cyprus using Sentinel-2 imagery, cloud computing and machine learning.
- The workflow maps key Natura 2000 habitats—soft bottoms, hard bottoms, and Posidonia beds—along the Cypriot coastline.
- The method estimated 10-17 km2 of seagrass with approximately 19,000 Mg C stored in Posidonia oceanica meadows.
- The approach addresses a knowledge gap in the Eastern Mediterranean, providing a replicable, consistent methodology for local- and country-scale mapping.
- The integration of open-access satellite data and cloud computing supports sustainable blue-carbon management and conservation planning.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data
2.2.1. Satellite Data
2.2.2. Reference Data for Training and Validation
2.2.3. Carbon Data
2.3. Methodological Framework
2.3.1. Data Preparation
2.3.2. Pre-Processing
2.3.3. Main Process—Classification
2.3.4. Post-Processing
3. Results
Carbon Accounting
4. Discussion
4.1. Key Findings
4.2. Comparison of RF and CART Classifiers
4.3. Comparison with Other Case Studies
4.4. Challenges in Coastal Habitat Mapping
4.5. A Conservation Tool
4.6. Implications for Ecosystem Monitoring, Policy, and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coffer, M.M.; Graybill, D.D.; Whitman, P.J.; Schaeffer, B.A.; Salls, W.B.; Zimmerman, R.C.; Hill, V.; Lebrasse, M.C.; Li, J.; Keith, D.J.; et al. Providing a framework for seagrass mapping in United States coastal ecosystems using high spatial resolution satellite imagery. J. Environ. Manag. 2023, 337, 117669. [Google Scholar] [CrossRef]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef]
- Potouroglou, M.; Bull, J.C.; Krauss, K.W.; Kennedy, H.A.; Fusi, M.; Daffonchio, D.; Mangora, M.M.; Githaiga, M.N.; Diele, K.; Huxham, M. Measuring the role of seagrasses in regulating sediment surface elevation. Sci. Rep. 2017, 7, 11917. [Google Scholar] [CrossRef] [PubMed]
- Agueda Aramburu, P.; Flecha, S.; Lujan-Williams, C.A.M.; Hendriks, I.E. Water column oxygenation by Posidonia oceanica seagrass meadows in coastal areas: A modelling approach. Sci. Total. Environ. 2024, 942, 173805. [Google Scholar] [CrossRef] [PubMed]
- Borum, J.; Sand-jensen, K.; Binzer, T.; Pedersen, O.; Hillerød, D.; Greve, T.M. Oxygen movement in seagrasses. In Seagrasses: Biology, Ecology and Conservation; Springer Nature: Dordrecht, The Netherlands, 2006; pp. 255–270. [Google Scholar]
- Heck, K.; Nadeau, D.; Thomas, R. The Nursery Role of Seagrass Beds. Gulf Mex. Sci. 1997, 15, 8. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Argyrou, M.; Chippett, H.F. Contribution of vascular-plant carbon to surface sediments across the coastal margin of Cyprus (Eastern Mediterranean). Org. Geochem. 1999, 30, 287–297. [Google Scholar] [CrossRef]
- Belluscio, A.; Panayiotidis, P.; Gristina, M.; Knittweis, L.; Pace, M.L.; Telesca, L.; Criscoli, A.; Apostolaki, E.T.; Gerakaris, V.; Fraschetti, S.; et al. Seagrass beds distribution along the Mediterranean coasts. In Mediterranean Sensitive Habitats (MEDISEH) Final Report; Technical Report April; Hellenic Centre for Marine Research: Heraklion, Greece, 2013. [Google Scholar]
- Manh Nguyen, H.; Savva, I.; Kleitou, P.; Kletou, D.; Lima, F.P.; Sapir, Y.; Winters, G. Seasonal dynamics of native and invasive Halophila stipulacea populations—A case study from the northern Gulf of Aqaba and the eastern Mediterranean Sea. Aquat. Bot. 2020, 162, 103205. [Google Scholar] [CrossRef]
- Litsi-Mizan, V.; Efthymiadis, P.T.; Gerakaris, V.; Serrano, O.; Tsapakis, M.; Apostolaki, E.T. Decline of seagrass (Posidonia oceanica) production over two decades in the face of warming of the Eastern Mediterranean Sea. New Phytol. 2023, 239, 2126–2137. [Google Scholar] [CrossRef]
- McDonald, A.M.; McDonald, R.B.; Cebrian, J.; Sánchez Lizaso, J.L. Reconstructed life history metrics of the iconic seagrass Posidonia oceanica (L.) detect localized anthropogenic disturbance signatures. Mar. Environ. Res. 2023, 186, 105901. [Google Scholar] [CrossRef]
- Convention for the Protection of the Mediterranean Sea Against Pollution (Barcelona Convention). 1976. Available online: https://eur-lex.europa.eu/EN/legal-content/summary/barcelona-convention-for-the-protection-of-the-mediterranean.html (accessed on 1 March 2024).
- Convention on the Conservation of European Wildlife and Natural Habitats (Bern Convention). 1979. Available online: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/104 (accessed on 1 March 2024).
- McKenzie, L.; Mellors, J. Seagrass-Watch: Guidelines for Monitoring Seagrass Habitats in the Burdekin Dry Tropics Region. In Proceedings of the Arcadian Junior Surf Life Saving Club, (DPI&F, Cairns), Townsville, QLD, Australia, 18 March 2007; 24p. [Google Scholar]
- Roelfsema, C.M.; Lyons, M.; Kovacs, E.M.; Maxwell, P.; Saunders, M.I.; Samper-Villarreal, J.; Phinn, S.R. Multi-temporal mapping of seagrass cover, species and biomass: A semi-automated object based image analysis approach. Remote. Sens. Environ. 2014, 150, 172–187. [Google Scholar] [CrossRef]
- Telesca, L.; Belluscio, A.; Criscoli, A.; Ardizzone, G.; Apostolaki, E.T.; Fraschetti, S.; Gristina, M.; Knittweis, L.; Martin, C.S.; Pergent, G.; et al. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep. 2015, 5, 12505. [Google Scholar] [CrossRef] [PubMed]
- Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote. Sens. 2018, 10, 1227. [Google Scholar] [CrossRef]
- Topouzelis, K.; Makri, D.; Stoupas, N.; Papakonstantinou, A.; Katsanevakis, S. Seagrass mapping in Greek territorial waters using Landsat-8 satellite images. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 98–113. [Google Scholar] [CrossRef]
- Torres-Pulliza, D.; Wilson, J.R.; Darmawan, A.; Campbell, S.J.; Andréfouët, S. Ecoregional scale seagrass mapping: A tool to support resilient MPA network design in the Coral Triangle. Ocean. Coast. Manag. 2013, 80, 55–64. [Google Scholar] [CrossRef]
- Themistocleous, K.; Mettas, C.; Evagorou, E.; Hadjimitsis, D.G. The use of satellite remote sensing and UAV for the mapping of coastal areas for the use of marine spatial planning. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications X, Strasbourg, France, 9–12 September 2019; Schulz, K., Michel, U., Nikolakopoulos, K.G., Eds.; SPIE: Bellingham, WA, USA, 2019; p. 36. [Google Scholar] [CrossRef]
- Makri, D.; Melillos, G.; Kalogirou, E.; Hadjimitsis, D. Seagrass mapping in Cyprus area of interest with pixel-based classification. In Proceedings of the Ocean Sensing and Monitoring XV, Orlando, FL, USA, 30 April–4 May 2023; Hou, W., Mullen, L.J., Eds.; SPIE: Bellingham, WA, USA, 2023; p. 19. [Google Scholar] [CrossRef]
- Kletou, D.; Kleitou, P.; Savva, I.; Attrill, M.J.; Charalambous, S.; Loucaides, A.; Hall-Spencer, J.M. Seagrass of Vasiliko Bay, Eastern Mediterranean: Lost Cause or Priority Conservation Habitat? J. Mar. Sci. Eng. 2020, 8, 717. [Google Scholar] [CrossRef]
- Pergent-Martini, C.; Pergent, G.; Monnier, B.; Boudouresque, C.F.; Mori, C.; Valette-Sansevin, A. Contribution of Posidonia oceanica meadows in the context of climate change mitigation in the Mediterranean Sea. Mar. Environ. Res. 2021, 165, 105236. [Google Scholar] [CrossRef]
- Leskovec, J.; Sosič, R. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM Trans. Intell. Syst. Technol. TIST 2016, 8, 1. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef]
- Wang, X.; Tian, J.; Li, X.; Wang, L.; Gong, H.; Chen, B.; Li, X.; Guo, J. Benefits of Google Earth Engine in remote sensing. Natl. Remote. Sens. Bull. 2022, 26, 299–309. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote. Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A Global Analysis and Future Trends. Remote. Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote. Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Traganos, D.; Reinartz, P. Machine learning-based retrieval of benthic reflectance and Posidonia oceanica seagrass extent using a semi-analytical inversion of Sentinel-2 satellite data. Int. J. Remote. Sens. 2018, 39, 9428–9452. [Google Scholar] [CrossRef]
- Blume, A.; Pertiwi, A.P.; Lee, C.B.; Traganos, D. Bahamian seagrass extent and blue carbon accounting using Earth Observation. Front. Mar. Sci. 2023, 10, 1058460. [Google Scholar] [CrossRef]
- Roca, M.; Lee, C.B.; Pertiwi, A.P.; Blume, A.; Caballero, I.; Navarro, G.; Traganos, D. Subtidal seagrass and blue carbon mapping at the regional scale: A cloud-native multi-temporal Earth Observation approach. GiSci. Remote. Sens. 2025, 62, 2438838. [Google Scholar] [CrossRef]
- Eliades, M.; Michaelides, S.; Evagorou, E.; Fotiou, K.; Fragkos, K.; Leventis, G.; Theocharidis, C.; Panagiotou, C.F.; Mavrovouniotis, M.; Neophytides, S.; et al. Earth Observation in the EMMENA Region: Scoping Review of Current Applications and Knowledge Gaps. Remote. Sens. 2023, 15, 4202. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Demetropoulos, A.; Hadjichristophorou, M.; Argyrou, M.; Baskaran, M.; Lambert, C. Plant Pigments as Biomarkers of Organic Matter Sources in Sediments and Coastal Waters of Cyprus (Eastern Mediterranean). Estuarine, Coast. Shelf Sci. 1996, 42, 103–115. [Google Scholar] [CrossRef]
- Tselepides, A.; Zervakis, V.; Polychronaki, T.; Danovaro, R.; Chronis, G. Distribution of nutrients and particulate organic matter in relation to the prevailing hydrographic features of the Cretan Sea (NE Mediterranean). Prog. Oceanogr. 2000, 46, 113–142. [Google Scholar] [CrossRef]
- Petrou, A.; Kallianiotis, A.; Hannides, A.K.; Charalambidou, I.; Hadjichristoforou, M.; Hayes, D.R.; Lambridis, C.; Lambridi, V.; Loizidou, X.I.; Orfanidis, S.; et al. Initial Assessment of the Marine Environment of Cyprus: Part I—Characteristics; Technical Report; Ministry of Agriculture, Natural Resources, and the Environment, Department of Fisheries and Marine Research: Nicosia, Cyprus, 2012.
- Department of Fisheries and Marine Research, Cyprus. The Marine Environment of Cyprus. 2025. Available online: https://www.moa.gov.cy/moa/dfmr/dfmr.nsf/0/6561CB64C528ECFA42257F370041F296?OpenDocument&print- (accessed on 27 August 2025).
- Fyttis, G.; Zervoudaki, S.; Sakavara, A.; Sfenthourakis, S. Annual cycle of mesozooplankton at the coastal waters of Cyprus (Eastern Levantine basin). J. Plankton Res. 2023, 45, 291–311. [Google Scholar] [CrossRef]
- Xevgenos, D.; Marcou, M.; Louca, V.; Avramidi, E.; Ioannou, G.; Argyrou, M.; Stavrou, P.; Mortou, M.; Küpper, F. Aspects of environmental impacts of seawater desalination: Cyprus as a case study. Desalin. Water Treat. 2021, 211, 15–30. [Google Scholar] [CrossRef]
- Zodiatis, G.; Lardner, R.; Hayes, D.R.; Georgiou, G.; Sofianos, S.; Skliris, N.; Lascaratos, A. Operational ocean forecasting in the Eastern Mediterranean: Implementation and evaluation. Ocean. Sci. 2008, 4, 31–47. [Google Scholar] [CrossRef]
- Retalis, A.; Katsanos, D.; Tymvios, F.; Michaelides, S. Comparison of GPM IMERG and TRMM 3B43 Products over Cyprus. Remote. Sens. 2020, 12, 3212. [Google Scholar] [CrossRef]
- Traganos, D.; Lee, C.B.; Blume, A.; Poursanidis, D.; Čižmek, H.; Deter, J.; Mačić, V.; Montefalcone, M.; Pergent, G.; Pergent-Martini, C.; et al. Spatially Explicit Seagrass Extent Mapping Across the Entire Mediterranean. Front. Mar. Sci. 2022, 9, 871799. [Google Scholar] [CrossRef]
- Baumstark, R.; Dixon, B.; Carlson, P.; Palandro, D.; Kolasa, K. Alternative spatially enhanced integrative techniques for mapping seagrass in Florida’s marine ecosystem. Int. J. Remote. Sens. 2013, 34, 1248–1264. [Google Scholar] [CrossRef]
- Poursanidis, D.; Katsanevakis, S. Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission. Remote. Sens. 2025, 17, 2398. [Google Scholar] [CrossRef]
- Department of Lands and Surveys, Cyprus. Aerial Imagery; Unpublished dataset provided upon request; Department of Lands and Surveys: Nicosia, Cyprus, 2021.
- Google Earth Engine. ee.Image.stratifiedSample. Available online: https://developers.google.com/earth-engine/apidocs/ee-image-stratifiedsample (accessed on 1 March 2024).
- Department of Fisheries and Marine Research, Cyprus. Marine Dataset and Validation Data; Unpublished dataset provided upon request; Department of Fisheries and Marine Research: Nicosia, Cyprus, 2025.
- Department of Land and Surveys, Cyprus. Application Submission Status Portal; Department of Lands and Surveys: Nicosia, Cyprus, 2025.
- Ward, E.A.; Aldis, C.; Wade, T.; Miliou, A.; Tsimpidis, T.; Cameron, T.C. Is All Seagrass Habitat Equal? Seasonal, Spatial, and Interspecific Variation in Productivity Dynamics Within Mediterranean Seagrass Habitat. Front. Mar. Sci. 2022, 9, 891467. [Google Scholar] [CrossRef]
- Howard, J. Blue Carbon Manual—The Blue Carbon Initiative; Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature: Arlington, VA, USA, 2019; p. 860. [Google Scholar]
- Wesselmann, M.; Geraldi, N.R.; Duarte, C.M.; Garcia-Orellana, J.; Díaz-Rúa, R.; Arias-Ortiz, A.; Hendriks, I.E.; Apostolaki, E.T.; Marbà, N. Seagrass (Halophila stipulacea) invasion enhances carbon sequestration in the Mediterranean Sea. Global Change Biol. 2021, 27, 2592–2607. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; Van de Giesen, N. A 30 m resolution surface water mask including estimation of positional and thematic differences using landsat 8, srtm and openstreetmap: A case study in the Murray-Darling Basin, Australia. Remote. Sens. 2016, 8, 386. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote. Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Lee, C.B.; Martin, L.; Traganos, D.; Antat, S.; Baez, S.K.; Cupidon, A.; Faure, A.; Harlay, J.; Morgan, M.; Mortimer, J.A.; et al. Mapping the National Seagrass Extent in Seychelles Using PlanetScope NICFI Data. Remote. Sens. 2023, 15, 4500. [Google Scholar] [CrossRef]
- Richardson, G.; Foreman, N.; Knudby, A.; Wu, Y.; Lin, Y. Global deep learning model for delineation of optically shallow and optically deep water in Sentinel-2 imagery. Remote. Sens. Environ. 2024, 311, 114302. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Bai, Y.; Li, T.; Wang, D.; Zhu, Q.; Gong, F. Satellite-Derived Bottom Depth for Optically Shallow Waters Based on Hydrolight Simulations. Remote. Sens. 2022, 14, 4590. [Google Scholar] [CrossRef]
- Meister, M.; Qu, J.J. Quantifying Seagrass Density Using Sentinel-2 Data and Machine Learning. Remote. Sens. 2024, 16, 1165. [Google Scholar] [CrossRef]
- Hamuna, B.; Pujiyati, S.; Gaol, J.L.; Hestirianoto, T. Spatial distribution of benthic habitats in Kapota Atoll (Wakatobi National Park, Indonesia) using remote sensing imagery. Biodiversitas J. Biol. Divers. 2023, 24, 3700–3707. [Google Scholar] [CrossRef]
- Poursanidis, D.; Traganos, D.; Teixeira, L.; Shapiro, A.; Muaves, L. Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2. Remote. Sens. Ecol. Conserv. 2021, 7, 275–291. [Google Scholar] [CrossRef]
- Bennett, M.K.; Younes, N.; Joyce, K. Automating Drone Image Processing to Map Coral Reef Substrates Using Google Earth Engine. Drones 2020, 4, 50. [Google Scholar] [CrossRef]
- Jin, Z.; Shang, J.; Zhu, Q.; Ling, C.; Xie, W.; Qiang, B. RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. In Proceedings of the Web Information Systems Engineering—WISE 2020 (WISE 2020), Amsterdam, The Netherlands, 20–24 October 2020; pp. 503–515. [Google Scholar] [CrossRef]
- Congalton, R.G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland Fire 2001, 10, 321. [Google Scholar] [CrossRef]
- Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Evagorou, E.; Hasiotis, T.; Petsimeris, I.T.; Monioudi, I.N.; Andreadis, O.P.; Chatzipavlis, A.; Christofi, D.; Kountouri, J.; Stylianou, N.; Mettas, C.; et al. A Holistic High-Resolution Remote Sensing Approach for Mapping Coastal Geomorphology and Marine Habitats. Remote. Sens. 2025, 17, 1437. [Google Scholar] [CrossRef]
- Howard, J.; Hoyt, S.; Isensee, K.; Telszewski, M.; Pidgeon, E. (Eds.) Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses; Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature: Arlington, VA, USA, 2014. [Google Scholar]
- Fang, X.; Li, X.; Zhang, Y.; Zhao, Y.; Qian, J.; Hao, C.; Zhou, J.; Wu, Y. Random forest-based understanding and predicting of the impacts of anthropogenic nutrient inputs on the water quality of a tropical lagoon. Environ. Res. Lett. 2021, 16, 055003. [Google Scholar] [CrossRef]
- Davies, B.F.R.; Oiry, S.; Rosa, P.; Zoffoli, M.L.; Sousa, A.I.; Thomas, O.R.; Smale, D.A.; Austen, M.C.; Biermann, L.; Attrill, M.J.; et al. Intertidal seagrass extent from Sentinel-2 time-series show distinct trajectories in Western Europe. Remote. Sens. Environ. 2024, 312, 114340. [Google Scholar] [CrossRef]
- Davies, B.F.R.; Gernez, P.; Geraud, A.; Oiry, S.; Rosa, P.; Zoffoli, M.L.; Barillé, L. Multi- and hyperspectral classification of soft-bottom intertidal vegetation using a spectral library for coastal biodiversity remote sensing. Remote. Sens. Environ. 2023, 290, 113554. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote. Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Wilson, K.L.; Skinner, M.A.; Lotze, H.K. Eelgrass (Zostera marina) and Benthic Habitat Mapping in Atlantic Canada Using High-Resolution SPOT 6/7 Satellite Imagery. Estuarine, Coast. Shelf Sci. 2019, 226, 106292. [Google Scholar] [CrossRef]
- Papoutsa, C.; Retalis, A.; Scoullos, M.; Loizidou, M.; Argyrou, M.; Hadjimitsis, D.G. Image based analysis for assessing coastal water quality temporal and spatial variations in Limassol Harbor area in Cyprus. In Proceedings of the SPIE 8795, First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), Paphos, Cyprus, 8–10 April 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8795, p. 879528. [Google Scholar] [CrossRef]
- Pottier, A.; Catry, T.; Trégarot, E.; Maréchal, J.P.; Fayad, V.; David, G.; Sidi Cheikh, M.; Failler, P. Mapping Coastal Marine Ecosystems of the National Park of Banc d’Arguin (PNBA) in Mauritania Using Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102419. [Google Scholar] [CrossRef]





| Depth Interval | Training Data | Validation Data |
|---|---|---|
| 0–5 m | 1500 | 287 |
| 5–10 m | 0 | 196 |
| >10 m | 122 | 82 |
| Class Name | CART (km2) | RF (km2) | ||
|---|---|---|---|---|
| 50 Nodes | 100 Nodes | 50 Trees | 100 Trees | |
| Seagrass-optically vegetated areas | 10.03 | 11.71 | 17.23 | 15.55 |
| Optically Soft Bottoms | 44.12 | 42.89 | 44.30 | 45.08 |
| Optically Hard bottom | 7.22 | 6.78 | 10.31 | 10.29 |
| Optically deep water | 247.61 | 247.61 | 238.09 | 239.01 |
| Actual Class | Seagrass | Soft Bottoms | Hard Bottoms | Deep Water | |||||
|---|---|---|---|---|---|---|---|---|---|
| 50 | 100 | 50 | 100 | 50 | 100 | 50 | 100 | ||
| CART | Seagrass (Class 1) | 101 | 124 | 29 | 20 | 36 | 20 | 4 | 4 |
| Soft Bottoms (Class 2) | 16 | 33 | 121 | 103 | 24 | 25 | 1 | 1 | |
| Hard Bottoms (Class 3) | 35 | 50 | 29 | 20 | 90 | 84 | 0 | 0 | |
| Deep Water (Class 4) | 7 | 7 | 0 | 0 | 0 | 0 | 81 | 81 | |
| RF | Seagrass (Class 1) | 117 | 118 | 24 | 22 | 29 | 30 | 0 | 0 |
| Soft Bottoms (Class 2) | 15 | 13 | 118 | 120 | 28 | 28 | 1 | 1 | |
| Hard Bottoms (Class 3) | 40 | 37 | 19 | 19 | 95 | 98 | 0 | 0 | |
| Deep Water (Class 4) | 2 | 2 | 0 | 0 | 0 | 0 | 86 | 86 | |
| Producer’s Accuracy (%) | CART | 60.4 | 72.9 | 75.7 | 63.6 | 58.4 | 54.5 | 92.0 | 92.0 |
| RF | 68.8 | 69.4 | 72.8 | 74.0 | 61.7 | 63.6 | 97.7 | 97.7 | |
| User’s Accuracy (%) | CART | 63.5 | 57.9 | 67.6 | 72.0 | 60.0 | 64.0 | 94.0 | 94.2 |
| RF | 67.2 | 69.4 | 73.3 | 74.5 | 62.5 | 62.8 | 98.8 | 98.8 | |
| F1-score (%) | CART | 61.9 | 64.5 | 71.4 | 67.5 | 59.2 | 58.9 | 93.0 | 93.1 |
| RF | 68.0 | 69.4 | 73.0 | 74.2 | 62.1 | 63.2 | 98.2 | 98.2 | |
| Overall Accuracy (%) | CART | 68.5/68.3 | |||||||
| RF | 72.5/73.5 | ||||||||
| Model | Seagrass | Sand | Reefs | Deep |
|---|---|---|---|---|
| CART (50 nodes) | 0.46 | 0.59 | 0.45 | 0.92 |
| CART (100 nodes) | 0.48 | 0.56 | 0.46 | 0.92 |
| RF (50 trees) | 0.54 | 0.63 | 0.48 | 0.98 |
| RF (100 trees) | 0.57 | 0.64 | 0.50 | 0.98 |
| Carbon Stock (Mg/km2) | |||||
|---|---|---|---|---|---|
| Tier 1 | Tier 2 | ||||
| Min | Max | Mean | |||
| CART | 50 nodes | 9155.87 | 834,090.06 | 108,663.12 | 12,072 |
| CART | 100 nodes | 10,677.03 | 972,665.70 | 126,716.40 | 14,076 |
| RF | 50 trees | 15,681.85 | 1428,599.12 | 186,114.24 | 20,676 |
| RF | 100 trees | 14,150.50 | 1,289,095.00 | 167,940.00 | 18,660 |
| Research | Study Area | Methods | Accuracy Metrics |
|---|---|---|---|
| [32] | Balearic Islands (Western Mediterranean) | Multi-temporal composite (2016–2022) + Google Earth Engine + Random Forest + optimized bathymetry (SDB) | 92.5% (OA), 91.7% (PA), 94.8% (UA) |
| [69] | 6 intertidal sites, Western Europe | Neural network | 0.82 (pixel-level accuracy for seagrass) |
| [70] | Western Atlantic | Random Forest, XGBoost and Multinomial Classifiers | Sentinel-2 10 m (4 bands) 0.835; Sentinel-2 20 m (8 bands) 0.95; PRISMA (56 bands) 0.951 ± 0.0061 |
| [42] | 22 Mediterranean countries (bioregional scale) | Cloud-native geoprocessing + ML (RF) with 62,928 labeled pixels + 2480 independent field points | Sentinel-2 20 m (8 bands) 0.95; PRISMA (56 bands, 30 m) 0.951 ± 0.0061; 72%, 55% PA (for P. oceanica); 62% UA; 0.58 (derived from PA/UA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makri, D.; Christofilakos, S.; Poursanidis, D.; Traganos, D.; Mettas, C.; Stylianou, N.; Hadjimitsis, D. Seagrass Mapping in Cyprus Using Earth Observation Advances. Remote Sens. 2025, 17, 3610. https://doi.org/10.3390/rs17213610
Makri D, Christofilakos S, Poursanidis D, Traganos D, Mettas C, Stylianou N, Hadjimitsis D. Seagrass Mapping in Cyprus Using Earth Observation Advances. Remote Sensing. 2025; 17(21):3610. https://doi.org/10.3390/rs17213610
Chicago/Turabian StyleMakri, Despoina, Spyridon Christofilakos, Dimitris Poursanidis, Dimosthenis Traganos, Christodoulos Mettas, Neophytos Stylianou, and Diofantos Hadjimitsis. 2025. "Seagrass Mapping in Cyprus Using Earth Observation Advances" Remote Sensing 17, no. 21: 3610. https://doi.org/10.3390/rs17213610
APA StyleMakri, D., Christofilakos, S., Poursanidis, D., Traganos, D., Mettas, C., Stylianou, N., & Hadjimitsis, D. (2025). Seagrass Mapping in Cyprus Using Earth Observation Advances. Remote Sensing, 17(21), 3610. https://doi.org/10.3390/rs17213610

