Apple Orchard Mapping in China Based on an Automatic Sample Generation Algorithm and Random Forest
Abstract
Highlights
- Development of a novel AMCI index for apple orchard identification.
- Proposal of a knowledge-assisted apple orchard mapping framework.
- Application of a hybrid approach combining thresholding and random forest for crop identification.
- Production of the first 10 m-resolution apple orchard map of China.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Sentinel-2 Data
2.2.2. Ground Truth Data
2.2.3. Land Cover Products
2.2.4. Topographic Data
2.2.5. Statistical Data
2.3. Methods
2.3.1. Phenological Phase Analysis
2.3.2. Apple Orchard Mapping Algorithm Based on AMCI
(1) Natural Vegetation Phenolic Compounds Index (NVPCI)
(2) Time-Series Analysis of Spectral Bands
(3) Time-Series Analysis of Spectral Indices
(4) Apple Mapping Composite Index (AMCI)
2.3.3. Apple Orchard Mapping Algorithm Based on RF
(1) Sample Generation
(2) Feature Selection
(3) Construction of RF Model
2.3.4. Accuracy Assessment Metrics
3. Results
3.1. Apple Planting Map of China
3.2. Accuracy Assessment
3.3. Feature Importance Analysis
4. Discussion
4.1. The Significance of Nationwide Apple Orchard Mapping
4.2. Contribution of the Combined Thresholding and RF Method
4.3. Potential Factors and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Wang, J.; You, C.; Bai, R.; Feng, P.; Li, Y.; Zhao, G.; Qu, Z.; Li, Q. Characterizing apple production in China’s apple planting region: Biophysical simulation and machine learning analysis of quality determinants. Eur. J. Agron. 2025, 170, 127761. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Yang, J.; Dai, A.; Zhou, H.; Tang, K.; Zhang, Y.; Wang, R.; Wei, B.; Wang, Y. Large-Scale Apple Orchard Identification from Multi-Temporal Sentinel-2 Imagery. Agronomy 2025, 15, 1487. [Google Scholar] [CrossRef]
- Du, Z.; Yu, L.; Chen, X.; Gao, B.; Yang, J.; Fu, H.; Gong, P. Land use/cover and land degradation across the Eurasian steppe: Dynamics, patterns and driving factors. Sci. Total Environ. 2024, 909, 168593. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, G.; Yang, H.; Wu, J.; Lei, L.; Zhao, F.; Fan, L.; Zhao, C. Identification of Apple Orchard Planting Year Based on Spatiotemporally Fused Satellite Images and Clustering Analysis of Foliage Phenophase. Remote Sens. 2020, 12, 1199. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, D.; Wu, C.; Liu, Y.; Yang, J.; Tang, K. Large-scale apple orchard mapping from multi-source data using the semantic segmentation model with image- to- image translation and transfer learning. Comput. Electron. Agric. 2023, 213, 108204. [Google Scholar] [CrossRef]
- Xia, T.; He, Z.; Cai, Z.; Wang, C.; Wang, W.; Wang, J.; Hu, Q.; Song, Q. Exploring the potential of Chinese GF-6 images for crop mapping in regions with complex agricultural landscapes. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102702. [Google Scholar] [CrossRef]
- Li, M.; Zhang, R.; Luo, H.; Gu, S.; Qin, Z. Crop Mapping in the Sanjiang Plain Using an Improved Object-Oriented Method Based on Google Earth Engine and Combined Growth Period Attributes. Remote Sens. 2022, 14, 273. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
- Adrah, E.; Wong, J.P.; Yin, H. Integrating GEDI, Sentinel-2, and Sentinel-1 imagery for tree crops mapping. Remote Sens. Environ. 2025, 319, 114644. [Google Scholar] [CrossRef]
- Faheem, Z.; Kazmi, J.H.; Shaikh, S.; Arshad, S.; Noreena Mohammed, S. Random forest-based analysis of land cover/land use LCLU dynamics associated with meteorological droughts in the desert ecosystem of Pakistan. Ecol. Indic. 2024, 159, 111670. [Google Scholar] [CrossRef]
- Phalke, A.R.; Özdoğan, M.; Thenkabail, P.S.; Erickson, T.; Gorelick, N.; Yadav, K.; Congalton, R.G. Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 167, 104–122. [Google Scholar] [CrossRef]
- Zhang, P.; Du, P.; Guo, S.; Zhang, W.; Tang, P.; Chen, J.; Zheng, H. A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images. Remote Sens. Environ. 2022, 276, 113042. [Google Scholar] [CrossRef]
- Liu, D.; Chen, N.; Zhang, X.; Wang, C.; Du, W. Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS J. Photogramm. Remote Sens. 2020, 159, 337–351. [Google Scholar] [CrossRef]
- Dias, C.R.G.; Neves, A.K.; Silva, J.M.N.; Ribeiro, N.S.; Pereira, J.M.C. Pereira. A landsat-based burned area atlas (2000–2023) for the Niassa Special Reserve, Mozambique using U-Net deep learning. ISPRS J. Photogramm. Remote Sens. 2025, 230, 147–169. [Google Scholar] [CrossRef]
- Turkoglu, M.O.; D’Aronco, S.; Perich, G.; Liebisch, F.; Streit, C.; Schindler, K.; Wegner, J.D. Crop mapping from image time series: Deep learning with multi-scale label hierarchies. Remote Sens. Environ. 2021, 264, 112603. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, H.; Wang, X.; Lyu, G.; Chen, K.; Xu, J.; Cui, G.; Zhong, L.; Yu, L.; Huang, H.; et al. Bamboo classification based on GEDI, time-series Sentinel-2 images and whale-optimized, dual-channel DenseNet: A case study in Zhejiang province, China. ISPRS J. Photogramm. Remote Sens. 2024, 209, 312–323. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Q.; Li, W.; Song, Q.; Cai, Z.; Zhang, X.; Wei, H.; Wu, W. An automated sample generation method by integrating phenology domain optical-SAR features in rice cropping pattern mapping. Remote Sens. Environ. 2024, 314, 114387. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Liu, L.; Zhao, M.; Zhang, X.; Li, X.; Dai, J.; Wang, H.; Wu, C.; You, N.; et al. A robust and unified land surface phenology algorithm for diverse biomes and growth cycles in China by using harmonized Landsat and Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2023, 202, 610–636. [Google Scholar] [CrossRef]
- Xu, X.; Fu, D.; Su, F.; Lyne, V.; Yu, H.; Tang, J.; Hong, X.; Wang, J. Global distribution and decline of mangrove coastal protection extends far beyond area loss. Nat. Commun. 2024, 15, 10267. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X.; Tran, K.H.; Ye, Y.; Gao, S.; Liu, Y.; An, S. Near real-time corn and soybean mapping at field-scale by blending crop phenometrics with growth magnitude from multiple temporal and spatial satellite observations. Remote Sens. Environ. 2025, 318, 114605. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, J.; Ge, Q. IrriMap_CN: Annual irrigation maps across China in 2000–2019 based on satellite observations, environmental variables, and machine learning. Remote Sens. Environ. 2022, 280, 113184. [Google Scholar] [CrossRef]
- Yang, M.; Guo, B.; Wang, J. A novel and robust method for large-scale single-season rice mapping based on phenology and statistical data. ISPRS J. Photogramm. Remote Sens. 2024, 213, 14–32. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Liu, Z.; Zhang, C.; Zhang, S.; Atkinson, P.M. A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images. Remote Sens. Environ. 2023, 295, 113679. [Google Scholar] [CrossRef]
- Xiao, G.; Huang, J.; Song, J.; Li, X.; Du, K.; Huang, H.; Su, W.; Miao, S. A novel soybean mapping index within the global optimal time window. ISPRS J. Photogramm. Remote Sens. 2024, 217, 120–133. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, B.; Yang, P.; Wu, W.; Chen, X.; Zhu, X.; Xu, S.; Wang, L.; Dong, Z.; Zhang, J.; et al. National-scale 10 m annual maize maps for China and the contiguous United States using a robust index from Sentinel-2 time series. Comput. Electron. Agric. 2024, 221, 109018. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Zhang, L. Seamless and automated rapeseed mapping for large cloudy regions using time-series optical satellite imagery. ISPRS J. Photogramm. Remote Sens. 2022, 184, 45–62. [Google Scholar] [CrossRef]
- Peng, Y.; Qiu, B.; Tang, Z.; Xu, W.; Yang, P.; Wu, W.; Chen, X.; Zhu, X.; Zhu, P.; Zhang, X.; et al. Where is tea grown in the world: A robust mapping framework for agroforestry crop with knowledge graph and sentinels images. Remote Sens. Environ. 2024, 303, 114016. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/home/zh (accessed on 5 October 2025).
- National Bureau of Statistics of China. Available online: https://www.stats.gov.cn/sj/ (accessed on 20 August 2025).
- Longjie, Y.; Qihao, W. A hybrid neural network for mangrove mapping considering tide states using Sentinel-2 imagery. Remote Sens. Environ. 2025, 329, 114917. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- The 30-Meter Global Land cover Data GlobeLand30. Available online: http://www.webmap.cn/mapDataAction.do?method=globalLandCover (accessed on 20 August 2025).
- Huang, H.; Liu, C.; Wang, X.; Biging, G.S.; Chen, Y.; Yang, J.; Gong, P. Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS J. Photogramm. Remote Sens. 2017, 129, 189–199. [Google Scholar] [CrossRef]
- National Data of National Bureau of Statistics of China. Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 6 October 2025).
- Zhang, C.; Zhang, H.; Tian, S. Phenology-assisted supervised paddy rice mapping with the Landsat imagery on Google Earth Engine: Experiments in Heilongjiang Province of China from 1990 to 2020. Comput. Electron. Agric. 2023, 212, 108105. [Google Scholar] [CrossRef]
- Wu, C.; Jia, W.; Yang, J.; Zhang, T.; Dai, A.; Zhou, H. Economic Fruit Forest Classification Based on Improved U-Net Model in UAV Multispectral Imagery. Remote Sens. 2023, 15, 2500. [Google Scholar] [CrossRef]
- Li, D.; Croft, H.; Duveiller, G.; Schreiner-McGraw, A.P.; Belwalkar, A.; Cheng, T.; Zhu, Y.; Cao, W.; Yu, K. Global retrieval of canopy chlorophyll content from Sentinel-3 OLCI TOA data using a two-step upscaling method integrating physical and machine learning models. Remote Sens. Environ. 2025, 328, 114845. [Google Scholar] [CrossRef]
- Delalieux, S.; Somers, B.; Hereijgers, S.; Verstraeten, W.W.; Keulemans, W.; Coppin, P. A near-infrared narrow-waveband ratio to determine Leaf Area Index in orchards. Remote Sens. Environ. 2008, 112, 3762–3772. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Wang, M.; Mao, D.; Wang, Y.; Xiao, X.; Xiang, H.; Feng, K.; Luo, L.; Jia, M.; Song, K.; Wang, Z. Wetland mapping in East Asia by two-stage object-based Random Forest and hierarchical decision tree algorithms on Sentinel-1/2 images. Remote Sens. Environ. 2023, 297, 113793. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Cheng, F.; Qiu, B.; Yang, P.; Wu, W.; Yu, Q.; Qian, J.; Wu, B.; Chen, J.; Chen, X.; Tubiello, F.N.; et al. Crop sample prediction and early mapping based on historical data: Exploration of an explainable FKAN framework. Comput. Electron. Agric. 2025, 237, 110689. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’lEary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crops Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. Proc. Earth Resour. Technol. Satell. Symp. 1973, 1, 309–317. [Google Scholar]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Grayson, B.; Christopher, B.; Joseph, A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. Available online: https://cdk.lib.cas.cz/client/handle/uuid:0945cc3e-0232-49a4-b687-78524bdd60bf (accessed on 20 August 2025).
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Dube, T.; Sibanda, M.; Mutanga, O. Fine-scale characterization of irrigated and rainfed croplands at national scale using multi-source data, random forest, and deep learning algorithms. ISPRS J. Photogramm. Remote Sens. 2023, 204, 117–130. [Google Scholar] [CrossRef]
- Xie, Y.; Nhu, A.N.; Song, X.; Jia, X.; Skakun, S.; Li, H.; Wang, Z. Accounting for spatial variability with geo-aware random forest: A case study for US major crop mapping. Remote Sens. Environ. 2025, 319, 114585. [Google Scholar] [CrossRef]
- Chen, R.; Yang, H.; Liu, W.; Liu, M.; Qi, N.; Feng, H.; Zhang, C.; Xu, H.; Yang, G. An orchard mapping index and mapping algorithm coupling orchard phenology and green-holding characteristics from time-series sentinel-2 images. Comput. Electron. Agric. 2024, 226, 109437. [Google Scholar] [CrossRef]
- Han, L.; Wang, X.; Li, D.; Yu, W.; Feng, Z.; Lu, X.; Wang, S.; Zhang, Z.; Gao, X.; Fan, J. A Novel Approach to Mapping the Spatial Distribution of Fruit Trees Using Phenological Characteristics. Agronomy 2024, 14, 150. [Google Scholar] [CrossRef]
- Li, Z.; Xuan, F.; Dong, Y.; Huang, X.; Liu, H.; Zeng, Y.; Su, W.; Huang, J.; Li, X. Performance of GEDI data combined with Sentinel-2 images for automatic labelling of wall-to-wall corn mapping. Int. J. Appl. Earth Obs.-Vation Geoinf. 2024, 127, 103643. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Zhang, M.; Wu, Y.; Liu, Y. Mangrove mapping in China using Gaussian mixture model with a novel mangrove index (SSMI) derived from optical and SAR imagery. ISPRS J. Photogramm. Remote Sens. 2024, 218, 466–486. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Diao, C.; Zhang, Y.; Jia, M.; Zhu, L.; Xu, M.; Li, X.; Gong, H. National scale sub-meter mangrove mapping using an augmented border training sample method. ISPRS J. Photogramm. Remote Sens. 2025, 220, 156–171. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, J.; Zhang, X.; Du, S. Development of a 30m resolution global sand dune/sheet classification map (GSDS30) using multi-source remote sensing data. Remote Sens. Environ. 2024, 302, 113973. [Google Scholar] [CrossRef]
- Miao, C.; Fu, S.; Sun, W.; Feng, S.; Hu, Y.; Liu, J.; Feng, Q.; Li, Y.; Liang, T. Large-scale mapping of the spatial distribution and cutting intensity of cultivated alfalfa based on a sample generation algorithm and random forest. Comput. Electron. Agric. 2025, 237, 110613. [Google Scholar] [CrossRef]
Category | High-Resolution Remote Sensing Imagery |
---|---|
Apples | |
Others |
Index Name | Calculation |
---|---|
Enhanced Vegetation Index (EVI) [39] | |
Ratio Vegetation Index (RVI) [44] | |
Difference Vegetation Index (DVI) [45] | |
Normalized Difference Vegetation Index (NDVI) [46] | |
Land Surface Water Index (LSWI) [47] | |
Green Normalized Difference Vegetation Index (GNDVI) [48] | |
Green Chlorophyll Vegetation Index (GCVI) [40] | |
Plant Senescence Reflectance Index (PSRI) [49] | |
Soil Adjusted Vegetation Index (SAVI) [50] | |
Near-Infrared Reflectance of Vegetation (NIRv) [51] | |
Normalized Difference Red Edge Index (NDRE) [44] | |
Bare Soil Index (BSI) [52] | |
MERIS Terrestrial Chlorophyll Index (MTCI) [53] | |
Chlorophyll Index Red Edge (Cire) [54] | |
Structure Insensitive Pigment Index (SIPI) [55] | |
Normalized Difference Built-up Index (NDBI) [56] | |
Normalized Difference Water Index (NDWI) [57] |
Area | Method | Category | Apples | Others |
---|---|---|---|---|
Shandong Province | AMCI | Apples | 55 | 16 |
Others | 31 | 70 | ||
KAMF | Apples | 78 | 5 | |
Others | 8 | 81 | ||
Shanxi Province | AMCI | Apples | 296 | 91 |
Others | 87 | 292 | ||
KAMF | Apples | 320 | 25 | |
Others | 63 | 358 | ||
Shaanxi Province | AMCI | Apples | 216 | 97 |
Others | 82 | 201 | ||
KAMF | Apples | 263 | 21 | |
Others | 35 | 277 | ||
Gansu Province | AMCI | Apples | 145 | 17 |
Others | 95 | 223 | ||
KAMF | Apples | 205 | 7 | |
Others | 35 | 233 |
Area | Method | Category | UA | PA | F1-Score | OA | Kappa |
---|---|---|---|---|---|---|---|
Shandong Province | AMCI | Apples | 0.816 | 0.826 | 0.821 | 0.820 | 0.640 |
Others | 0.824 | 0.814 | 0.819 | ||||
KAMF | Apples | 0.907 | 0.940 | 0.923 | 0.924 | 0.849 | |
Others | 0.942 | 0.910 | 0.926 | ||||
Shanxi Province | AMCI | Apples | 0.764 | 0.772 | 0.768 | 0.768 | 0.535 |
Others | 0.770 | 0.763 | 0.767 | ||||
KAMF | Apples | 0.835 | 0.928 | 0.879 | 0.885 | 0.770 | |
Others | 0.935 | 0.850 | 0.890 | ||||
Shaanxi Province | AMCI | Apples | 0.690 | 0.725 | 0.707 | 0.700 | 0.399 |
Others | 0.711 | 0.675 | 0.692 | ||||
KAMF | Apples | 0.882 | 0.926 | 0.904 | 0.906 | 0.812 | |
Others | 0.930 | 0.888 | 0.908 | ||||
Gansu Province | AMCI | Apples | 0.895 | 0.604 | 0.722 | 0.767 | 0.533 |
Others | 0.702 | 0.929 | 0.801 | ||||
KAMF | Apples | 0.854 | 0.967 | 0.907 | 0.913 | 0.825 | |
Others | 0.971 | 0.869 | 0.917 | ||||
Average | AMCI | Apples | 0.791 | 0.732 | 0.755 | 0.764 | 0.527 |
Others | 0.752 | 0.795 | 0.770 | ||||
KAMF | Apples | 0.870 | 0.940 | 0.903 | 0.907 | 0.814 | |
Others | 0.945 | 0.879 | 0.910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Yang, J.; Zhou, H.; Zhang, S.; Xiao, X.; Tang, K.; Zhang, X.; Zhang, N.; Ming, D. Apple Orchard Mapping in China Based on an Automatic Sample Generation Algorithm and Random Forest. Remote Sens. 2025, 17, 3449. https://doi.org/10.3390/rs17203449
Wu C, Yang J, Zhou H, Zhang S, Xiao X, Tang K, Zhang X, Zhang N, Ming D. Apple Orchard Mapping in China Based on an Automatic Sample Generation Algorithm and Random Forest. Remote Sensing. 2025; 17(20):3449. https://doi.org/10.3390/rs17203449
Chicago/Turabian StyleWu, Chunxiao, Jianyu Yang, Han Zhou, Shuoji Zhang, Xiangyi Xiao, Kaixuan Tang, Xinyi Zhang, Nannan Zhang, and Dongping Ming. 2025. "Apple Orchard Mapping in China Based on an Automatic Sample Generation Algorithm and Random Forest" Remote Sensing 17, no. 20: 3449. https://doi.org/10.3390/rs17203449
APA StyleWu, C., Yang, J., Zhou, H., Zhang, S., Xiao, X., Tang, K., Zhang, X., Zhang, N., & Ming, D. (2025). Apple Orchard Mapping in China Based on an Automatic Sample Generation Algorithm and Random Forest. Remote Sensing, 17(20), 3449. https://doi.org/10.3390/rs17203449