Spring Dust Intensity Monitoring at Hourly Intervals Using Himawari-8 Satellite Images and Artificial Intelligence Method
Abstract
Highlights
- Time-series data can be used to monitor dust intensity with high accuracy.
- Combining CNN and BiLSTM can achieve high accuracy for dust intensity monitoring.
- Progressive dust temporal (PDT) features proposed based on time-series data are important variables for dust intensity prediction.
- The PCBNet model proposed in this study by combining CNN and BiLSTM using PDT features has the best performance for dust intensity prediction among all tested models.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Advanced Himawari Imager (AHI) Data
2.2.2. Station Observation Data
2.3. Data Analysis Methods
2.3.1. Dust Spectral Indices
2.3.2. Construction of Progressive Dust Temporal (PDT) Features
2.3.3. New Proposed Model and Other Models Used for Comparison in This Study
2.3.4. Comparison Experiment
2.3.5. Dust Intensity Monitoring Datasets Based on the Optimal Method and Their Validation
3. Results and Analysis
3.1. Comparison of the Performance of Different Dust Intensity Monitoring Models
3.2. Validation of the Produced Dust Intensity Products Using the PM10 Dataset
3.3. Case Study Analysis
4. Discussion
4.1. Importance of the Proposed Time Series Features for Dust Intensity Monitoring
4.2. Optimal Dust Intensity Monitoring Model
4.3. Comparison with Existing Studies
4.4. Practical Implications and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Predicted | |||||
ESSS/SSS | SS | FD/BS | DF | ||
Actual | ESSS/SSS | 51 | 9 | 0 | 0 |
SS | 15 | 256 | 23 | 1 | |
FD/BS | 1 | 35 | 270 | 1 | |
DF | 0 | 9 | 18 | 285 |
Predicted | |||||
ESSS/SSS | SS | FD/BS | DF | ||
Actual | ESSS/SSS | 59 | 1 | 0 | 0 |
SS | 15 | 221 | 51 | 8 | |
FD/BS | 3 | 31 | 265 | 8 | |
DF | 2 | 4 | 12 | 294 |
Predicted | |||||
ESSS/SSS | SS | FD/BS | DF | ||
Actual | ESSS/SSS | 53 | 4 | 3 | 0 |
SS | 7 | 220 | 57 | 11 | |
FD/BS | 0 | 38 | 263 | 6 | |
DF | 2 | 0 | 14 | 296 |
Predicted | |||||
ESSS/SSS | SS | FD/BS | DF | ||
Actual | ESSS/SSS | 45 | 13 | 2 | 0 |
SS | 7 | 224 | 49 | 15 | |
FD/BS | 0 | 32 | 270 | 5 | |
DF | 1 | 0 | 14 | 297 |
Predicted | |||||
ESSS/SSS | SS | FD/BS | DF | ||
Actual | ESSS/SSS | 40 | 13 | 6 | 1 |
SS | 15 | 202 | 66 | 12 | |
FD/BS | 10 | 27 | 262 | 8 | |
DF | 2 | 0 | 18 | 292 |
Predicted | |||||
ESSS/SSS | SS | FD/BS | DF | ||
Actual | ESSS/SSS | 40 | 9 | 10 | 1 |
SS | 11 | 185 | 80 | 19 | |
FD/BS | 1 | 29 | 269 | 8 | |
DF | 5 | 0 | 16 | 291 |
References
- Fussell, J.C.; Kelly, F.J. Mechanisms underlying the health effects of desert sand dust. Environ. Int. 2021, 157, 14. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Enezi, A.; Al-Dashti, H.; Petrov, P.; Misak, R.; AlSaraf, M.; Malek, M. Hazard Assessment and Hazard Mapping for Kuwait. Int. J. Disaster Risk Sci. 2023, 14, 143–161. [Google Scholar] [CrossRef]
- Baddock, M.C.; Strong, C.L.; Murray, P.S.; McTainsh, G.H. Aeolian dust as a transport hazard. Atmos. Environ. 2013, 71, 7–14. [Google Scholar] [CrossRef]
- Miri, A.; Middleton, N. Long-term impacts of dust storms on transport systems in south-eastern Iran. Nat. Hazards 2022, 114, 291–312. [Google Scholar] [CrossRef]
- GB/T 20480-2017; Classification of Sand and Dust Weather. Standard Press of China: Beijing, China, 2017.
- Akhlaq, M.; Sheltami, T.R.; Mouftah, H.T. A review of techniques and technologies for sand and dust storm detection. Rev. Environ. Sci. Biotechnol. 2012, 11, 305–322. [Google Scholar] [CrossRef]
- Li, J.; Wong, M.S.; Lee, K.H.; Nichol, J.E.; Abbas, S.; Li, H.; Wang, J. A physical knowledge-based machine learning method for near-real-time dust aerosol properties retrieval from the Himawari-8 satellite data. Atmos. Environ. 2022, 280, 119085. [Google Scholar] [CrossRef]
- Li, J.; Wong, M.S.; Shi, G.; Nichol, J.E.; Lee, K.H.; Chan, P.W. Advanced algorithms on monitoring diurnal variations in dust aerosol properties using geostationary satellite imagery. Remote Sens. Environ. 2024, 303, 113888. [Google Scholar] [CrossRef]
- Sowden, M.; Mueller, U.; Blake, D. What temporal resolution is required for remote sensing of regional aerosol concentrations using the Himawari-8 geostationary satellite. Atmos. Environ. 2019, 216, 116919. [Google Scholar] [CrossRef]
- Li, J.; Wong, M.S.; Lee, K.H.; Nichol, J.; Chan, P. Review of dust storm detection algorithms for multispectral satellite sensors. Atmos. Res. 2021, 250, 105364. [Google Scholar] [CrossRef]
- Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived from Himawari-8 Geostationary Satellite. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3442–3455. [Google Scholar] [CrossRef]
- She, L.; Xue, Y.; Yang, X.; Guang, J.; Li, Y.; Che, Y.; Fan, C.; Xie, Y. Dust Detection and Intensity Estimation Using Himawari-8/AHI Observation. Remote Sens. 2018, 10, 490. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, L.; Tang, S.; Gao, L.; Chen, L.; Zheng, W.; Han, X.; Chen, J.; Shao, J. General comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Front. Earth Sci. 2019, 6, 224. [Google Scholar] [CrossRef]
- Ackerman, S.A. Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks. Remote Sens. Environ. 1989, 27, 129–133. [Google Scholar] [CrossRef]
- Yue, H.; He, C.; Zhao, Y.; Ma, Q.; Zhang, Q. The brightness temperature adjusted dust index: An improved approach to detect dust storms using MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 166–176. [Google Scholar] [CrossRef]
- Qu, J.J.; Hao, X.; Kafatos, M.; Wang, L. Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements. IEEE Geosci. Remote Sens. Lett. 2006, 3, 484–486. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, J.; Zhang, D.; Igbawua, T.; Liu, Y. Developing a dust storm detection method combining Support Vector Machine and satellite data in typical dust regions of Asia. Adv. Space Res. 2020, 65, 1263–1278. [Google Scholar] [CrossRef]
- Souri, A.H.; Vajedian, S. Dust storm detection using random forests and physical-based approaches over the Middle East. J. Earth Syst. Sci. 2015, 124, 1127–1141. [Google Scholar] [CrossRef]
- Jiang, H.; He, Q.; Zhang, J.; Tang, Y.; Chen, C.; Lv, X.; Zhang, Y.; Liu, Z. Dust storm detection of a convolutional neural network and a physical algorithm based on FY-4A satellite data. Adv. Space Res. 2022, 69, 4288–4306. [Google Scholar] [CrossRef]
- Zhen, Z.; Li, Z.; Wang, F.; Xu, F.; Li, G.; Zhao, H.; Ma, H.; Zhang, Y.; Ge, X.; Li, J. CNN-LSTM Networks Based Sand and Dust Storms Monitoring Model Using FY-4A Satellite Data. IEEE Trans. Ind. Appl. 2024, 60, 5130–5141. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liang, S.L. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 2022, 273, 112957. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Li, A.; Liang, C. Historical landscape dynamics of Inner Mongolia: Patterns, drivers, and impacts. Landsc. Ecol. 2015, 30, 1579–1598. [Google Scholar] [CrossRef]
- Tan, S.C.; Shi, G.Y.; Wang, H. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas. Atmos. Environ. 2012, 46, 299–308. [Google Scholar] [CrossRef]
- Bates, D.G. Beyond great walls: Environment, identity, and development on the Chinese grasslands of inner Mongolia. Hum. Ecol. 2003, 31, 328–330. [Google Scholar] [CrossRef]
- Hoffmann, C.; Funk, R.; Wieland, R.; Li, Y.; Sommer, M. Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. J. Arid Environ. 2008, 72, 792–807. [Google Scholar] [CrossRef]
- Ye, D.-Z.; Chou, J.-F.; Liu, J.-Y. Causes of sand-stormy weather in northern China and control measures. Acta Geogr. Sin. 2000, 55, 513–521. [Google Scholar]
- Xuan, J.; Liu, G.L.; Du, K. Dust emission inventory in Northern China. Atmos. Environ. 2000, 34, 4565–4570. [Google Scholar] [CrossRef]
- Yumimoto, K.; Nagao, T.; Kikuchi, M.; Sekiyama, T.; Murakami, H.; Tanaka, T.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ishikawa, H.; Oku, Y.; Hu, Z. An Algorithm for Land Surface Temperature Retrieval Using Three Thermal Infrared Bands of Himawari-8. J. Meteorol. Soc. Jpn. 2018, 96B, 59–76. [Google Scholar] [CrossRef]
- Hansell, R.A.; Ou, S.C.; Liou, K.N.; Roskovensky, J.K.; Tsay, S.C.; Hsu, C.; Ji, Q. Simultaneous detection/separation of mineral dust and cirrus clouds using MODIS thermal infrared window data. Geophys. Res. Lett. 2007, 34, L11808. [Google Scholar] [PubMed]
- GB 3095-2012; Ambient Air Quality Standard. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012.
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. Atmos. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Wald, A.E.; Kaufman, Y.J.; Tanré, D.; Gao, B. Daytime and nighttime detection of mineral dust over desert using infrared spectral contrast. J. Geophys. Res. Atmos. 1998, 103, 32307–32313. [Google Scholar] [CrossRef]
- Ellrod, G.P.; Connell, B.H.; Hillger, D.W. Improved detection of airborne volcanic ash using multispectral infrared satellite data. J. Geophys. Res. Atmos. 2003, 108, 4356. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Zhang, L. A thermal index from MODIS data for dust detection. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 3783–3786. [Google Scholar]
- Zhang, P.; Lu, N.-M.; Hu, X.-Q.; Dong, C.-H. Identification and physical retrieval of dust storm using three MODIS thermal IR channels. Glob. Planet. Change 2006, 52, 197–206. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, J.; Li, C.; Zhu, K. Regional characteristics of dust storms observed in the Alxa Plateau of China from 1961 to 2005. J. Desert Res. 2011, 31, 267–274. [Google Scholar]
- Pan, F.; Jiang, L.; Wang, G.; Su, X.; Zhou, X. Estimating cloud-free fractional snow cover from Himawari-8, FY-4A and MODIS observation. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 5566–5569. [Google Scholar]
- Zhou, S.; Kaufmann, H.; Bohn, N.; Bochow, M.; Kuester, T.; Segl, K. Identifying distinct plastics in hyperspectral experimental lab-, aircraft-, and satellite data using machine/deep learning methods trained with synthetically mixed spectral data. Remote Sens. Environ. 2022, 281, 113263. [Google Scholar]
- Pullanagari, R.; Dehghan-Shoar, M.; Yule, I.J.; Bhatia, N. Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network. Remote Sens. Environ. 2021, 257, 112353. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, K.; Fang, H. High-Resolution Seamless Mapping of the Leaf Area Index via Multisource Data and the Transformer Deep Learning Model. IEEE Trans. Geosci. Remote Sens. 2025, in press. [CrossRef]
- Alshammari, R.K.; Alrwais, O.; Aksoy, M.S. Machine Learning Applications to Dust Storms: A Meta-Analysis. Atmosphere 2022, 22, 1234. [Google Scholar] [CrossRef]
- Bin Abdulwahed, A.; Dash, J.; Roberts, G. An evaluation of satellite dust-detection algorithms in the Middle East region. Int. J. Remote Sens. 2019, 40, 1331–1356. [Google Scholar] [CrossRef]
- Hoffmann, C.; Funk, R.; Sommer, M.; Li, Y. Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia. Atmos. Environ. 2008, 42, 8422–8431. [Google Scholar] [CrossRef]
- Jiang, Q.; An, L.; Wang, F.; Wu, G.; Wen, J.; Li, B.; Jin, Y.; Wei, Y. Identification Method for Spring Dust Intensity Levels Based on Multiple Remote Sensing Parameters. Remote Sens. 2024, 16, 2606. [Google Scholar] [CrossRef]
- Yang, L.; She, L.; Che, Y.; He, X.; Yang, C.; Feng, Z. Analysis of Dust Detection Algorithms Based on FY-4A Satellite Data. Appl. Sci. 2023, 13, 1365. [Google Scholar] [CrossRef]
- Si, Q.; Jiang, X.G.; Zhao, R.F. Study on the reliability and correction methods of automatic observation data of dust and haze in Inner Mongolia. Desert Oasis Meteorol. 2024, 18, 129–135. (In Chinese) [Google Scholar]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [Google Scholar] [CrossRef] [PubMed]
- Legrand, M.; Plana-Fattori, A.; N’Doumé, C. Satellite detection of dust using the IR imagery of Meteosat 1: Infrared difference dust index. J. Geophys. Res. Atmos. 2001, 106, 18251–18274. [Google Scholar] [CrossRef]
- Jiang, H.; He, Q.; Zeng, X.Q.; Tang, Z.; Zhao, K.M.; Dou, X.Y. Sand and Dust Monitoring Using FY-4A Satellite Data based on the Random Forests and Convolutional Neural Networks. Plateau Meteorol. 2021, 40, 680–689. [Google Scholar]
Band Number | Central Wavelength (µm) | Spectral Range (µm) |
---|---|---|
7 | 3.9 | 3.74–3.96 |
8 | 6.2 | 6.06–6.43 |
9 | 6.9 | 6.89–7.01 |
10 | 7.3 | 7.26–7.43 |
11 | 8.6 | 8.44–8.76 |
12 | 9.6 | 9.54–9.72 |
13 | 10.4 | 10.3–10.6 |
14 | 11.2 | 11.1–11.3 |
15 | 12.4 | 12.2–12.5 |
16 | 13.3 | 13.2–13.4 |
Abbreviation | Full Name | Formula | Designer(s) |
---|---|---|---|
BTD11−12 | Brightness temperature difference between 11.2 µm and 12.4 µm | [33] | |
BTD3−11 | Brightness temperature difference between 3.9 µm and 11.2 µm | [14] | |
BTD8−11 | Brightness temperature difference between 8.6 µm and 11.2 µm | [34] | |
TVAP | Three-band volcanic ash product | [35] | |
BADI | Brightness temperature adjusted difference index | [15] | |
TIIDI | Thermal infrared integrated dust index | [36] |
Sandstorm Events | ESSS/SSS * | SS * | FD/BS * | DF * | Sandstorm Events | ESSS/SSS * | SS * | FD/BS * | DF * |
---|---|---|---|---|---|---|---|---|---|
17 April 2019 | 0 | 0 | 197 | 671 | 6 May 2021 | 1 | 23 | 588 | 308 |
11 May 2019 | 10 | 30 | 93 | 369 | 3 March 2022 | 2 | 5 | 579 | 933 |
15 May 2019 | 2 | 38 | 477 | 1029 | 13 March 2022 | 7 | 20 | 416 | 454 |
11 May 2020 | 1 | 8 | 207 | 305 | 20 April 2022 | 2 | 29 | 271 | 433 |
15 May 2020 | 0 | 0 | 167 | 431 | 9 March 2023 | 8 | 20 | 343 | 1042 |
14 March 2021 | 69 | 48 | 318 | 274 | 10 March 2023 | 3 | 13 | 432 | 398 |
15 March 2021 | 29 | 72 | 403 | 627 | 14 March 2023 | 0 | 0 | 177 | 546 |
16 March 2021 | 0 | 9 | 509 | 477 | 20 March 2023 | 11 | 7 | 529 | 817 |
17 March 2021 | 2 | 6 | 187 | 233 | 21 March 2023 | 67 | 129 | 934 | 308 |
18 March 2021 | 9 | 16 | 289 | 261 | 22 March 2023 | 0 | 7 | 603 | 515 |
19 March 2021 | 3 | 1 | 287 | 354 | 9 April 2023 | 1 | 7 | 749 | 672 |
27 March 2021 | 41 | 165 | 840 | 765 | 10 April 2023 | 14 | 40 | 998 | 388 |
14 April 2021 | 7 | 14 | 194 | 906 | 11 April 2023 | 0 | 1 | 572 | 908 |
15 April 2021 | 4 | 14 | 532 | 430 | 13 April 2023 | 1 | 14 | 208 | 340 |
26 April 2021 | 0 | 7 | 425 | 622 | 19 May 2023 | 1 | 42 | 605 | 486 |
5 May 2021 | 2 | 5 | 268 | 429 |
Model | Hyperparameter Settings |
---|---|
PCLNet; PCBNet | Number of nodes: 64, 128, 256, 512; Batch size: 16, 32, 64, 128, 256; Number of epochs: 50, 100, 150, 200; Learning rate: 0.1, 0.01, 0.001; Optimizer: Adam. |
PDT-RF; RF | Number of estimators: 10, 100, 500, 1000; Max depth: 10, 50, 100; Max features: 0.5, ‘log2’, ‘sqrt’. |
PDT-SVM; SVM | Kernel: ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’; C: 0.001, 0.01, 0.1, 1.0, 10, 20; Epsilon: 0.001, 0.01, 0.1, 1.0, 10, 20. |
Model | Hyperparameter Settings |
---|---|
PCBNet | Nodes = 128; Batch size = 16; Epochs = 100; LR = 0.001; Optimizer = Adam |
PCLNet | Nodes = 128; Batch size = 32; Epochs = 150; LR = 0.001; Optimizer = Adam |
PDT-RF | Estimators = 1000; Max depth = 50; Max features = log2 |
PDT-SVM | Kernel = rbf; C = 1.0; Epsilon = 0.1 |
RF | Estimators = 500; Max depth = 50; Max features = sqrt |
SVM | Kernel = rbf; C = 10; Epsilon = 0.01 |
ESSS/SSS (%) | SS (%) | FD/BS (%) | DF (%) | OA (%) | Kappa | |||||
---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | |||
PCBNet | 85.00 | 76.12 | 86.78 | 82.85 | 87.95 | 86.82 | 91.35 | 99.30 | 88.50 | 0.8368 |
PCLNet | 98.33 | 74.68 | 74.92 | 85.99 | 86.32 | 80.79 | 94.23 | 94.84 | 86.14 | 0.8039 |
PDT-RF | 88.33 | 85.48 | 74.58 | 83.97 | 85.67 | 78.04 | 94.87 | 94.57 | 85.42 | 0.7925 |
PDT-SVM | 75.00 | 84.91 | 75.93 | 83.27 | 87.95 | 80.60 | 95.19 | 93.69 | 85.83 | 0.7976 |
RF | 66.67 | 59.70 | 68.47 | 83.47 | 85.34 | 74.43 | 93.59 | 93.29 | 81.72 | 0.7402 |
SVM | 66.67 | 70.18 | 62.71 | 82.96 | 87.62 | 71.73 | 93.27 | 91.22 | 80.60 | 0.7231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Chen, P.; Sun, X. Spring Dust Intensity Monitoring at Hourly Intervals Using Himawari-8 Satellite Images and Artificial Intelligence Method. Remote Sens. 2025, 17, 3407. https://doi.org/10.3390/rs17203407
Zhao J, Chen P, Sun X. Spring Dust Intensity Monitoring at Hourly Intervals Using Himawari-8 Satellite Images and Artificial Intelligence Method. Remote Sensing. 2025; 17(20):3407. https://doi.org/10.3390/rs17203407
Chicago/Turabian StyleZhao, Jiafu, Pengfei Chen, and Xiaolong Sun. 2025. "Spring Dust Intensity Monitoring at Hourly Intervals Using Himawari-8 Satellite Images and Artificial Intelligence Method" Remote Sensing 17, no. 20: 3407. https://doi.org/10.3390/rs17203407
APA StyleZhao, J., Chen, P., & Sun, X. (2025). Spring Dust Intensity Monitoring at Hourly Intervals Using Himawari-8 Satellite Images and Artificial Intelligence Method. Remote Sensing, 17(20), 3407. https://doi.org/10.3390/rs17203407