A Review of Recent Development of Geosynchronous Synthetic Aperture Radar Technique
Abstract
Highlights
- What are the main findings?
- GEO SAR systems offer prominent advantages in dynamic Earth observation, demonstrating broad application prospects.
- GEO SAR faces numerous challenges in the design of satellite orbits, radar systems, large deployable antennas, and ultra-wide swath imaging algorithms.
- What is the implication of the main finding?
- Ultra-large aperture antennas and imaging algorithms that account for spatial variations over large scenes are crucial for the development of a GEO SAR satellite.
- GEO SAR systems with multi-frequency, fully-polarimetric, and high-resolution imaging capabilities represent an important direction for future development.
Abstract
1. Introduction
2. Key Considerations in GEO SAR System Design
2.1. Orbital Parameters and Synthetic Aperture Time
2.1.1. GEO Orbit and Satellite Ground Track
2.1.2. Design and Performance of Typical GEO SAR Systems
2.1.3. Summary
2.2. Transmit Power and Antenna Aperture
2.2.1. Requirements for GEO SAR Imaging
2.2.2. Power and Antenna Design of Typical GEO SAR Systems
2.2.3. Summary
2.3. Two-Dimensional Beam-Steering
2.4. Imaging Parameters and Non-Ideal Factors
2.4.1. Image Parameters
2.4.2. Non-Ideal Factors
3. GEO SAR Signal Processing
3.1. The Slant Range Model and Signal Model
3.2. Signal Processing Methods
3.2.1. Frequency-Domain Algorithms
3.2.2. Time-Domain Algorithms
3.2.3. Moving Target Imaging Algorithms
3.2.4. Summary
4. Application Fields of GEO SAR
5. Prospects for Future Development of GEO SAR Technology
5.1. Integration of GEO SAR with LEO SAR and Optical GEO Systems
5.2. AI-Driven Onboard Processing to Handle Massive Data Volumes
5.3. Synergies with Multi-Frequency and Multi-Polarization Missions
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAST | China Academy of Space Technology |
SAR | Synthetic Aperture Radar |
2D | Two-Dimensional |
GEO | Geosynchronous |
LEO | Low-Earth Orbit |
NZI | Nearly Zero Inclination |
MIMO | Multiple-Input Multiple-Output |
CoSAR | Correlating SAR |
SNR | Signal-to-Noise Ratio |
GESS | Global Earthquake Satellite System |
GLP | Geosynchronous Laplace Plane |
ASR | Ambiguity-to-Signal Ratio |
NESZ | Noise Equivalent Sigma Zero |
SCS | Satellite Coordinate System |
TEC | Total Electron Content |
CS | Chirp Scaling |
RCM | Range Cell Migration |
NCS | Nonlinear Chirp Scaling |
SVD | Singular Value Decomposition |
BP | Back Projection |
DEM | Digital Elevation Model |
3D | Three-Dimensional |
ISAR | Inverse Synthetic Aperture Radar |
GPU | Graphics Processing Unit |
AI | Artificial Intelligence |
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Curlander, J.C.; Mcdonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing, 1st ed.; Wiley: New York, NY, USA, 1991; pp. 1–20. [Google Scholar]
- Delnore, V. Regional integration, validation, and application of SEASAT-A satellite scatterometer (SASS) data. In Proceedings of the OCEANS ’78, Washington, DC, USA, 6–8 September 1978; p. 397. [Google Scholar]
- Sun, G.C.; Liu, Y.; Xiang, J.; Liu, W.; Xing, M.; Chen, J. Spaceborne synthetic aperture radar imaging algorithms: An overview. IEEE Geosci. Remote Sens. Mag. 2022, 10, 161–184. [Google Scholar] [CrossRef]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.; Younis, M.; Lopez-Dekker, P.; Huber, S.; Villano, M.; Pardini, M.; Eineder, M.; et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth’s surface. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–23. [Google Scholar] [CrossRef]
- Wu, B.; Liu, C.; Chen, J. A review of spaceborne high-resolution spotlight/sliding spotlight mode SAR imaging. Remote Sens. 2025, 17, 38. [Google Scholar] [CrossRef]
- Raymond, C.A.; Madsen, S. GESS: A 20-Year Plan to Enable Earthquake Prediction, 1st ed.; Jet Propulsion Laboratory: Pasadena, CA, USA, 2003; pp. 50–84. [Google Scholar]
- Xiao, P.; Liu, B.; Guo, W. ConGaLSAR: A constellation of geostationary and low earth orbit synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2085–2089. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z.; Huang, Y.; Yang, J.; Lv, Y.; Wang, Z. Geosynchronous spaceborne-airborne bistatic SAR: Potentials and prospects. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015. [Google Scholar]
- Sun, Z.; Wu, J.; Huang, Y.; Yang, J.; Yang, H.; Yang, X. Performance analysis and mission design for inclined geosynchronous spaceborne-airborne bistatic SAR. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015. [Google Scholar]
- An, H.; Wu, J.; Sun, Z.; Yang, J.; Huang, Y.; Yang, H. Topology design for geosynchronous spaceborne-airborne multistatic SAR. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1715–1719. [Google Scholar] [CrossRef]
- Tomiyasu, K.; Pacelli, J. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 324–329. [Google Scholar] [CrossRef]
- Hobbs, S.; Mitchell, C.; Forte, B.; Holley, R.; Snapir, B.; Whittaker, P. System design for geosynchronous synthetic aperture radar missions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7750–7763. [Google Scholar] [CrossRef]
- Ruiz-Rodon, J.; Broquetas, A.; Makhoul, E.; Guarnieri, A.; Rocca, F. Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6379–6391. [Google Scholar] [CrossRef]
- Guarnieri, A.; Hu, C. Geosynchronous and geostationary SAR: Face to face comparison. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016. [Google Scholar]
- Hobbs, S.; Guarnieri, A.; Wadge, G.; Schulz, D. GeoSTARe initial mission design. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Wadge, G.; Guarnie, A.; Hobbs, S.; Schulz, D. Potential atmospheric and terrestrial applications of a geosynchronous radar. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Guarnieri, A.; Broquetas, A.; Recchia, A.; Rocca, F.; Ruiz-Rodon, J. Advanced radar geosynchronous observation system: ARGOS. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1406–1410. [Google Scholar] [CrossRef]
- Guarnieri, A.; Broquetas, A.; López-Dekker, F.; Rocca, F. A geostationary MIMO SAR swarm for quasi-continuous observation. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015. [Google Scholar]
- Guarnieri, A.M.; Bombaci, O.; Catalano, T.F.; Germani, C.; Koppel, C.; Rocca, F.; Wadge, G. ARGOS: A fractioned geosynchronous SAR. Acta Astronaut. 2019, 164, 444–457. [Google Scholar] [CrossRef]
- López-Dekker, P.; Rodriguez-Cassola, M.; Zan, F.; Krieger, G.; Moreira, A. Correlating synthetic aperture radar (CoSAR). IEEE Trans. Geosci. Remote Sens. 2016, 54, 2268–2284. [Google Scholar] [CrossRef]
- López-Dekker, P.; Rodriguez-Cassola, M.; Zan, F.; Krieger, G. Imaging ocean surface statistics using geosynchronous Correlating SAR (CoSAR) EUSAR. In Proceedings of the EUSAR 2016: 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014. [Google Scholar]
- Rodriguez-Cassola, M.; López-Dekker, P.; Prats-Iraola, P.; Zan, F.; Krieger, G.; Moreira, A. CoSAR: Geometrical analysis and image formation assessment. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016. [Google Scholar]
- Hobbs, S.E.; Sanchez, J.P.; Kingston, J. Extended lifetime Laplace plane GEO SAR mission design. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015. [Google Scholar]
- Li, C.; Zhang, Q.; Liu, J.; Han, G.; Liu, B.; Duan, C.; Lu, Z. Subretrograde geosynchronous SAR: Parameter design and performance analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 68–83. [Google Scholar]
- Chen, J.; Sun, G.C.; Xing, M.; Yang, J.; Li, Z.; Jing, G. A two-dimensional beam-steering method to simultaneously consider doppler centroid and ground observation in GEOSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 161–167. [Google Scholar] [CrossRef]
- Chen, J.; Sun, G.; Xing, M.; Yang, J.; Ni, C.; Zhu, Y.; Shu, W.; Liu, W. A parameter optimization model for geosynchronous SAR sensor in aspects of signal bandwidth and integration time. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1374–1378. [Google Scholar] [CrossRef]
- Li, C.; He, M. Timing design for geosynchronous SAR. Electron. Lett. 2016, 52, 868–870. [Google Scholar] [CrossRef]
- Long, T.; Dong, X.; Hu, C.; Zeng, T. A new method of zero-doppler centroid control in GEO SAR. IEEE Geosci. Remote Sens. Lett. 2011, 8, 512–516. [Google Scholar] [CrossRef]
- Long, T.; Hu, C.; Ding, Z.; Dong, X.; Tian, W.; Zeng, T. Geosynchronous SAR: System and Signal Processing, 1st ed.; Springer Nature: Singapore, 2018; pp. 27–74. [Google Scholar]
- Guarnieri, A.M.; Leanza, A.; Recchia, A.; Tebaldini, S.; Venuti, G. Atmospheric phase screen in GEO-SAR: Estimation and compensation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1668–1679. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Q.; Zhang, Y.; Dong, Z.; Yao, B. Spaceborne P-band SAR imaging degradation by anisotropic ionospheric irregularities: A comprehensive numerical study. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5516–5526. [Google Scholar] [CrossRef]
- Hu, C.; Li, Y.; Dong, X.; Wang, R.; Ao, D. Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 159–172. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Q.; Zhang, Y.; Dong, Z. Impacts of flowing ionospheric irregularities on L-band geosynchronous SAR azimuth imaging. In Proceedings of the EUSAR 2018: 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018. [Google Scholar]
- Sun, G.; Xing, M.; Wang, Y.; Yang, J.; Bao, Z. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4868–4880. [Google Scholar]
- Li, C.; He, M. A generalized chirp-scaling algorithm for geosynchronous orbit SAR staring observations. Sensors 2017, 17, 1058. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, G.; Xing, M.; Wang, Y.; Li, Z.; Zhang, Q.; Liu, L.; Dai, C. A TSVD-NCS Algorithm in Range-Doppler Domain for Geosynchronous Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1631–1635. [Google Scholar] [CrossRef]
- Chen, J.; Sun, G.; Xing, M.; Liang, B.; Gao, Y. Focusing improvement of curved trajectory spaceborne SAR based on optimal LRWC preprocessing and 2-D singular value decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4246–4258. [Google Scholar] [CrossRef]
- Hu, C.; Liu, Z.; Long, T. An improved CS algorithm based on the curved trajectory in geosynchronous SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 795–808. [Google Scholar] [CrossRef]
- Hu, C.; Long, T.; Liu, Z.; Zeng, T.; Tian, Y. An improved frequency domain focusing method in geosynchronous SAR. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5514–5528. [Google Scholar]
- Hu, C.; Long, T.; Zeng, T.; Liu, F.; Liu, Z. The accurate focusing and resolution analysis method in geosynchronous SAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3548–3563. [Google Scholar] [CrossRef]
- Chen, J.; Sun, G.; Wang, Y.; Guo, L.; Xing, M.; Gao, Y. An analytical resolution evaluation approach for bistatic GEOSAR based on local feature of ambiguity function. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2159–2169. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Z.; Li, Y.; Dong, X.; Hobbs, S. Research progress on geosynchronous synthetic aperture radar. Fundam. Res. 2021, 1, 346–363. [Google Scholar] [CrossRef]
- Freeman, A.; Johnson, W.T.K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P. The “Myth” of the minimum SAR antenna area constraint. IEEE Trans. Geosci. Remote Sens. 2000, 38, 320–324. [Google Scholar] [CrossRef]
- Huber, S.; Almeida, F.; Villano, M.; Younis, M.; Krieger, G.; Moreira, A. Tandem-L: Technical perspective on future spaceborne SAR sensors for earth observation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4792–4807. [Google Scholar] [CrossRef]
- Hoffman, P.; Bhan, R.; Mora, V.; Edelstein, W.; Kahn, D.; Xaypraseuth, P.; Arenas, D.; Waldman, J.; Ferdowsi, B.; Shaffer, S.; et al. NASA-ISRO synthetic aperture radar (NISAR) mission: System integration & test. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MA, USA, 5–12 March 2022. [Google Scholar]
- Rosen, P.; Hensley, S.; Shaffer, S.; Edelstein, W.; Kim, Y. The NASA-ISRO SAR (NISAR) mission: Dual-band radar instrument preliminary design. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Morante, D.; Cornara, S.; Sciarra, M.; Carna, S.; Imre, E.; Ayala, C.; Centuori, S. Multi-disciplinary optimization of the low-thrust orbit raising for the hydroterra Earth Explorer mission. Acta Astronaut. 2022, 201, 564–575. [Google Scholar] [CrossRef]
- Almeida, V.; Matar, J.; Rodriguez-Cassola, M.; Moreira, A.; Haagmans, R.; Bensi, P. Orbit, performance and observation scenarios for ESA’s earth explorer mission proposal hydroterra. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Sun, X.; Chen, L.; Zhou, Z.; Du, H.; Huang, X. Impact analysis and compensation methods of frequency synchronous errors in distributed geosynchronous synthetic aperture radar. Remote Sens. 2024, 16, 1470. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Chen, J.; Sun, G.; Wang, Y.; Xing, M.; Zhang, Y.; Gao, Y. Performance improvement and system design of Geo-SAR using the yaw steering. IEEE Sens. J. 2017, 17, 6268–6278. [Google Scholar] [CrossRef]
- Fiedler, H.; Boerner, E.; Mittermayer, J.; Krieger, G. Total zero doppler steering—A new method for minimizing the doppler centroid. IEEE Geosci. Remote Sens. Lett. 2005, 2, 141–145. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, W.; Ding, Z.; Zeng, T.; Long, T. An optimal resolution steering method for geosynchronous orbit SAR. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1732–1736. [Google Scholar]
- Chang, F.; Li, D.; Dong, Z. An accurate 2-D attitude steering method for GEO SAR antenna with zero doppler centroid. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Scharf, D.P. Analytic yaw–pitch steering for side-looking SAR with numerical roll algorithm for incidence angle. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3587–3594. [Google Scholar] [CrossRef]
- Zhao, B.J.; Zhang, Q.J. The staring mode properties and performance of Geo-SAR satellite with reflector antenna. Remote Sens. 2022, 14, 1609. [Google Scholar] [CrossRef]
- Chen, J.; Sun, G.C.; Yang, J.; Xing, M.; Bao, Z.; Zhang, Q. Systematic analysis of challenges and solutions in geosynchronous synthetic aperture radar. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015. [Google Scholar]
- Jiang, T.; Li, C.; Huang, P.; He, Y.; Li, D. Impact of frequency generator stability in geosynchronous SAR. In Proceedings of the 2015 IET International Radar Conference, Hangzhou, China, 14–16 October 2015. [Google Scholar]
- Krieger, G.; Cassola, M.; Younis, M.; Metzig, R. Impact of oscillator noise in bistatic and multistatic SAR. IEEE Geosci. Remote Sens. Lett. 2006, 3, 424–428. [Google Scholar] [CrossRef]
- Bruno, D.; Hobbs, S. Radar imaging from geosynchronous orbit: Temporal decorrelation aspects. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2924–2929. [Google Scholar] [CrossRef]
- Recchia, A.; Guarnieri, A.M.; Broquetas, A.; Leanza, A. Impact of scene decorrelation on geosynchronous SAR data focusing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1635–1646. [Google Scholar] [CrossRef]
- Morishita, Y.; Hanssen, R. Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1096–1104. [Google Scholar] [CrossRef]
- Li, C.; He, M.; Zhu, Y.; Li, G.; Liu, B. Imaging experiment with long integrated time and curved trajectory for geosynchronous orbit SAR. Chin. Space Sci. Technol. 2015, 35, 17–22. [Google Scholar]
- Li, D.; Zhu, X.; Dong, Z.; Yu, A.; Zhang, Y. Background tropospheric delay in geosynchronous synthetic aperture radar. Remote Sens. 2020, 12, 3081. [Google Scholar] [CrossRef]
- Jehle, M.; Frey, O.; Small, D.; Meier, E. Measurement of ionospheric TEC in spaceborne SAR data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2460–2468. [Google Scholar] [CrossRef]
- Zhou, F.; Xing, M.D.; Xia, X.G.; Zhang, J.J.; Sun, G.C.; Bao, Z. Measurement and correction of the ionospheric TEC in P-band ISAR imaging. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1755–1759. [Google Scholar] [CrossRef]
- Gomba, G.; Parizzi, A.; Zan, F.; Eineder, M.; Bamler, R. Toward operational compensation of ionospheric effects in SAR interferograms: The split-spectrum method. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1446–1461. [Google Scholar] [CrossRef]
- Li, C.; He, M. Signal characteristics analysis of GEO SAR. In Proceedings of the 2013 IET International Radar Conference, Xi’an, China, 14–16 April 2013. [Google Scholar]
- Li, D.; Dong, Z.; Wu, M.; Yu, A.; Zhang, Y. A novel processing method for GEO SAR. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019. [Google Scholar]
- Hu, B.; Jiang, Y.; Zhang, S.; Zhang, Y.; Yeo, T. Generalized omega-K algorithm for geosynchronous SAR image formation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2286–2290. [Google Scholar] [CrossRef]
- Tian, Y.; Hu, C.; He, Q.; Dong, X.; Long, T.; Zeng, T. Adaptive frequency domain imaging algorithm in geosynchronous SAR. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015. [Google Scholar]
- Huang, L.; Qiu, X.; Hu, D.; Ding, C. Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 500–508. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, S.; Xiao, B. An advanced equivalent slant range model and image formation in geosynchronous SAR. In Proceedings of the 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, Chengdu, China, 19–20 April 2012. [Google Scholar]
- Bao, M.; Liao, Y.; Tian, Z.; Xing, M.; Li, Y. Imaging algorithm for GEO SAR based on series reversion. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011. [Google Scholar]
- Ding, Z.; Yin, W.; Zhang, T.; Zhang, Z. Geosynchronous SAR imaging algorithm research. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–9 November 2016. [Google Scholar]
- Zhao, B.; Qi, X.; Song, H.; Wang, R.; Zhang, Z.; Jiang, H. A new approach for spotlight geosynchronous SAR data focusing. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 21–26 July 2013. [Google Scholar]
- Wu, Y.; Huang, L.; Zhang, B.; Wang, X.; Qi, X. An accurate and efficient BP algorithm based on precise slant range model and rapid range history construction method for GEO SAR. Remote Sens. 2023, 15, 5191. [Google Scholar] [CrossRef]
- Zhou, B.; Qi, X.; Zhang, H. An accurate GEO SAR range model for ultralong integration time based on mth-order taylor expansion. Remote Sens. 2021, 13, 255. [Google Scholar] [CrossRef]
- Chang, F.; Li, D.; Dong, Z.; Huang, Y.; He, Z.; Chen, X. Elevation spatial variation analysis and compensation in GEO SAR imaging. Remote Sens. 2021, 13, 1888. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Liang, B.; Yang, D. A general method of series reversion for synthetic aperture radar imaging. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Neo, Y.L.; Wong, F.; Cumming, I. A two-dimensional spectrum for bistatic SAR processing using series reversion. IEEE Geosci. Remote Sens. Lett. 2007, 4, 93–96. [Google Scholar] [CrossRef]
- Bao, M.; Li, Y.C.; Xing, M.D.; Wang, W.L.; Li, C.P. Analysis of the characteristics of geosynchronous SAR in the elliptic orbit and a study of imaging methods. J. Xidian Univ. 2010, 37, 1033–1041. [Google Scholar]
- Bao, M.; Zhou, P.; Bao, Z.; Li, Y.C.; Xing, M.D.; Wang, W.L. An improved cs imaging algorithm for GEO SAR based on curve trajectory model. J. Electron. Inf. Technol. 2011, 33, 2686–2693. [Google Scholar] [CrossRef]
- Bao, M.; Xing, M.D.; Li, Y.C. Chirp scaling algorithms for GEO SAR based on fourth-order range equation. Electron. Lett. 2012, 48, 41. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, P.M.; Wang, W.W.; Yang, X.C. 2-D stolt interpolation to correct coupling algorithm for GEO SAR imaging. J. Signal Process. 2016, 32, 1418–1424. [Google Scholar]
- You, D.; Sun, G.C.; Li, Y.C.; Chen, J.L.; Xing, M.D. Two-dimension SVD imaging method for GEO SAR. Syst. Eng. Electron. 2018, 40, 2200–2206. [Google Scholar]
- Zeng, T.; Yang, W.; Ding, Z.; Liu, D.; Long, T. A refined two-dimensional nonlinear chirp scaling algorithm for geosynchronous earth orbit SAR. Prog. Electromagn. Res. 2013, 143, 19–46. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, Z.; Tian, W.; Zeng, T.; Yin, W. A 2-D nonlinear chirp scaling algorithm for high squint GEO SAR imaging based on optimal azimuth polynomial compensation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5724–5735. [Google Scholar] [CrossRef]
- Li, C.; He, M. Imaging algorithm for geosynchronous orbit SAR based on chirp_z transform and azimuth scaling. J. Electron. Inf. Technol. 2015, 37, 1736–1742. [Google Scholar]
- Li, D.; Wu, M.Q.; Sun, Z.Y.; He, F.; Dong, Z. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3999–4009. [Google Scholar] [CrossRef]
- Li, Y.; Dong, X.; Cui, K.; Hu, C.; Ao, D.; Long, T. DEM-assisted back-projection algorithm in high resolution geosynchronous SAR imaging. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2013. [Google Scholar]
- Li, C.; Zhang, H.; Tan, X. An improved fast back-projection algorithm for geosynchronous SAR imaging. Mod. Def. Technol. 2010, 38, 77–82. [Google Scholar]
- Chen, Q.; Liu, W.; Sun, G.C.; Chen, X.; Han, L.; Xing, M. A fast cartesian back-projection algorithm based on ground surface grid for GEO SAR focusing. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Ding, Z.; Zhu, K.; Zhang, T.; Li, L.; Wang, Y.; Wang, G.; Gao, Y.; Wei, Y. An autofocus back projection algorithm for GEO SAR based on minimum entropy. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, Y.; Dong, X.; Cui, C.; Liu, Z.; Xiong, M. A novel ship imaging method with multiple sinusoidal functions to match rotation effects in geosynchronous SAR. Remote Sens. 2020, 12, 2249. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, W.; Dong, X.; Hu, C.; Sun, Y. GRFT-based moving ship target detection and imaging in geosynchronous SAR. Remote Sens. 2018, 10, 2002. [Google Scholar] [CrossRef]
- Meizi, M.; Hu, C.; Dong, X.; Li, Y.; Cui, C. Velocity estimation of multiple moving targets in single-channel geosynchronous SAR. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5861–5879. [Google Scholar]
- Zhang, X.; Liu, B.; Li, G.T.; Lin, C.C.; Nie, S.K.; Liu, X. Echo simulation method of ship target for Geosynchronous SAR. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019. [Google Scholar]
- Zhang, S.; Li, J.W.; Yang, J. High-resolution geosynchronous SAR imaging of ship target. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019. [Google Scholar]
- Yu, J.; Yu, Z.; Gao, Y.; Li, C. Signal separation in GEO SAR imaging of maneuvering ships by removing micro-motion effect. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 788–803. [Google Scholar] [CrossRef]
- Yu, J.; Yu, Z.; Li, C. GEO SAR imaging of maneuvering ships based on time–frequency features extraction. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–21. [Google Scholar] [CrossRef]
- Amitrano, D.; Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Unsupervised rapid flood mapping using sentinel-1 GRD SAR images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3290–3299. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Adriona, B.; Zhang, L.; Li, G.; Wang, Z. A benchmark high-resolution GaoFen-3 SAR dataset for building semantic segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5950–5963. [Google Scholar] [CrossRef]
System | Inclination (°) | Revisit Time (Hours) | Radar Frequency | Synthetic Aperture Time | Azimuth Resolution (m) |
---|---|---|---|---|---|
NZI-GEO SAR | 0 | real-time | Ku | 2 h | 15 |
GEOSTARe | 0 | real-time | X + L | L: 1 h/8 h X: 3 h/6 h | L: 400/50 X: 20/10 |
GESS GEO SAR | 60 | 2.5–6 (single satellite) | L | <10 min | 20 |
LuTan-4 | 16 | 1–4 | L | <30 min | 20 |
GLP orbit GEO SAR | 7.4–7.5 | 0.5–1.5 | X + L | L: 1 min X: 2 min | L: 200 X: 10 |
Subretrograde GEOSAR | 150 | 9.5–10 | L | 108 s~112 s | 5 |
System | Inclination (°) | Radar Frequency | Transmit Power (W) | Antenna Aperture (m) |
---|---|---|---|---|
NZI-GEO SAR | 0 | Ku | 1600 W | 2.75 |
C-Band NZI-GEO SAR | 0 | C | 350 W (mean power) | 7 |
GEOSTARe | 0 | X + L | 300 W (mean power) | 6 |
ARGOS | 50° | L | 500 W (mean power) | 7 m |
GESS GEO SAR | 60 | L | 60 kW | 30 × 30 |
LuTan-4 | 16 | L | >20 kW | >20 |
GLP orbit GEO SAR | 7.4–7.5 | X + L | / | 13 |
Subretrograde GEOSAR | 150 | L | 100 kW | 40 |
Algorithms | Characteristics |
---|---|
CS | Straight-line trajectory assumption, unsuitable for curved trajectory imaging |
NCS, Omega-K | Better handle the range–azimuth coupling and the range variance, suitable for wide-swath imaging |
2D NCS | Better handle the range and the azimuth variance compared with the NCS algorithm, suitable wide-swath imaging with a large squint angle |
SVD-NCS | Accurately characterize the 2D space-variance of the signal spectrum, reduce the range and azimuth variance |
BP | Precise imaging for arbitrary orbital configuration, extremely high computational complexity |
DEM-assisted BP | Precise imaging for an observation area with significant topographic variations compared with the BP algorithm |
Fast BP | Significantly high computational efficiency compared with the BP algorithm |
Cartesian coordinate-based fast BP | Establishes the accurate imaging grid on the Earth’s surface, employs the two-step spectrum compression and multi-level fusion techniques; the computational efficiency is comparable to frequency-domain algorithms |
SAR + ISAR | Achieving the high-resolution image using the ship’s 3D sway motion based on ISAR imaging principles. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, C.; Tan, X.; You, D.; Duan, C.; Zhang, S.; Dang, H.; Li, G.; Zhang, Q. A Review of Recent Development of Geosynchronous Synthetic Aperture Radar Technique. Remote Sens. 2025, 17, 3405. https://doi.org/10.3390/rs17203405
Li J, Li C, Tan X, You D, Duan C, Zhang S, Dang H, Li G, Zhang Q. A Review of Recent Development of Geosynchronous Synthetic Aperture Radar Technique. Remote Sensing. 2025; 17(20):3405. https://doi.org/10.3390/rs17203405
Chicago/Turabian StyleLi, Jinwei, Caipin Li, Xiaomin Tan, Dong You, Chongdi Duan, Sheng Zhang, Hongxing Dang, Guangting Li, and Qingjun Zhang. 2025. "A Review of Recent Development of Geosynchronous Synthetic Aperture Radar Technique" Remote Sensing 17, no. 20: 3405. https://doi.org/10.3390/rs17203405
APA StyleLi, J., Li, C., Tan, X., You, D., Duan, C., Zhang, S., Dang, H., Li, G., & Zhang, Q. (2025). A Review of Recent Development of Geosynchronous Synthetic Aperture Radar Technique. Remote Sensing, 17(20), 3405. https://doi.org/10.3390/rs17203405