Reflections: Spectral Investigation of Black Band Disease in Hawaiian Corals
Abstract
Highlights
- Spectral reflectance analysis of Montiporid corals at ‘Anini Reef revealed that live tissue on colonies with black band disease can be reliably distinguished from healthy colonies even before visual symptoms emerge, with classification accuracy exceeding 85%.
- Integrating spectroscopy into monitoring and restoration frameworks enables earlier detection and targeted intervention—supporting rapid-response treatment, improved nursery screening, and stronger reef resilience strategies as coral disease risk in-creases under climate change.
Abstract
1. Introduction
2. Materials and Methods
2.1. Coral Tissue Spectral Reflectance Sampling
2.2. Data Processing and Analysis
2.2.1. Data Cleaning and Standardization
2.2.2. Discriminant Analysis
3. Results
3.1. Spectral Signatures of Tissue Health Categories
3.2. Separability Analysis
3.2.1. Spectral Separability of Four Tissue Health Categories
3.2.2. Spectral Separability of Three Tissue Health Categories
4. Discussion
4.1. Spectral Separability of Tissue Health Categories
4.2. Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BI | Brightness index |
BN | Brightness normalization |
BBD | Black band disease |
CYBD | Caribbean Yellow Band Disease |
DAR | Division of Aquatic Resources |
LDA | Linear discriminant analysis |
Appendix A
References
- Knowlton, N.; Brainard, R.E.; Fisher, R.; Moews, M.; Plaisance, L.; Caley, M.J. Coral Reef Biodiversity. In Life in the World’s Oceans; Wiley: Hoboken, NJ, USA, 2010; pp. 65–78. ISBN 978-1-4051-9297-2. [Google Scholar]
- Storlazzi, C.D.; Reguero, B.G.; Cole, A.D.; Lowe, E.; Shope, J.B.; Gibbs, A.E.; Nickel, B.A.; McCall, R.T.; van Dongeren, A.R.; Beck, M.W. Rigorously Valuing the Role of U.S. Coral Reefs in Coastal Hazard Risk Reduction; U.S. Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Wild, C.; Hoegh-Guldberg, O.; Naumann, M.S.; Colombo-Pallotta, M.F.; Ateweberhan, M.; Fitt, W.K.; Iglesias-Prieto, R.; Palmer, C.; Bythell, J.C.; Ortiz, J.-C.; et al. Climate Change Impedes Scleractinian Corals as Primary Reef Ecosystem Engineers. Mar. Freshw. Res. 2011, 62, 205. [Google Scholar] [CrossRef]
- Good, A.M.; Bahr, K.D. The Coral Conservation Crisis: Interacting Local and Global Stressors Reduce Reef Resiliency and Create Challenges for Conservation Solutions. SN Appl. Sci. 2021, 3, 312. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K.; et al. Coral Reefs under Rapid Climate Change and Ocean Acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef]
- Bruckner, A. The Global Perspective of Incidence and Prevalence of Coral Diseases; NOAA Fisheries Coral Reef Conservation Program: Silver Spring, MD, USA, 2009. [Google Scholar]
- Hughes, T.P.; Barnes, M.L.; Bellwood, D.R.; Cinner, J.E.; Cumming, G.S.; Jackson, J.B.C.; Kleypas, J.; Van De Leemput, I.A.; Lough, J.M.; Morrison, T.H.; et al. Coral Reefs in the Anthropocene. Nature 2017, 546, 82–90. [Google Scholar] [CrossRef]
- Burke, S.; Pottier, P.; Lagisz, M.; Macartney, E.L.; Ainsworth, T.; Drobniak, S.M.; Nakagawa, S. The Impact of Rising Temperatures on the Prevalence of Coral Diseases and Its Predictability: A Global Meta-analysis. Ecol. Lett. 2023, 26, 1466–1481. [Google Scholar] [CrossRef]
- Maynard, J.; van Hooidonk, R.; Eakin, C.M.; Puotinen, M.; Garren, M.; Williams, G.; Heron, S.F.; Lamb, J.; Weil, E.; Willis, B.; et al. Projections of Climate Conditions That Increase Coral Disease Susceptibility and Pathogen Abundance and Virulence. Nat. Clim. Change 2015, 5, 688–694. [Google Scholar] [CrossRef]
- Morais, J.; Cardoso, A.P.L.R.; Santos, B.A. A Global Synthesis of the Current Knowledge on the Taxonomic and Geographic Distribution of Major Coral Diseases. Environ. Adv. 2022, 8, 100231. [Google Scholar] [CrossRef]
- Allen, M. (Kauaʻi Division of Aquatic Resources, Līhuʻe, HI, USA). Personal Communication, 2024.
- Aeby, G.S.; Work, T.M.; Runyon, C.M.; Shore-Maggio, A.; Ushijima, B.; Videau, P.; Beurmann, S.; Callahan, S.M. First Record of Black Band Disease in the Hawaiian Archipelago: Response, Outbreak Status, Virulence, and a Method of Treatment. PLoS ONE 2015, 10, e0120853. [Google Scholar] [CrossRef]
- Oberle, F.K.J.; Storlazzi, C.D.; Cheriton, O.M.; Takesue, R.K.; Hoover, D.J.; Logan, J.B.; Runyon, C.; Kellogg, C.A.; Johnson, C.D.; Swarzenski, P.W. Physicochemical Controls on Zones of Higher Coral Stress Where Black Band Disease Occurs at Mākua Reef, Kaua‘i, Hawai‘i. Front. Mar. Sci. 2019, 6, 552. [Google Scholar] [CrossRef]
- Runyon, C.; Aeby, G.S.; Callahan, S.M. Kauai Montipora Coral Disease Prevalence and Environmental Drivers; University of Hawai’i: Honolulu, HI, USA, 2015; pp. 1–10. [Google Scholar]
- Allen, M. Spatial Patterns and Environmental Drivers of Black-Band Disease (BBD) in Montiporid Corals Across Anini Reef, Kauai, HI. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2025. [Google Scholar]
- Apprill, A.; Girdhar, Y.; Mooney, T.A.; Hansel, C.M.; Long, M.H.; Liu, Y.; Zhang, W.G.; Kapit, J.; Hughen, K.; Coogan, J.; et al. Toward a New Era of Coral Reef Monitoring. Environ. Sci. Technol. 2023, 57, 5117–5124. [Google Scholar] [CrossRef]
- Combs, I.R.; Studivan, M.S.; Eckert, R.J.; Voss, J.D. Quantifying Impacts of Stony Coral Tissue Loss Disease on Corals in Southeast Florida through Surveys and 3D Photogrammetry. PLoS ONE 2021, 16, e0252593. [Google Scholar] [CrossRef]
- Jordán-Dahlgren, E.; Jordán-Garza, A.G.; Rodríguez-Martínez, R.E. Coral Disease Prevalence Estimation and Sampling Design. PeerJ 2018, 6, e6006. [Google Scholar] [CrossRef]
- Kuta, K.; Richardson, L. Ecological Aspects of Black Band Disease of Corals: Relationships between Disease Incidence and Environmental Factors. Coral Reefs 2002, 21, 393–398. [Google Scholar] [CrossRef]
- Sato, Y.; Bourne, D.G.; Willis, B.L. Dynamics of Seasonal Outbreaks of Black Band Disease in an Assemblage of Montipora Species at Pelorus Island (Great Barrier Reef, Australia). Proc. R. Soc. B Biol. Sci. 2009, 276, 2795–2803. [Google Scholar] [CrossRef]
- Anderson, D.A.; Armstrong, R.A.; Weil, E. Hyperspectral Sensing of Disease Stress in the Caribbean Reef-Building Coral, Orbicella Faveolata-Perspectives for the Field of Coral Disease Monitoring. PLoS ONE 2013, 8, e81478. [Google Scholar] [CrossRef] [PubMed]
- Hedley, J.D.; Mumby, P.J. Biological and Remote Sensing Perspectives of Pigmentation in Coral Reef Organisms. Adv. Mar. Biol. 2002, 43, 277–317. [Google Scholar] [PubMed]
- Weingarten, E.; Martin, R.E.; Hughes, R.F.; Vaughn, N.R.; Shafron, E.; Asner, G.P. Early Detection of a Tree Pathogen Using Airborne Remote Sensing. Ecol. Appl. 2022, 32, e2519. [Google Scholar] [CrossRef]
- Asner, G.P.; Drury, C.; Vaughn, N.R.; Hancock, J.R.; Martin, R.E. Variability in Symbiont Chlorophyll of Hawaiian Corals from Field and Airborne Spectroscopy. Remote Sens. 2024, 16, 732. [Google Scholar] [CrossRef]
- Drury, C.; Martin, R.E.; Knapp, D.E.; Heckler, J.; Levy, J.; Gates, R.D.; Asner, G.P. Ecosystem-scale Mapping of Coral Species and Thermal Tolerance. Front. Ecol. Environ. 2022, 20, 285–291. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Atkinson, M.J.; Apprill, A.; Andrefouet, S. Spectral Reflectance of Coral. Coral Reefs 2004, 23, 84–95. [Google Scholar] [CrossRef]
- Sapes, G.; Schroeder, L.; Scott, A.; Clark, I.; Juzwik, J.; Montgomery, R.A.; Guzmán Q, J.A.; Cavender-Bares, J. Mechanistic Links between Physiology and Spectral Reflectance Enable Previsual Detection of Oak Wilt and Drought Stress. Proc. Natl. Acad. Sci. USA 2024, 121, e2316164121. [Google Scholar] [CrossRef] [PubMed]
- Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A Review of Visible and Near-Infrared (Vis-NIR) Spectroscopy Application in Plant Stress Detection. Sens. Actuators Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
- Aeby, D.G.S.; Hutchinson, M.; MacGowan, P. Hawaii’s Rapid Response Contingency Plan; The Division of Aquatic Resources, Department of Land and Natural Resources: Honolulu, HI, USA, 2008.
- Caldwell, J.M.; Liu, G.; Geiger, E.; Heron, S.F.; Eakin, C.M.; De La Cour, J.; Greene, A.; Raymundo, L.; Dryden, J.; Schlaff, A.; et al. Multi-Factor Coral Disease Risk Forecasting for Early Warning and Management. Ecol. Appl. 2024, 34, e2961. [Google Scholar] [CrossRef] [PubMed]
- Feilhauer, H.; Asner, G.P.; Martin, R.E.; Schmidtlein, S. Brightness-Normalized Partial Least Squares Regression for Hyperspectral Data. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1947–1957. [Google Scholar] [CrossRef]
- SAS Institute Inc. JMP® Pro, Version 18; SAS Institute: Cary, NC, USA, 2024.
- Wangpraseurt, D.; Larkum, A.W.D.; Ralph, P.J.; Kühl, M. Light Gradients and Optical Microniches in Coral Tissues. Front. Microbiol. 2012, 3, 316. [Google Scholar] [CrossRef]
- Carlton, R.G.; Richardson, L.L. Oxygen and Sulfide Dynamics in a Horizontally Migrating Cyanobacterial Mat: Black Band Disease of Corals. FEMS Microbiol. Ecol. 1995, 18, 155–162. [Google Scholar] [CrossRef]
- Miller, A.W.; Blackwelder, P.; Al-Sayegh, H.; Richardson, L.L. Insights into Migration and Development of Coral Black Band Disease Based on Fine Structure Analysis. Rev. Biol. Trop. 2015, 60, 21. [Google Scholar] [CrossRef]
- Miller, A.W.; Richardson, L.L. Fine Structure Analysis of Black Band Disease (BBD) Infected Coral and Coral Exposed to the BBD Toxins Microcystin and Sulfide. J. Invertebr. Pathol. 2012, 109, 27–33. [Google Scholar] [CrossRef]
- Sato, Y.; Willis, B.L.; Bourne, D.G. Successional Changes in Bacterial Communities during the Development of Black Band Disease on the Reef Coral, Montipora hispida. ISME J. 2010, 4, 203–214. [Google Scholar] [CrossRef]
- Holden, H.; Ledrew, E. Spectral Discrimination of Healthy and Non-Healthy Corals Based on Cluster Analysis, Principal Components, and Derivative Spectroscopy. Remote Sens. Environ. 1998, 65, 217–224. [Google Scholar] [CrossRef]
- Ferreira, G.; Bollati, E.; Kühl, M. The Role of Host Pigments in Coral Photobiology. Front. Mar. Sci. 2023, 10, 1204843. [Google Scholar] [CrossRef]
- Roth, M.S. The Engine of the Reef: Photobiology of the Coral Algal Symbiosis. Front. Microbiol. 2014, 5, 422. [Google Scholar] [CrossRef]
- Harrison, D.E.; Asner, G.P. Sensitivity of Spectral Communities to Shifts in Benthic Composition in Hawai’i. Remote Sens. Environ. 2024, 304, 114050. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Atkinson, M.J. Spectral Discrimination of Coral Reef Benthic Communities. Coral Reefs 2000, 19, 164–171. [Google Scholar] [CrossRef]
- Teague, J.; Willans, J.; Megson-Smith, D.A.; Day, J.C.C.; Allen, M.J.; Scott, T.B. Using Colour as a Marker for Coral ‘Health’: A Study on Hyperspectral Reflectance and Fluorescence Imaging of Thermally Induced Coral Bleaching. Oceans 2022, 3, 547–556. [Google Scholar] [CrossRef]
- Yamano, H.; Tamura, M.; Kunii, Y.; Hidaka, M. Spectral Reflectance as a Potential Tool for Detecting Stressed Corals. J. Jpn. Coral Reef Soc. 2003, 5, 1–10. [Google Scholar] [CrossRef]
- Eaton, K.R.; Clark, A.S.; Curtis, K.; Favero, M.; Hanna Holloway, N.; Ewen, K.; Muller, E.M. A Highly Effective Therapeutic Ointment for Treating Corals with Black Band Disease. PLoS ONE 2022, 17, e0276902. [Google Scholar] [CrossRef]
- ‘Āko‘ako‘a: Championing Coral Reef Restoration in Hawai‘i. Available online: https://www.akoakoa.org (accessed on 19 July 2025).
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A Review of Advanced Techniques for Detecting Plant Diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
Source | Count (n) | Number Misclassified | Percent Misclassified | Entropy R2 | |
---|---|---|---|---|---|
Exploratory | 218 | 58 | 26.61 | 0.38 | |
28 * | 12.84 * | 0.50 * | |||
Actual | Predicted Rate | ||||
Count (n) | Four Categories | Disease | Transition | LiveD | LiveL |
49 | Disease | 0.67 | 0.33 | 0.00 | 0.00 |
28 | Transition | 0.36 | 0.50 | 0.14 | 0.00 |
112 | LiveD | 0.07 | 0.08 | 0.77 | 0.08 |
29 | LiveL | 0.00 | 0.00 | 0.07 | 0.93 |
Three Categories | Infected | LiveD | LiveL | ||
77 | Infected | 0.94 *,1 | 0.06 *,1 | 0.00 * | |
112 | LiveD | 0.11 * | 0.81 * | 0.08 * | |
29 | LiveL | 0.00 * | 0.07 * | 0.93 * |
Eigenvalue | Percent | Cum Percent | Canonical Corr | Likelihood Ratio | Approx. F | NumDF | DenDF | Prob > F |
---|---|---|---|---|---|---|---|---|
3.11 | 76.97 | 76.97 | 0.87 | 0.12 | 10.45 | 57 | 585.24 | <0.001 * |
0.89 | 21.91 | 98.88 | 0.69 | 0.51 | 4.42 | 36 | 394 | <0.001 * |
Test | Value | Approx. F | NumDF | DenDF | Prob > F | |||
Wilks’ Lambda | 0.12 | 10.45 | 57 | 585.24 | <0.001 * |
Eigenvalue | Percent | Cum Percent | Canonical Corr | Likelihood Ratio | Approx. F | NumDF | DenDF | Prob > F |
---|---|---|---|---|---|---|---|---|
3.06 | 78.22 | 78.22 | 0.87 | 0.13 | 18.07 | 38 | 394 | <0.001 * |
0.85 | 21.77 | 100.00 | 0.68 | 0.54 | 9.38 | 18 | 198 | <0.001 * |
Test | Value | Approx. F | NumDF | DenDF | Prob > F | |||
Wilks’ Lambda | 0.13 | 18.07 | 38 | 394 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melamed, M.B.; Martin, R.E.; Allen, M.; Asner, G.P. Reflections: Spectral Investigation of Black Band Disease in Hawaiian Corals. Remote Sens. 2025, 17, 3241. https://doi.org/10.3390/rs17183241
Melamed MB, Martin RE, Allen M, Asner GP. Reflections: Spectral Investigation of Black Band Disease in Hawaiian Corals. Remote Sensing. 2025; 17(18):3241. https://doi.org/10.3390/rs17183241
Chicago/Turabian StyleMelamed, Mia B., Roberta E. Martin, McKenna Allen, and Gregory P. Asner. 2025. "Reflections: Spectral Investigation of Black Band Disease in Hawaiian Corals" Remote Sensing 17, no. 18: 3241. https://doi.org/10.3390/rs17183241
APA StyleMelamed, M. B., Martin, R. E., Allen, M., & Asner, G. P. (2025). Reflections: Spectral Investigation of Black Band Disease in Hawaiian Corals. Remote Sensing, 17(18), 3241. https://doi.org/10.3390/rs17183241