Multi-Scale Time-Frequency Representation Fusion Network for Target Recognition in SAR Imagery
Abstract
1. Introduction
- To overcome the limitations of single-view features, we propose a multi-subview fusion architecture using a MRF module, combining frequency domain feature extraction of radar spectrum subviews with time-frequency domain physical scattering analysis.
- We introduce a gated-fusion module for multi-subview fueature fusion and network complexity reduction, and further combined the classic AAMLoss function to optimize intra-class compactness and inter-class discrimination.
- Extensive experiments performed on four public datasets show that the proposed MTRFN outperforms reference methods significantly, and the heat map comparison enables an intuitive correlation between the network’s decision patterns and the feature extraction.
2. Related Work
3. Proposed Method
3.1. Multi-Scale Representation Fusion
3.1.1. Radar Subview Spectrogram Generation
3.1.2. Coordinate Attention Mechanism
- Joint Spatial-Channel Modeling: By decomposing spatial coordinates along the horizontal (X) and vertical (Y) directions, coordinate attention mechanism enables more precise localization of spatial features while maintaining inter-channel dependencies.
- Long-Range Dependency Capture: Global pooling operations performed separately along the horizontal and vertical axes help capture long-range contextual information, thereby enhancing the model’s understanding of global spatial structures.
- Lightweight Design: Compared to standard global 2D pooling, the decomposed pooling strategy significantly reduces computational cost, making it suitable for integration into deep neural networks without sacrificing efficiency.
- Coordinate Information Embedding: Traditional channel attention mechanisms typically use global average pooling (GAP) to encode spatial information. However, GAP compresses the global spatial context into a single scalar per channel, which leads to the loss of fine-grained positional information. To overcome this, Coordinate Attention performs one-dimensional pooling operations along the height (H) and width (W) dimensions independently, thereby preserving direction-aware spatial information.
- Coordinate Attention Generation: Given an input feature map , the CA module first applies average pooling with kernel sizes of and to capture vertical and horizontal contextual information, respectively. This operation encodes each channel separately along the vertical (y-axis) and horizontal (x-axis) directions.
- Feature Recalibration: The pooled features are then used to generate attention maps along each coordinate direction, which are subsequently applied to recalibrate the original feature map X, enhancing the representation of informative regions.
3.2. Network Architecture
3.2.1. Time-Frequency Domain Encoder
3.2.2. Gated Fusion Network
3.3. Loss Function
4. Experiments and Results
4.1. Datasets
4.1.1. Sentinel-1 Dataset
4.1.2. Open-SARShip Dataset
4.1.3. FUSAR-Ship Dataset
4.1.4. SAR-AIRcraft-1.0 Dataset
4.2. Experimental Settings
4.3. Performance Comparison with Reference Methods
4.4. Ablation Study
4.5. Model Parameters and Computation Complexity
4.6. Visualization Analysis and Interpretability Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kechagias-Stamatis, O.; Aouf, N. Fusing deep learning and sparse coding for SAR ATR. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 785–797. [Google Scholar] [CrossRef]
- Kechagias-Stamatis, O.; Aouf, N.; Richardson, M.A. 3D automatic target recognition for future LIDAR missiles. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2662–2675. [Google Scholar] [CrossRef]
- Ding, B.; Wen, G.; Zhong, J.; Ma, C.; Yang, X. A robust similarity measure for attributed scattering center sets with application to SAR ATR. Neurocomputing 2017, 219, 130–143. [Google Scholar] [CrossRef]
- Li, T.; Du, L. SAR automatic target recognition based on attribute scattering center model and discriminative dictionary learning. IEEE Sens. J. 2019, 19, 4598–4611. [Google Scholar] [CrossRef]
- Ding, B.; Wen, G.; Huang, X.; Ma, C.; Yang, X. Target recognition in synthetic aperture radar images via matching of attributed scattering centers. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2017, 10, 3334–3347. [Google Scholar] [CrossRef]
- Zhang, L.; Leng, X.; Feng, S.; Ma, X.; Ji, K.; Kuang, G.; Liu, L. Optimal azimuth angle selection for limited SAR vehicle target recognition. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103707. [Google Scholar] [CrossRef]
- Wei, Y.; Jiao, L.; Liu, F.; Yang, S.; Wu, Q.; Sanga, G. Fast DDL classification for SAR Images with L_inf constraint. IEEE Access 2019, 7, 68991–69006. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S. Joint sparse representation for multi-resolution representations of SAR images with application to target recognition. J. Electromagn. Waves Appl. 2018, 32, 1342–1353. [Google Scholar] [CrossRef]
- Liu, S.; Zhan, R.; Zhai, Q.; Wang, W.; Zhang, J. Multiview radar target recognition based on multitask compressive sensing. J. Electromagn. Waves Appl. 2015, 29, 1917–1934. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Zhang, Z.; Xiang, Y.; Li, J.; Nehorai, A. SAR automatic target recognition using joint low-rank and sparse multiview denoising. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1570–1574. [Google Scholar] [CrossRef]
- Ren, H.; Yu, X.; Zou, L.; Zhou, Y.; Wang, X. Class-oriented local structure preserving dictionary learning for SAR target recognition. Proc. IEEE Int. Geosci. Remote Sens. Symp. 2019, 1338–1341. [Google Scholar]
- Lin, H.; Wang, H.; Xu, F.; Jin, Y.Q. Target recognition for SAR images enhanced by polarimetric information. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5204516. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Lin, H.; Yang, J.; Xu, F. PolSAR Target Recognition with CNNs Optimizing Discrete Polarimetric Correlation Pattern. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5212914. [Google Scholar] [CrossRef]
- Lin, H.; Yin, J.; Yang, J.; Xu, F. Interpreting Neural Network Pattern with Pruning for PolSAR Target Recognition. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5227114. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, T.; Lei, P.; Bai, X. Ground target classification in noisy SAR images using convolutional neural networks. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2018, 11, 4180–4192. [Google Scholar] [CrossRef]
- Kwak, Y.; Song, W.J.; Kim, S.E. Speckle-noise-invariant convolutional neural network for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2019, 16, 549–553. [Google Scholar] [CrossRef]
- Zhong, C.; Mu, X.; He, X.; Wang, J.; Zhu, M. SAR target image classification based on transfer learning and model compression. IEEE Geosci. Remote Sens. Lett. 2019, 16, 412–416. [Google Scholar] [CrossRef]
- Amrani, M.; Jiang, F. Deep feature extraction and combination for synthetic aperture radar target classification. J. Appl. Remote Sens. 2017, 11, 1–13. [Google Scholar] [CrossRef]
- Pei, J.; Huang, Y.; Huo, W.; Zhang, Y.; Yang, J.; Yeo, T.S. SAR automatic target recognition based on multiview deep learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2196–2210. [Google Scholar] [CrossRef]
- Wang, C.; Pei, J.; Luo, S.; Huo, W.; Huang, Y.; Zhang, Y.; Yang, J. SAR ship target recognition via multiscale feature attention and adaptive-weighed classifier. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4003905. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, S.; Luo, R.; Feng, S.; Kuang, G. Scattering features spatial-structural association network for aircraft recognition in SAR images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4006505. [Google Scholar] [CrossRef]
- Huang, Z.; Datcu, M.; Pan, Z.; Lei, B. Deep SAR-Net: Learning objects from signals. ISPRS J. Photogramm. Remote Sens. 2020, 161, 179–193. [Google Scholar] [CrossRef]
- Dong, G.; Liu, H.; Kuang, G.; Chanussot, J. Target recognition in SAR images via sparse representation in the frequency domain. Pattern Recognit. 2019, 96, 106972. [Google Scholar] [CrossRef]
- Dong, G.; Wang, N.; Kuang, G.; Qiu, H. Sparsity and low-rank dictionary learning for sparse representation of monogenic signal. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2018, 11, 141–153. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, M.; Cao, Z.; Pi, Y. SAR image recognition with monogenic scale selection-based weighted multi-task joint sparse representation. Remote Sens. 2018, 10, 504. [Google Scholar] [CrossRef]
- Dong, G.; Kuang, G. Classification on the monogenic scale space: Application to target recognition in SAR image. IEEE Trans. Image Process. 2015, 24, 2527–2539. [Google Scholar] [CrossRef]
- Ding, B.; Wen, G.; Huang, X.; Ma, C.; Yang, X. Data augmentation by multilevel reconstruction using attributed scattering center for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 979–983. [Google Scholar] [CrossRef]
- Kechagias-Stamatis, O.; Aouf, N. Automatic Target Recognition on Synthetic Aperture Radar Imagery: A Survey. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 56–81. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, W.; Zhou, K.; Song, X.; Shen, Y.; Liu, S. Weighted pseudo-labels and bounding boxes for semisupervised SAR target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5193–5203. [Google Scholar] [CrossRef]
- Deng, J.; Wang, W.; Zhang, H.; Zhang, T.; Zhang, J. PolSAR Ship Detection Based on Superpixel-Level Contrast Enhancement. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4008805. [Google Scholar] [CrossRef]
- Wang, J.; Quan, S.; Xing, S.; Li, Y.; Wu, H.; Meng, W. PSO-based fine polarimetric decomposition for ship scattering characterization. ISPRS J. Photogramm. Remote Sens. 2025, 220, 18–31. [Google Scholar] [CrossRef]
- Belloni, C.; Aouf, N.; Le Caillec, J.M.; Merlet, T. Comparison of descriptors for SAR ATR. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Amrani, M.; Jiang, F.; Xu, Y.; Liu, S.; Zhang, L. SAR oriented visual saliency model and directed acyclic graph support vector metric based target classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2018, 11, 3794–3810. [Google Scholar] [CrossRef]
- Bolourchi, P.; Moradi, M.; Demirel, H.; Uysal, S. Improved SAR target recognition by selecting moment methods based on Fisher score. Signal Image Video Process. 2020, 14, 39–47. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, J.; Li, G. SAR target classification using Bayesian compressive sensing with scattering centers features. PIER 2013, 136, 385–407. [Google Scholar] [CrossRef]
- Dang, S.; Cui, Z.; Cao, Z.; Liu, N. SAR Target Recognition via Incremental Nonnegative Matrix Factorization. Remote Sens. 2018, 10, 374. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Li, D.; Tan, Z.; Liu, S. Fusion of multifeature low-rank representation for synthetic aperture radar target configuration recognition. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1402–1406. [Google Scholar] [CrossRef]
- Zheng, H.; Hu, Z.; Yang, L.; Xu, A.; Zheng, M.; Zhang, C.; Li, K. Multifeature collaborative fusion network with deep supervision for SAR ship classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5212614. [Google Scholar] [CrossRef]
- Gao, F.; Huang, T.; Sun, J.; Wang, J.; Hussain, A.; Yang, E. A new algorithm for SAR image target recognition based on an improved deep convolutional neural network. Cogn. Comput. 2019, 11, 809–824. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.; Ma, L.; Ma, F. Long-tailed SAR target recognition based on expert network and intraclass resampling. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4010405. [Google Scholar] [CrossRef]
- Yue, Z.; Gao, F.; Xiong, Q.; Wang, J.; Huang, T.; Yang, E.; Zhou, H. A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cogn. Comput. 2021, 13, 795–806. [Google Scholar] [CrossRef]
- Cui, Z.; Mou, L.; Zhou, Z.; Tang, K.; Yang, Z.; Cao, Z.; Yang, J. Feature Joint Learning for SAR Target Recognition. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5216420. [Google Scholar] [CrossRef]
- Gao, G.; Dai, Y.; Zhang, X.; Duan, D.; Guo, F. ADCG: A cross-modality domain transfer learning method for synthetic aperture radar in ship automatic target recognition. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5109114. [Google Scholar] [CrossRef]
- Wan, H.; Chen, J.; Huang, Z.; Xia, R.; Wu, B.; Sun, L.; Yao, B.; Liu, X.; Xing, M. AFSar: An anchor-free SAR target detection algorithm based on multiscale enhancement representation learning. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5219514. [Google Scholar] [CrossRef]
- Shao, J.; Qu, C.; Li, J.; Peng, S. A lightweight convolutional neural network based on visual attention for SAR image target classification. Sensors 2018, 18, 3039. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.; Fu, X.; Feng, C.; Dong, J.; Qin, R.; Martorella, M. LW-CMDANet: A novel attention network for SAR automatic target recognition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6615–6630. [Google Scholar] [CrossRef]
- Hwang, W.; Wang, H.; Kim, H.; Kee, S.C.; Kim, J. Face recognition system using multiple face model of hybrid Fourier feature under uncontrolled illumination variation. IEEE Trans. Image Process. 2010, 20, 1152–1165. [Google Scholar] [CrossRef]
- Spigai, M.; Tison, C.; Souyris, J.C. Time-frequency analysis in high-resolution SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2699–2711. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Huang, L.; Liu, B.; Li, B.; Guo, W.; Yu, W.; Zhang, Z.; Yu, W. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 195–208. [Google Scholar] [CrossRef]
- Hou, X.; Ao, W.; Song, Q.; Lai, J.; Wang, H.; Xu, F. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. Sci. China Inf. Sci. 2020, 63, 140303. [Google Scholar] [CrossRef]
- Zhirui, W.; Yuzhuo, K.; Xuan, Z.; Yuelei, W.; Ting, Z.; Xian, S. SAR-AIRcraft-1.0: High-resolution SAR aircraft detection and recognition dataset. J. Radars 2023, 12, 906–922. [Google Scholar]
- Kang, Y.; Wang, Z.; Zuo, H.; Zhang, Y.; Yang, Z.; Sun, X.; Fu, K. ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5202117. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Batchsize | 4 |
Base_lr | 1 × 10−4 |
Weight decay | 5 × 10−4 |
Epochs | 100 |
Optimizer | SGD |
Loss function | AMMLoss |
Training Samples | DSN [24] | CV-CNN [13] | ST-Net [55] | MFJL [44] | Proposed |
---|---|---|---|---|---|
76.60 | 75.82 | 76.30 | 78.02 | 78.65 | |
76.00 | 75.54 | 73.18 | 75.30 | 77.50 | |
72.40 | 68.41 | 71.28 | 71.55 | 75.20 | |
64.80 | 63.30 | 67.55 | 65.97 | 68.90 |
Method | Sentinel-1 Dataset | Open-SARShip Dataset | ||||||
---|---|---|---|---|---|---|---|---|
Recall (%) |
Precision (%) |
F1 (%) |
Accuracy (%) |
Recall (%) |
Precision (%) |
F1 (%) |
Accuracy (%) | |
DSN [24] | 92.13 | 92.06 | 92.04 | 92.21 | 73.86 | 71.52 | 72.77 | 76.60 |
CV-CNN [13] | 84.09 | 85.01 | 84.56 | 84.21 | 74.72 | 69.70 | 72.14 | 75.82 |
ST-Net [25] | 90.11 | 89.54 | 89.80 | 89.95 | 76.89 | 72.38 | 74.61 | 76.30 |
MFJL [44] | 91.89 | 93.96 | 92.90 | 92.94 | 77.86 | 73.42 | 75.58 | 78.02 |
Proposed | 92.66 | 94.67 | 93.63 | 93.58 | 78.53 | 76.46 | 77.51 | 78.65 |
Method | FUSAR-Ship dataset | SAR-AIRcraft-1.0 dataset | ||||||
Recall (%) |
Precision (%) |
F1 (%) |
Accuracy (%) |
Recall (%) |
Precision (%) |
F1 (%) |
Accuracy (%) | |
DSN [24] | 83.19 | 83.34 | 83.31 | 83.21 | 95.94 | 97.88 | 96.89 | 97.09 |
CV-CNN [13] | 80.59 | 80.83 | 80.83 | 80.57 | 91.97 | 92.24 | 92.20 | 93.42 |
ST-Net [25] | 82.43 | 82.29 | 82.51 | 82.46 | 93.35 | 96.20 | 94.84 | 96.47 |
MFJL [44] | 88.54 | 87.86 | 88.23 | 87.59 | 99.61 | 99.57 | 99.60 | 99.51 |
Proposed | 89.67 | 89.89 | 89.84 | 90.03 | 99.57 | 99.71 | 99.75 | 99.65 |
Samples | Method | AAMLoss | Cargo | Tanker | Other Type | Average |
---|---|---|---|---|---|---|
100% | MRF | × | 77.80 | 77.00 | 75.20 | 76.67 |
Ours | ✓ | 81.00 | 78.50 | 76.30 | 78.33 | |
70% | MRF | × | 78.93 | 77.50 | 76.50 | 77.69 |
Ours | ✓ | 79.15 | 76.21 | 76.20 | 77.30 | |
50% | MRF | × | 76.40 | 73.71 | 72.83 | 74.39 |
Ours | ✓ | 75.71 | 74.78 | 73.89 | 74.90 | |
30% | MRF | × | 69.18 | 66.42 | 65.74 | 67.07 |
Ours | ✓ | 68.33 | 67.61 | 66.56 | 67.46 |
Samples | Method | AAMLoss | Cargo | Tanker | Other Type | Average |
---|---|---|---|---|---|---|
100% | Gate Fusion | × | 80.20 | 77.50 | 75.50 | 77.73 |
Ours | ✓ | 77.30 | 76.40 | 76.80 | 76.73 | |
70% | Gate Fusion | × | 76.82 | 75.31 | 73.07 | 75.21 |
Ours | ✓ | 77.33 | 74.87 | 75.51 | 76.03 | |
50% | Gate Fusion | × | 75.81 | 74.10 | 73.28 | 74.40 |
Ours | ✓ | 76.01 | 74.10 | 73.22 | 74.53 | |
30% | Gate Fusion | × | 63.31 | 62.22 | 61.18 | 62.13 |
Ours | ✓ | 66.40 | 66.91 | 64.05 | 65.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Xie, Z.; Zeng, L.; Yin, J. Multi-Scale Time-Frequency Representation Fusion Network for Target Recognition in SAR Imagery. Remote Sens. 2025, 17, 2786. https://doi.org/10.3390/rs17162786
Lin H, Xie Z, Zeng L, Yin J. Multi-Scale Time-Frequency Representation Fusion Network for Target Recognition in SAR Imagery. Remote Sensing. 2025; 17(16):2786. https://doi.org/10.3390/rs17162786
Chicago/Turabian StyleLin, Huiping, Zixuan Xie, Liang Zeng, and Junjun Yin. 2025. "Multi-Scale Time-Frequency Representation Fusion Network for Target Recognition in SAR Imagery" Remote Sensing 17, no. 16: 2786. https://doi.org/10.3390/rs17162786
APA StyleLin, H., Xie, Z., Zeng, L., & Yin, J. (2025). Multi-Scale Time-Frequency Representation Fusion Network for Target Recognition in SAR Imagery. Remote Sensing, 17(16), 2786. https://doi.org/10.3390/rs17162786