WTC-MobResNet: A Deep Learning Approach for Detecting Wind Turbine Clutter in Weather Radar Data
Abstract
1. Introduction
2. Data and Preprocessing
2.1. Weather Radar Data
2.2. Data Preprocessing
3. The Design of WTC-MobResNet
3.1. Overall Framework
3.2. Loss Function
4. Results
4.1. Model Evaluation
4.2. Case Test
4.2.1. Nantong Radar Case
4.2.2. Changsha Radar Case
5. Conclusions
- Innovatively Incorporate Deep Learning Technology into WTC Detection: In order to solve the problem of WTC detection using weather radar, deep learning detection technology was introduced on the basis of the traditional existing detection methods. The experimental results demonstrate that the proposed model achieves an accuracy of 98.21% on the test set, with a precision of 97.52% and a false alarm rate of 1.72%. The detection speed reaches the level of seconds, enabling near real-time detection.
- This study makes full use of multi-channel data from dual-polarization weather radar, including reflectivity, radial velocity, spectrum width, differential reflectivity, differential phase shift, and correlation coefficients. The experimental results demonstrate that dual-polarization parameters, such as differential reflectivity and the correlation coefficient, exhibit significant discriminative capabilities in WTC detection. This finding further confirms their effectiveness under complex meteorological conditions.
- Case test results indicate that when the WPs encounters large-scale rainfall, the WTC will be almost completely covered by the weather process so that the radar echo data in the covered area are not contaminated by WTC, but the model misdetects. However, we cleverly optimized the model through the correlation coefficient parameter. When conducting individual case tests, we set the samples with a data block mean value of >0.95 in the correlation coefficient channel so that they would not be detected by the model (correlation coefficient of the meteorological echo is >0.95), thereby achieving a more accurate detection effect.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WPs | Wind Parks; |
WTC | Wind Turbine Clutter; |
RCS | Radar Cross-Section; |
CNN | Convolutional Neural Network; |
FIS | Fuzzy Inference System; |
VCP | Volume Coverage Pattern; |
BCE | Binary Cross-Entropy; |
QPE | Quantitative Estimation of Precipitation; |
MSE | Mean Squared Error. |
Appendix A
Appendix A.1. Model Structure
Stage | Layer/Block Type | Configuration | Output Shape | Notes |
---|---|---|---|---|
Input | Radar Data Input | 6 channels, 8 × 8 | (120,660, 6, 8, 8) | Six radar features (Z, V, W, , , ) |
Stage 1: Feature Extraction | Conv2D + BN + ReLU + Pooling | Conv: 3 × 3, stride = 1; Pool: 2 × 2, stride = 2 | (120,660, 32, 4, 4) | First conv adapted to 6-channel input |
MobileNet Block × 15 | Depthwise Conv: 3 × 3 + Pointwise Conv: 1 × 1, BN, ReLU | (120,660, 64, 4, 4) | Depthwise-separable conv preserves spatial shape | |
Flatten | – | (120,660, 1024) | 64 × 4 × 4 = 1024 | |
Stage 2: Feature Enhancement | Fully Connected Layer | Linear layer, output units: 128 | (120,660, 128) | Feature compression before ResNet |
ResNet Block × 4 | Conv1 (128, 3 × 3) + Conv2 (128, 3 × 3) + skip + ReLU | (120,660, 128) | Maintains shape via skip connection | |
Stage 3: Classification | Fully Connected Output Layer | Linear layer, output units: 1 | (120,660, 1) | Binary classification output |
Sigmoid Activation | (120,660, 1) | Converts output to probability | ||
Output | Threshold-Based Classification | Threshold = 0.5 | (120,660, 1) → (120,660,) | Class = 1 (WTC) or Class = 0 (non-WTC echo) |
Appendix B
Appendix B.1. MobileNet Introduce
Appendix B.2. ResNet Introduction
References
- Kostis, T.G.; Goudosis, A.K.; Dagkinis, I.; Volos, C.K.; Nikitakos, N.V. Wind Turbines & Weather Radar: A Review of the Problem. In Proceedings of the 2nd International Conference on Applied and Computational Mathematics (ICACM ’13), Athens, Greece, 14–16 May 2013; Volume 13, pp. 53–59. [Google Scholar]
- Germann, U.; Boscacci, M.; Clementi, L.; Gabella, M.; Hering, A.; Sartori, M.; Sideris, I.V.; Calpini, B. Weather radar in complex orography. Remote Sens. 2022, 14, 503. [Google Scholar] [CrossRef]
- Krich, S.I.; Montanari, M.; Amendolare, V.; Berestesky, P. Wind turbine interference mitigation using a waveform diversity radar. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 805–815. [Google Scholar] [CrossRef]
- Ren, Z.; Zeng, Q.; He, J.; Wang, H.; Li, L. A Novel Algorithm for Identifying Radar Clutter Caused by Wind Farm Interference. In Proceedings of the 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 22–24 November 2024; Volume 69, pp. 1–5. [Google Scholar]
- Global Wind Energy Council. Global Wind Report. 2024. Available online: https://www.gwec.net/reports (accessed on 9 June 2024).
- Lepetit, T.; Simon, J.; Petex, J.F.; Cheraly, A.; Marcellin, J.P. Radar cross-section of a wind turbine: Application to weather radars. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; Volume 14, pp. 1–3. [Google Scholar]
- Mazel, D.; Egan, M. Wind turbine radar interference mitigation: Factors to evaluate future radar-based solutions. In Proceedings of the 2024 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 23–25 April 2024; Volume 19, pp. 1–9. [Google Scholar]
- Xing, B.; Mu, J. A method for wind turbine clutter recognition and mitigation. In Proceedings of the IET International Radar Conference (IET IRC 2020), Online, 4–6 November 2020; Volume 9, pp. 975–979. [Google Scholar]
- Hood, K.; Torres, S.; Palmer, R. Automatic detection of wind turbine clutter for weather radars. J. Atmos. Ocean. Technol. 2010, 27, 1868–1880. [Google Scholar] [CrossRef]
- Gallardo-Hernando, B.; Pérez-Martínez, F.; Aguado-Encabo, F. Detection and mitigation of wind turbine clutter in C-band meteorological radar. IET Radar Sonar Navig. 2010, 4, 520–527. [Google Scholar] [CrossRef]
- Cheong, B.L.; Palmer, R.; Torres, S. Automatic wind turbine identification using level-II data. In Proceedings of the 2011 IEEE RadarCon (RADAR), Kansas City, MO, USA, 23–27 May 2011; Volume 15, pp. 271–275. [Google Scholar]
- He, W.; Guo, S.; Wang, X.; Wu, R. Weather Radar Wind Farms Clutters Detection and Identification Method Based on Level-II Data and Fuzzy Logic Inference. J. Electron. Inf. Technol. 2016, 38, 3252–3260. [Google Scholar]
- Su, T.; Guo, J. Identification and Removal of Wind Turbine Clutter in the New Generation Weather Radar. J. Ocean. Meteorol. Res. 2023, 43, 45–58. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Saltikoff, E.; Friedrich, K.; Soderholm, J.; Lengfeld, K.; Nelson, B.; Becker, A.; Hollmann, R.; Urban, B.; Heistermann, M.; Tassone, C. An overview of using weather radar for climatological studies: Successes, challenges, and potential. Bull. Am. Meteorol. Soc. 2019, 100, 1739–1752. [Google Scholar] [CrossRef]
- Chua, L.O.; Yang, L. Cellular neural networks: Theory. IEEE Trans. Circuits Syst. 2002, 35, 1257–1272. [Google Scholar] [CrossRef]
- Kumar, B.; Haral, H.; Kalapureddy, M.; Singh, B.B.; Yadav, S.; Chattopadhyay, R.; Pattanaik, D.; Rao, S.A.; Mohapatra, M. Utilizing deep learning for near real-time rainfall forecasting based on radar data. Phys. Chem. Earth Parts A/B/C 2024, 135, 103600. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Guo, J.; Tu, Z.; Han, K.; Hu, H.; Tao, D. A survey on transformer compression. arXiv 2024, arXiv:2402.05964. [Google Scholar]
- Tang, Y.; Wang, Y.; Guo, J.; Tu, Z.; Han, K.; Hu, H.; Tao, D. Self-attention with relative position representations. arXiv 2018, arXiv:1803.02155. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Xu, Z.; Zhang, H.; Wang, Y.; Wang, X.; Xue, S.; Liu, W. Dynamic detection of offshore wind turbines by spatial machine learning from spaceborne synthetic aperture radar imagery. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1674–1686. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Liang, H.; Li, R.; Dai, Y.; Liu, J.; Li, F.; Liu, X. Assumption and Discussion of Volume Scanning Strategy of New Generation Weather Radar in China I. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021; pp. 1153–1158. [Google Scholar]
- National Research Council; Division on Earth and Life Studies; Board on Atmospheric Sciences and Climate; Committee on the Assessment of the National Weather Service’s Modernization Program. The National Weather Service Modernization and Associated Restructuring: A Retrospective Assessment; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Su, T.; Ge, J.; Zhang, H. Review of the Development of Dual-Polarization Weather Radar Systems in China. J. Ocean. Meteorol. Res. 2018, 38, 31–33. [Google Scholar]
- Yu, J.; Cui, Z.; Li, Z.; Liao, X.; Du, Y. Research on image classification algorithms based on deep learning. In Proceedings of the 12th International Scientific and Practical Conference “Modern Thoughts on the Development of Science: Ideas, Technologies and Theories”, Amsterdam, The Netherlands, 26–29 March 2024; International Science Group: New York, NY, USA, 2024. 336p. [Google Scholar]
- Hasanin, T.; Khoshgoftaar, T. The effects of random undersampling with simulated class imbalance for big data. In Proceedings of the 2018 IEEE international conference on information reuse and integration (IRI), Salt Lake City, UT, USA, 6–9 July 2018; pp. 70–79. [Google Scholar]
- Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Xia, S.T.; Bailey, J.; Ma, X. Skip connections matter: On the transferability of adversarial examples generated with resnets. arXiv 2020, arXiv:2002.05990. [Google Scholar]
- Li, Q.; Jia, X.; Zhou, J.; Shen, L.; Duan, J. Rediscovering bce loss for uniform classification. arXiv 2024, arXiv:2403.07289. [Google Scholar]
- Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1. [Google Scholar]
- Hall, W.; Rico-Ramirez, M.A.; Krämer, S. Offshore wind turbine clutter characteristics and identification in operational C-band weather radar measurements. Q. J. R. Meteorol. Soc. 2017, 143, 720–730. [Google Scholar] [CrossRef]
Date | Time (UTC + 8) | Radar Station | Station City | Weather Conditions |
---|---|---|---|---|
20230415 | 17:21 | Z9513 | Nantong City | Clear sky |
20230415 | 17:39 | Z9513 | Nantong City | Clear sky |
20230415 | 18:15 | Z9513 | Nantong City | Clear sky |
20230415 | 18:33 | Z9513 | Nantong City | Light rain |
20230415 | 18:50 | Z9513 | Nantong City | Light rain |
20230415 | 20:27 | Z9513 | Nantong City | Moderate rain |
20230415 | 21:33 | Z9513 | Nantong City | Heavy rain |
20230610 | 08:22 | Z9513 | Nantong City | Clear sky |
20230610 | 21:10 | Z9513 | Nantong City | Moderate rain |
20230716 | 18:50 | Z9513 | Nantong City | Moderate rain |
20230716 | 21:00 | Z9513 | Nantong City | Moderate rain |
20230716 | 23:05 | Z9513 | Nantong City | Light rain |
Date | Time (UTC + 8) | Positive Samples | Negative Samples | Total |
---|---|---|---|---|
20230415 | 17:21 | 4897 | 4897 | 9794 |
20230415 | 17:39 | 4956 | 4956 | 9912 |
20230415 | 18:15 | 4730 | 4730 | 9460 |
20230415 | 18:33 | 5032 | 5032 | 10,064 |
20230415 | 18:50 | 4946 | 4946 | 9892 |
20230415 | 20:27 | 5213 | 5213 | 10,426 |
20230415 | 21:33 | 5062 | 5062 | 10,124 |
20230610 | 08:22 | 5189 | 5189 | 10,378 |
20230610 | 21:10 | 5048 | 5048 | 10,096 |
20230716 | 18:50 | 4876 | 4876 | 9752 |
20230716 | 21:00 | 5134 | 5134 | 10,268 |
20230716 | 23:05 | 5247 | 5247 | 10,494 |
Predicted Class | True Class | |
---|---|---|
1 (Yes WTC) | 0 (No WTC) | |
1 (Yes WTC) | TP (True Positives) | FP (False Positives) |
0 (No WTC) | FN (False Negatives) | TN (True Negatives) |
Model | Training Loss ↓ | Validation Loss ↓ | Training Accuracy ↑ | Validation Accuracy ↑ |
---|---|---|---|---|
WTC-MobResNet | 0.0342 | 0.0346 | 0.9812 | 0.9800 |
ResNet | 0.0462 | 0.1306 | 0.9756 | 0.9482 |
ShuffleNet | 0.0658 | 0.1002 | 0.9674 | 0.9591 |
Model | ACC ↑ | PRE ↑ | POD ↑ | F1-Score ↑ | CSI ↑ | FAR ↓ |
---|---|---|---|---|---|---|
WTC-MobResNet | 0.9821 | 0.9752 | 0.9899 | 0.9825 | 0.9656 | 0.0172 |
ResNet | 0.9545 | 0.9425 | 0.9692 | 0.9557 | 0.9151 | 0.0574 |
ShuffleNet | 0.9606 | 0.9547 | 0.9792 | 0.9668 | 0.9358 | 0.0452 |
Radar Case | Weather Condition | ACC | PRE | POD | F1 Score | CSI | FAR |
---|---|---|---|---|---|---|---|
2023.6.10 12:59 | Clear Sky | 0.9842 | 0.9731 | 0.9874 | 0.9857 | 0.9593 | 0.0187 |
2021.10.19 8:05 | Light Rain | 0.9798 | 0.9683 | 0.9837 | 0.9809 | 0.9579 | 0.0241 |
2023.4.15 22:21 | Moderate Rain | 0.9493 | 0.9391 | 0.9583 | 0.9523 | 0.9178 | 0.0543 |
2023.4.15 23:39 | Heavy Rain | 0.9568 | 0.9454 | 0.9626 | 0.9583 | 0.9257 | 0.0478 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zeng, Q.; Liu, Y.; Zhang, F.; Wang, H.; Ren, Z. WTC-MobResNet: A Deep Learning Approach for Detecting Wind Turbine Clutter in Weather Radar Data. Remote Sens. 2025, 17, 2763. https://doi.org/10.3390/rs17162763
Gao Y, Zeng Q, Liu Y, Zhang F, Wang H, Ren Z. WTC-MobResNet: A Deep Learning Approach for Detecting Wind Turbine Clutter in Weather Radar Data. Remote Sensing. 2025; 17(16):2763. https://doi.org/10.3390/rs17162763
Chicago/Turabian StyleGao, Yao, Qiangyu Zeng, Yin Liu, Fugui Zhang, Hao Wang, and Zhicheng Ren. 2025. "WTC-MobResNet: A Deep Learning Approach for Detecting Wind Turbine Clutter in Weather Radar Data" Remote Sensing 17, no. 16: 2763. https://doi.org/10.3390/rs17162763
APA StyleGao, Y., Zeng, Q., Liu, Y., Zhang, F., Wang, H., & Ren, Z. (2025). WTC-MobResNet: A Deep Learning Approach for Detecting Wind Turbine Clutter in Weather Radar Data. Remote Sensing, 17(16), 2763. https://doi.org/10.3390/rs17162763