Spatiotemporal Mapping and Driving Mechanism of Crop Planting Patterns on the Jianghan Plain Based on Multisource Remote Sensing Fusion and Sample Migration
Abstract
1. Introduction
2. Research Area and Data Source
2.1. Research Area
2.2. Data Sources
3. Materials and Methods
3.1. Planting Pattern and Phenology
3.2. Image Selection and Processing
3.2.1. Image Selection
3.2.2. Image Fusion
3.2.3. Monthly Synthesized Images
3.2.4. Sample Selection and Migration
3.2.5. Classification of Crop Planting Patterns
3.3. Analysis of Phenological Characteristics
3.4. MGWR Model
3.5. Driving Mechanisms of Crop Planting Patterns
- (1)
- Natural driving factors. Geomorphology, hydrology, climate, soil, and other natural geographic elements combine spatiotemporally to form cultivated land. Variations in these natural geographic environments result in distinct patterns of cultivated land landscapes and utilization techniques [57]. Therefore, natural driving factors, including annual average precipitation, annual average temperature, and elevation, were selected as the variables.
- (2)
- Location driving factors. Indicators such as the distance from main roads, the distance from main railways and other indicators were selected to characterize traffic accessibility and convenience [58], and indicators such as the distance from the center of the county and distance from the town were selected to characterize location conditions to reflect the interference intensity of human activities [59].
- (3)
- Economic driving factors. Economic factors play a significant role in determining crop planting patterns [60]. Therefore, indicators such as the total output value of agriculture, forestry, animal husbandry, and fishing, the total income of the labor economy, the per capita disposable income in rural areas, and the number of outgoing employees were selected to reflect the socioeconomic level and agricultural industrial structure adjustments.
- (4)
- Agricultural production factors. Agricultural production factors are crucial drivers of changes in cropland utilization systems and play a significant role in the intensive and efficient utilization of regional cropland resources [61]. Indicators such as the effective irrigation area, rural electricity consumption, agricultural fuel consumption, and agricultural fertilizer application were selected to characterize the level of agricultural production.
4. Results
4.1. Accuracy of Crop Planting Patterns
4.2. Spatial Distribution of Crop Planting Patterns
4.3. Frequency of Changes in Crop Planting Patterns
4.4. Crop Planting Patterns on Cultivated Land Patches
4.5. Mechanisms Driving Crop Planting Patterns
5. Discussion
5.1. Comparison of Different Classification Results
5.2. Shortcomings of This Research
5.3. Research Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hu, Q.; Wu, W.; Song, Q.; Yu, Q.; Yang, P.; Tang, H. Recent Progresses in Research of Crop Patterns Mapping by Using Remote Sensing. Sci. Agric. Sin. 2015, 48, 1900–1914. [Google Scholar]
- Tariq, A.; Yan, J.; Gagnon, A.S.; Riaz Khan, M.; Mumtaz, F. Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spat. Inf. Sci. 2023, 26, 302–320. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Palao, L.K.; Nelson, A.; Gumma, M.K.; Paliwal, A.; Win, K.T.; Nge, K.H.; Johnson, D.E. Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and MODIS vegetation indices. Comput. Electron. Agric. 2020, 175, 105595. [Google Scholar] [CrossRef]
- Liu, Y.; Diao, C.; Yang, Z. CropSow: An integrative remotely sensed crop modeling framework for field-level crop planting date estimation. ISPRS-J. Photogramm. Remote Sens. 2023, 202, 334–355. [Google Scholar] [CrossRef]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, Y.; Wang, Y.; Tian, X.; Ying, H.; Zhang, Q.; Xue, Y.; Oenema, O.; Li, S.; Zhou, F.; et al. Integrating crop redistribution and improved management towards meeting China’s food demand with lower environmental costs. Nat. Food. 2022, 3, 1031–1039. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS-J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Wang, L.; Qi, F.; Shen, X.; Huang, J. Monitoring Multiple Cropping Index of Henan Province, China Based on MODIS-EVI Time Series Data and Savitzky-Golay Filtering Algorithm. Comput. Model. Eng. Sci. 2019, 119, 331–348. [Google Scholar] [CrossRef]
- Niu, Q.; Liu, L.; Huang, G.; Cheng, Q.; Cheng, Y. Extraction of complex crop structure in the Hetao Irrigation District of Inner Mongolia using GEE and machine learning. Trans. Chin. Soc. Agric. Eng. 2022, 38, 165–174. [Google Scholar]
- Liu, Y.; Ge, Q.; Dai, J. Research progress in crop phenology under global climate change. Acta Geogr. Sin. 2020, 75, 14–24. [Google Scholar]
- Qiu, B.; Yan, C.; Huang, W. Progress and Prospect on Mapping Cropping Systems Using Time Series Images. J. Geo-Inf. Sci. 2022, 24, 176–188. [Google Scholar]
- He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining rice distribution and cropping intensity in a mixed single- and double-cropping region in South China using all available Sentinel 1/2 images. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102351. [Google Scholar] [CrossRef]
- Tan, S.; Wu, B.; Zhang, X. Mapping Paddy Rice in the Hainan Province Using both Google Earth Engine and Remote Sensing Images. J. Geo-Inf. Sci. 2019, 21, 937–947. [Google Scholar]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sens. 2020, 12, 1274. [Google Scholar] [CrossRef]
- Fan, L.; Xia, L.; Yang, J.; Sun, X.; Wu, S.; Qiu, B.; Chen, J.; Wu, W.; Yang, P. A temporal-spatial deep learning network for winter wheat mapping using time-series Sentinel-2 imagery. ISPRS-J. Photogramm. Remote Sens. 2024, 214, 48–64. [Google Scholar] [CrossRef]
- Emre, T.; Selim, K.E.; Çetin, T.S. Silage maize yield estimation by using planetscope, sentinel-2A and landsat 8 OLI satellite images. Smart Agric. Technol. 2023, 4, 100165. [Google Scholar]
- Guo, Y.; Ren, H. Remote sensing monitoring of maize and paddy rice planting area using GF-6 WFV red edge features. Comput. Electron. Agric. 2023, 207, 107714. [Google Scholar] [CrossRef]
- Zhang, Z.; Hua, L.; Wei, Q.; Li, J.; Wang, J. Recognition and Changes Analysis of Complex Planting Patterns Based Time Series Landsat and Sentinel-2 Images in Jianghan Plain, China. Agronomy 2022, 12, 1773. [Google Scholar] [CrossRef]
- Pinter, J.P.J.; Ritchie, J.C.; Hatfield, J.L.; Hart, G.F. The Agricultural Research Service’s Remote Sensing Program. Photogramm. Eng. Remote Sens. 2003, 69, 615–618. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A comparison of global agricultural monitoring systems and current gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Qiu, B.; Huang, Y.; Chen, C.; Tang, Z.; Zou, F. Mapping spatiotemporal dynamics of maize in China from 2005 to 2017 through designing leaf moisture based indicator from Normalized Multi-band Drought Index. Comput. Electron. Agric. 2018, 153, 82–93. [Google Scholar] [CrossRef]
- Dong, J.; Wu, W.; Huang, J.; Yunan, N.; He, Y.; Yan, H. State of the Art and Perspective of Agricultural Land Use Remote Sensing Information Extraction. J. Geo-Inf. Sci. 2020, 22, 772–783. [Google Scholar]
- Yu, Q.; Duan, Y.; Wu, Q.; Liu, Y.; Wen, C.; Qian, J.; Song, Q.; Li, W.; Sun, J.; Wu, W. An interactive and iterative method for crop mapping through crowdsourcing optimized field samples. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103409. [Google Scholar] [CrossRef]
- Yang, Z.; Chu, L.; Wang, C.; Pan, Y.; Su, W.; Qin, Y.; Cai, C. What drives the spatial heterogeneity of cropping patterns in the Northeast China: The natural environment, the agricultural economy, or policy? Sci. Total Environ. 2023, 905, 167810. [Google Scholar] [CrossRef]
- Du, G.; Han, L.; Yao, L.; Faye, B. Spatiotemporal Dynamics and Evolution of Grain Cropping Patterns in Northeast China: Insights from Remote Sensing and Spatial Overlay Analysis. Agriculture 2024, 14, 1443. [Google Scholar] [CrossRef]
- You, H.; Gao, H.; Su, R.; Liu, K.; Xiao, W. Monitoring the Changes of Cotton Plantation Area Based on the Multi-temporal Middle Resolution Features of Temporal Process in Jianghan Plain. J. Geo-Inf. Sci. 2016, 18, 1141–1149. [Google Scholar]
- Yang, H.; Deng, F.; Zhang, J.; Wang, X.; Ma, Q.; Xu, N. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI. Remote Sens. Nat. Resour. 2020, 32, 208–215. [Google Scholar]
- Liu, W.; Tao, J.; Xu, M.; Chen, R.; Guo, Y. A study of winter rape extraction at sub-pixel fusing multi-source data based on Artificial Neural Networks:A case study of Jianghan and Dongting Lake Plain. J. Nat. Resour. 2019, 34, 1079–1092. [Google Scholar] [CrossRef]
- Liu, M.; Liu, A.; Deng, A.; Wan, S.; Liu, Z. Changing characteristics of heat resources of rice growing seasons in Hubei Province and its impacts on rice production. J. Huazhong Agric. Univ. 2011, 30, 746–752. [Google Scholar]
- Deng, A.; Liu, M.; Wan, S.; Liu, A. Characteristics and impact of rain and floods on double-cropping rice growing seasons in hubei. Resour. Environ. Yangtze Basin 2012, 21, 173–178. [Google Scholar]
- Wang, Z.; Ke, Y.; Chen, M.; Zhou, D.; Zhu, L.; Bai, J. Mapping coastal wetlands in the Yellow River Delta, China during 2008-2019: Impacts of valid observations, harmonic regression, and critical months. Int. J. Remote Sens. 2021, 42, 7880–7906. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M.; Tenneson, K. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sens. Environ. 2019, 221, 274–285. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Xiao, G.; Huang, H.; Sun, Z.; Li, X. Improved Winter Wheat Yield Estimation by Combining Remote Sensing Data, Machine Learning, and Phenological Metrics. Remote Sens. 2024, 16, 3217. [Google Scholar] [CrossRef]
- Beisekenov, N.; Banakinaou, W.; Ajayi, A.D.; Hasegawa, H.; Tadao, A. Remote sensing-based soil organic carbon monitoring using advanced machine learning techniques under conservation agriculture systems. Smart Agric. Technol. 2025, 11, 101036. [Google Scholar] [CrossRef]
- Fu, H.; Lu, J.; Li, J.; Zou, W.; Tang, X.; Ning, X.; Sun, Y. Winter Wheat Yield Prediction Using Satellite Remote Sensing Data and Deep Learning Models. Agronomy 2025, 15, 205. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Liu, C.; Liang, L.; Li, C.; Gong, P. The migration of training samples towards dynamic global land cover mapping. ISPRS-J. Photogramm. Remote Sens. 2020, 161, 27–36. [Google Scholar] [CrossRef]
- Yan, X.; Niu, Z. Reliability Evaluation and Migration of Wetland Samples. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 8089–8099. [Google Scholar] [CrossRef]
- Huang, X.; Vrieling, A.; Dou, Y.; Belgiu, M.; Nelson, A. A robust method for mapping soybean by phenological aligning of Sentinel-2 time series. ISPRS-J. Photogramm. Remote Sens. 2024, 218, 1–18. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, J. Forest Type Classification Based on Integrated Spectral-Spatial-Temporal Features and Random Forest Algorithm—A Case Study in the Qinling Mountains. Forests 2019, 10, 559. [Google Scholar] [CrossRef]
- Qiu, B.; Li, W.; Tang, Z.; Chen, C.; Qi, W. Mapping paddy rice areas based on vegetation phenology and surface moisture conditions. Ecol. Indic. 2015, 56, 79–86. [Google Scholar] [CrossRef]
- Lin, Y.; Zheng, D.; Zhang, Y. Research on the Application of GNDVI Water Body Index Based on GF-6 Images. Geomat. Spat. Inf. Technol. 2024, 47, 189–191, 198. [Google Scholar]
- Oshan, T.; Li, Z.; Kang, W.; Wolf, L.; Fotheringham, A. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Yang, J.; An, R.; Tong, Z.; Liu, Y. Exploring the relationship between built environment and ventilation potential in Wuhan, A multi-scale geographically weighted regression analysis. J. Nanjing Norm. Univ. (Nat. Sci. Ed.) 2022, 46, 1–19. [Google Scholar]
- Chen, F.; Liu, J.; Chang, Y.; Zhang, Q.; Yu, H.; Zhang, S. Spatial Pattern Differentiation of Non-grain Cultivated Land and Its Driving Factors in China. China Land Sci. 2021, 35, 33–43. [Google Scholar]
- Cao, Y.; Li, G.; Wang, J.; Fang, X.; Sun, K. Systematic Review and Research Framework of “Non-grain” Utilization of Cultivated Land: From a Perspective of Food Security to Multi-dimensional Security. China Land Sci. 2022, 36, 29–39. [Google Scholar]
- Ding, S.; Li, M.; Wang, X.; Li, L.; Wu, R.; Huang, G. The Use of Time Series Remote Sensing Data to Analyze the Characteristics of Non-agriculture Farmland and Their Driving Factors in Fuzhou. Remote Sens. Technol. Appl. 2022, 37, 550–563. [Google Scholar]
- Li, X.; Xiao, P.; Zhou, Y.; Xu, J.; Wu, Q. The Spatiotemporal Evolution Characteristics of Cultivated Land Multifunction and Its Trade-off/Synergy Relationship in the Two Lake Plains. Int. J. Environ. Res. Public Health 2022, 19, 15040. [Google Scholar] [CrossRef]
- Li, X.; Wu, Q.; Liu, Y. Spatiotemporal Changes of Cultivated Land System Health Based on PSR-VOR Model—A Case Study of the Two Lake Plains, China. Int. J. Environ. Res. Public Health 2023, 20, 1629. [Google Scholar] [CrossRef]
- Xiao, P.; Zhou, Y.; Li, M.; Xu, J. Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model. Environ. Dev. Sustain. 2023, 25, 6419–6448. [Google Scholar] [CrossRef]
- Yang, L.; Liu, M.; Min, Q.; Tian, M.; Zhang, Y. An Analysis on Crop Choice and Its Driving Factors in Hani Rice Terraces. J. Nat. Resour. 2017, 32, 26–39. [Google Scholar]
- Cao, Q.; Wu, J.; Tong, D.; Zhang, X.; Lu, Z.; Si, M. Drivers of regional agricultural land changes based on spatial autocorrelation in the Pearl River Delta, China. Resour. Sci. 2016, 38, 714–727. [Google Scholar]
- Gao, M.; Yao, Z. Ensure the Benefits of Grain Farmers in China:Theoretical Logic, Key Issues and Mechanism Design. Manag. World 2022, 38, 86–102. [Google Scholar]
- Dan, L.; Wenming, L.; Jie, C. Grain Planting Benefits: Differentiated Characteristics and Policy Implications—Based on a Survey of 3400 Grain Farmers. J. Manag. World 2013, 7, 59–70. [Google Scholar]
- Shen, R.; Pan, B.; Peng, Q.; Dong, J.; Chen, X.; Zhang, X.; Ye, T.; Huang, J.; Yuan, W. High-resolution distribution maps of single-season rice in China from 2017 to 2022. Earth Syst. Sci. Data 2023, 15, 3203–3222. [Google Scholar] [CrossRef]
- Qian, B.; Shao, C.; Yang, F. Spatial suitability evaluation of the conversion and utilization of crop straw resources in China. Environ. Impact Assess. Rev. 2024, 105, 107438. [Google Scholar] [CrossRef]
- Qiu, B.; Yu, L.; Yang, P.; Wu, W.; Chen, J.; Zhu, X.; Duan, M. Mapping upland crop–rice cropping systems for targeted sustainable intensification in South China. Crop J. 2024, 12, 614–629. [Google Scholar] [CrossRef]
- Waldini, H.; Shidiq, I.P.A.; Rokhmatuloh, R.; Supriatna, S.; Juwaidah; Saiyut, P.; Tjale, M.M.; Rozaki, Z. Rice Crop Phenology Model to Monitor Rice Planting and Harvesting Time using Remote Sensing Approach. E3S Web Conf. 2021, 232, 3020. [Google Scholar] [CrossRef]
- Song, Q.; Hu, Q.; Lu, M.; Yu, Q.; Yang, P.; Shi, Y.; Duan, Y.; Wu, W. Prospect of crop mapping. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 57–65. [Google Scholar]
- Meng, S.; Wang, X.; Hu, X.; Luo, C.; Zhong, Y. Deep learning-based crop mapping in the cloudy season using one-shot hyperspectral satellite imagery. Comput. Electron. Agric. 2021, 186, 106188. [Google Scholar] [CrossRef]
- Nandhini, M.; Kala, K.U.; Thangadarshini, M.; Madhusudhana Verma, S. Deep Learning model of sequential image classifier for crop disease detection in plantain tree cultivation. Comput. Electron. Agric. 2022, 197, 106915. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Chen, S.; Ye, T. Mapping Crop Rotation by Using Deeply Synergistic Optical and SAR Time Series. Remote Sens. 2021, 13, 4160. [Google Scholar] [CrossRef]
- Xiao, P.; Zhao, C.; Zhou, Y.; Feng, H.; Li, X.; Jiang, J. Study on Land Consolidation Zoning in Hubei Province Based on the Coupling of Neural Network and Cluster Analysis. Land 2021, 10, 756. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, A.; Wen, G. Regional differences and spatial convergence in the ecological efficiency of cultivated land use in the main grain producing areas in the Yangtze Region. J. Nat. Resour. 2022, 37, 477–493. [Google Scholar] [CrossRef]
- Yang, N.; Liu, D.; Feng, Q.; Xiong, Q.; Zhang, L.; Ren, T.; Zhao, Y.; Zhu, D.; Huang, J. Large-Scale Crop Mapping Based on Machine Learning and Parallel Computation with Grids. Remote Sens. 2019, 11, 1500. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Fisette, T.; Rollin, P.; Aly, Z.; Campbell, L.; Daneshfar, B.; Filyer, P.; Smith, A.; Davidson, A.; Shang, J.; Jarvis, I. AAFC annual crop inventory. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 270–274. [Google Scholar]
- Qiu, B.; Lu, D.; Tang, Z.; Chen, C.; Zou, F. Automatic and adaptive paddy rice mapping using Landsat images: Case study in Songnen Plain in Northeast China. Sci. Total Environ. 2017, 598, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Xiao, H.; Su, F.; Zhou, C.; Dong, J.; Zeng, Y.; Yan, K.; Li, S.; Wu, J.; Wu, W.; et al. Remote sensing cloud computing platform development and Earth science application. J. Remote Sens. 2021, 25, 220–230. [Google Scholar] [CrossRef]
- Liang, J.; Zheng, Z.; Xia, S.; Zhang, X.; Tang, Y. Crop recognition and evaluationusing red edge features of GF-6 satellite. J. Remote Sens. 2020, 24, 1168–1179. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Zhang, L. Spatial domain bridge transfer: An automated paddy rice mapping method with no training data required and decreased image inputs for the large cloudy area. Comput. Electron. Agric. 2021, 181, 105978. [Google Scholar] [CrossRef]
- Eitzinger, A.; Cock, J.; Atzmanstorfer, K.; Binder, C.R.; Läderach, P.; Bonilla-Findji, O.; Bartling, M.; Mwongera, C.; Zurita, L.; Jarvis, A. GeoFarmer: A monitoring and feedback system for agricultural development projects. Comput. Electron. Agric. 2019, 158, 109–121. [Google Scholar] [CrossRef]
Data Type | Data Product | Source | Time |
---|---|---|---|
Cultivated land patch | Hubei Province Cultivated Land Quality Level Survey and Evaluation Project | Department of Agriculture and Rural Development of Hubei Province | 2017 |
Remote sensing data | Landsat 8, Sentinel 2, DEM | Google Earth Engine | 2017–2021 |
Socioeconomic data | The Hubei Province Yearbook, the Hubei Province Rural Statistical Yearbook, and the Hubei Province Statistical Yearbook of Prefecture-level Cities | Hubei Provincial Bureau of Statistics, National Library of China, Hubei Provincial Library, CNKI, and statistical bureaus of various cities and prefectures in Hubei Province | 2017–2021 |
Water, roads, cities, and towns | National Basic Geographic Database | National Geomatics Center of China | — |
Drone photos | Drone (DJI Air 2S, Shenzhen, China) | Field verification (UAV Photo) | 2023 |
Factor | Indicator | Unit | Data Type | Spatialization Method |
---|---|---|---|---|
Natural driving factors | Annual average temperature (AAT) | °C | Point | Zonal statistic |
Annual average precipitation (AAP) | mm | Point | Zonal statistic | |
Elevation (ELE) | meter | Raster | Zonal statistic | |
Location driving factors | Distance from the town center (DTC) | m | Point | Euclidean distance |
Distance from the center of the county (DCC) | m | Point | Euclidean distance | |
Distance from major highways (DMH) | m | Line | Euclidean distance | |
Distance from major railways (DMR) | m | Line | Euclidean distance | |
Economic driving factors | Per capita disposable income in rural areas (DIRA) | CNY | Polygon | Overlay analysis |
Total output value of agriculture, forestry, animal husbandry, and fishing (TOVA) | CNY 104 | Polygon | Overlay analysis | |
Total income from the labor economy (TIFLE) | CNY 104 | Polygon | Overlay analysis | |
Outgoing employees (OEs) | 104 people | Polygon | Overlay analysis | |
Driving factors of agricultural production | Fuel consumption in agricultural production (FCAP) | Ton | Polygon | Overlay analysis |
Rural power consumption (RPC) | 104 kilowatt hours | Polygon | Overlay analysis | |
Application amount of agricultural fertilizers (AAAF) | Ton | Polygon | Overlay analysis | |
Effective irrigation area (EIA) | 104 acres | Polygon | Overlay analysis |
Year | OA | Kappa | UA | PA |
---|---|---|---|---|
2017–2018 | 86.82% | 0.8316 | 86.09% | 80.76% |
2018–2019 | 85.83% | 0.8105 | 86.73% | 78.13% |
2019–2020 | 91.18% | 0.8796 | 87.65% | 85.10% |
2020–2021 | 89.37% | 0.8732 | 88.82% | 86.75% |
Total | 88.30% | 0.8487 | 87.32% | 82.68% |
Indicator | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 |
---|---|---|---|---|
Total output value of agriculture, forestry, animal husbandry, and fishing (TOVA) | 0.0641 *** | 0.0307 *** | 0.0494 *** | 0.0552 *** |
Fuel consumption in agricultural production (FCAP) | 1.2403 *** | 1.1563 *** | 0.5098 *** | 0.4429 *** |
Elevation (ELE) | 0.3456 *** | 0.1141 *** | −0.3827 *** | −0.2511 *** |
Distance from the town center (DTC) | −0.0023 *** | −0.005318 *** | 0.014029 *** | 0.0031 *** |
Distance from the center of the county (DCC) | 0.1611 *** | 0.296687 *** | 0.151911 *** | 0.1178 *** |
Distance from the major highways (DMH) | −0.0221 *** | 0.0014 *** | −0.0058 *** | −0.0243 *** |
Annual average precipitation (AAP) | −0.4538 *** | −1.0414 *** | −0.2705 *** | −0.7062 *** |
R2 | 0.8533 | 0.9045 | 0.855 | 0.8748 |
Adj R2 | 0.8381 | 0.8819 | 0.8398 | 0.8615 |
AICe | 9734.5076 | 8317.0903 | 9661.3839 | 8410.7614 |
Sigma-Squared | 0.1619 | 0.1181 | 0.1602 | 0.1385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Zhou, Y.; Qian, J.; Liu, Y.; Li, X. Spatiotemporal Mapping and Driving Mechanism of Crop Planting Patterns on the Jianghan Plain Based on Multisource Remote Sensing Fusion and Sample Migration. Remote Sens. 2025, 17, 2417. https://doi.org/10.3390/rs17142417
Xiao P, Zhou Y, Qian J, Liu Y, Li X. Spatiotemporal Mapping and Driving Mechanism of Crop Planting Patterns on the Jianghan Plain Based on Multisource Remote Sensing Fusion and Sample Migration. Remote Sensing. 2025; 17(14):2417. https://doi.org/10.3390/rs17142417
Chicago/Turabian StyleXiao, Pengnan, Yong Zhou, Jianping Qian, Yujie Liu, and Xigui Li. 2025. "Spatiotemporal Mapping and Driving Mechanism of Crop Planting Patterns on the Jianghan Plain Based on Multisource Remote Sensing Fusion and Sample Migration" Remote Sensing 17, no. 14: 2417. https://doi.org/10.3390/rs17142417
APA StyleXiao, P., Zhou, Y., Qian, J., Liu, Y., & Li, X. (2025). Spatiotemporal Mapping and Driving Mechanism of Crop Planting Patterns on the Jianghan Plain Based on Multisource Remote Sensing Fusion and Sample Migration. Remote Sensing, 17(14), 2417. https://doi.org/10.3390/rs17142417