Radiative Transfer Model-Integrated Approach for Hyperspectral Simulation of Mixed Soil-Vegetation Scenarios and Soil Organic Carbon Estimation
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Marmit–Leaf–Canopy Model Structure
2.1.1. MARMIT Model
2.1.2. PROSPECT4 Model
2.1.3. 4SAIL2 Model
Variable | Unit | PV | NPV | Source of Information |
---|---|---|---|---|
Soil Variables (MARMIT) | ||||
Reflectance bare soil () | Unitless | LUCAS data | Jones et al. [47] | |
Refractive index of water () | Unitless | - | Bablet et al. [39] | |
Specific absorption coefficient of water (K) | cm−1 | - | Bablet et al. [39] | |
Steepness of curve () | Unitless | - | Bablet et al. [39] | |
Wet soil surface ratio () | Unitless | - | MARMIT model | |
Thickness of water layer (L) | cm | - | MARMIT model | |
Soil moisture content () | Unitless | 0.015, 0.035, 0.07 | Prior knowledge | |
Leaf Variables (PROSPECT-4) | ||||
Internal leaf structure (N) | Unitless | 1.5 | Kooistra and Clevers [48] | |
Leaf chlorophyll content (LCC) | μg cm−2 | 80 | 0 | Prior knowledge |
Water content () | cm | 0.0317 | 0.001 | Kooistra and Clevers [48] |
Dry matter content () | g cm−2 | 0.005 | 0.02 | Botha et al. [49] |
Senescent material () | Unitless | 0 | 1 | Wang et al. [50] |
Canopy Variables (4SAIL2) | ||||
Leaf area index (LAI) | m2 m−2 | 0.05 to 1 | Prior knowledge | |
Leaf inclination distribution (LIDFa/b) | Unitless | 1 (a), 0 (b) | Wang et al. [50] | |
Hotspot coefficient (hot) | m m−1 | 0.05 | Casa and Jones [51] | |
Vertical crown cover () | Unitless | 1 | Prior knowledge | |
Tree shape factor () | Unitless | 0.3 | 0 | Abdelbaki et al. [52] |
Layer dissociation factor (D) | Unitless | 1 | Prior knowledge | |
Fraction of brown vegetation () | Unitless | 0 | 1 | Prior knowledge |
Solar zenith angle () | Degree | 35 | Abdelbaki et al. [52] | |
Viewing zenith angle () | Degree | 0 | Abdelbaki et al. [52] | |
Relative azimuth angle () | Degree | 0 | Abdelbaki et al. [52] |
ID | Variables | Modeling Sample Size |
---|---|---|
Scenario 1 | ||
Bare soils | - | 8941 |
Scenario 2 | ||
(Bare Soils + Bare Soils × SMC) | SMC: 0.015, 0.035, 0.07 | 35,764 |
Scenario 3 | ||
(Bare Soils + Bare Soils × SMC × LAI-PV) | LAI: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 | 393,404 |
Scenario 4 | ||
(Bare Soils + Bare Soils × SMC × LAI-NPV) | LAI: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 | 393,404 |
Scenario 5—DSSL | ||
(Bare Soils + Bare Soils × 3SMC + Bare Soils × 3SMC × 11PV + Bare Soils × 3SMC × 11NPV) | All previous variables | 822,572 |
2.2. LUCAS Database Description
2.3. Deep Learning Spectral Modeling for SOC Estimation
2.3.1. 1D-CNN Model Architecture
2.3.2. Data Handling and Model Evaluation Metrics
3. Results
3.1. Descriptive Statistics of LUCAS Bare and Dry Soil Database
3.2. Simulation of MLC Model
3.3. Model Application
3.3.1. SOC Prediction with Various Associated SMC-LAI PV and NPV
3.3.2. SOC Prediction with Mineral and Organic Soil Data
3.3.3. SOC Prediction for Mixed Dry/Wet Soils and Separated PV or NPV Scenarios
3.3.4. The Impact of Mixed Scenarios on the Accuracy of SOC Prediction
4. Discussion
4.1. RTM-Based Disturbed Soil Spectral Library (DSSL)
4.2. Disturbing Factors in SOC Estimation
4.3. SOC Estimation Using CNN for Soil Spectral Library (SSL)
4.4. Limitations and Future Prospects of SOC Estimation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaration of Generative AI in the Writing Process
Abbreviations
Acronym | Definition |
RTM | Radiative Transfer Model |
SOC | Soil Organic Carbon |
CNN | Convolutional Neural Network |
EnMAP | Environmental Mapping and Analysis Program |
PRISMA | PRecursore IperSpettrale della Missione Applicativa |
GaoFen-5 | High-Resolution Earth Observation System |
CHIME | Copernicus Hyperspectral Imaging Mission for the Environment |
SBG | Surface Biology and Geology |
VIS | Visible Spectrum Range |
NIR | Near-Infrared Spectrum Range |
VNIR | Visible and Near-Infrared Spectrum Ranges |
PV | Photosynthetic Vegetation |
NPV | Non-Photosynthetic Vegetation |
PROSPECT | Leaf Optical Properties SPECTra Model |
SAIL | Scattering by Arbitrarily Inclined Leaves |
PROSAIL | Combined Model: PROSPECT and 4SAIL2 |
SLC | Soil–Leaf–Canopy |
INFORM | INvertible FOrest Reflectance Model |
SCOPE | Soil Canopy Observation, Photochemistry, and Energy Fluxes |
DART | Discrete Anisotropic Radiative Transfer |
PRO4SAIL2 | Combined Model: PROSPECT and 4SAIL2 |
EU-LUCAS | European Union Land Use and Cover Area Frame Survey |
SOILSPECT | Soil Property Estimation Using Spectral Data |
MARMIT | Multilayer Radiative Transfer Model of Soil Reflectance |
MLC | Marmit–Leaf–Canopy Model |
DSSL | Disturbed Soil Spectral Library |
LSTM | Long Short-Term Memory Model |
SVR | Support Vector Regression |
KM | Kubelka–Munk Model |
SESMRT | Semi-Empirical Soil Radiative Transfer Model |
Leaf or Canopy Parameters (g, b) | g = green (photosynthetic) vegetation; b = brown (non-photosynthetic) vegetation |
References
- van Wesemael, B.; Abdelbaki, A.; Ben-Dor, E.; Chabrillat, S.; d’Angelo, P.; Dematte, J.A.M.; Genova, G.; Gholizadeh, A.; Heiden, U.; Karlshoefer, P.; et al. A European Soil Organic Carbon Monitoring System Leveraging Sentinel 2 Imagery and the Lucas Soil Data Base. Geoderma 2024, 452, 117113. [Google Scholar] [CrossRef]
- Baveye, P.C.; Schnee, L.S.; Boivin, P.; Laba, M.; Radulovich, R. Soil organic matter research and climate change: Merely re-storing carbon versus restoring soil functions. Front. Environ. Sci. 2020, 8, 579904. [Google Scholar] [CrossRef]
- Prudnikova, E.; Savin, I.; Vindeker, G.; Grubina, P.; Shishkonakova, E.; Sharychev, D. Influence of soil background on spectral reflectance of winter wheat crop canopy. Remote Sens. 2019, 11, 1932. [Google Scholar] [CrossRef]
- Demattê, J.A.; Minasny, B.; Hartemink, A.E. Vital for Sustainable Agriculture: Pedological Knowledge and Mapping. Eur. J. Soil Sci. 2025, 76, e70040. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Verrelst, J.; Halabuk, A.; Atzberger, C.; Hank, T.; Steinhauser, S.; Berger, K. A comprehensive survey on quantifying non-photosynthetic vegetation cover and biomass from imaging spectroscopy. Ecol. Indic. 2023, 155, 110911. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Calvo, L.; Quintano, C.; Fernández-Manso, A.; Fernandes, P.M. Fractional vegetation cover ratio estimated from radiative transfer modeling outperforms spectral indices to assess fire severity in several Mediterranean plant communities. Remote Sens. Environ. 2023, 290, 113542. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Kooistra, L.; Stevens, A.; van Leeuwen, M.; van Wesemael, B.; Ben-Dor, E.; Tychon, B. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 81–88. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Sunantha, O.; Shao, Z.; Pattama, P.; Potchara, A.; Huang, X.; Zeeshan, A. Machine learning-based estimation of soil organic carbon in Thailand’s cash crops using multispectral and SAR data fusion combined with environmental variables. Geo-Spat. Inf. Sci. 2025, 2025, 1–23. [Google Scholar] [CrossRef]
- Parvizi, Y.; Fatehi, S. Geospatial digital mapping of soil organic carbon using machine learning and geostatistical methods in different land uses. Sci. Rep. 2025, 15, 4449. [Google Scholar] [CrossRef] [PubMed]
- Abdelbaki, A.; Udelhoven, T. A review of hybrid approaches for quantitative assessment of crop traits using optical remote sensing: Research trends and future directions. Remote Sens. 2022, 14, 3515. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.B.; Hank, T.; Wocher, M.; Mauser, W.; Camps-Valls, G. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102174. [Google Scholar] [CrossRef]
- Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops. ISPRS J. Photogramm. Remote Sens. 2021, 173, 278–296. [Google Scholar]
- Tagliabue, G.; Boschetti, M.; Bramati, G.; Candiani, G.; Colombo, R.; Nutini, F.; Pompilio, L.; Rivera-Caicedo, J.P.; Rossi, M.; Rossini, M.; et al. Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2022, 187, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, T.; Yang, C.; Song, H.; Jiang, Z.; Zhou, G.; Zhang, D.; Feng, H.; Xie, J. Segmenting purple rapeseed leaves in the field from UAV RGB imagery using deep learning as an auxiliary means for nitrogen stress detection. Remote Sens. 2020, 12, 1403. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Airborne spectranomics: Mapping canopy chemical and taxonomic diversity in tropical forests. Front. Ecol. Environ. 2009, 7, 269–276. [Google Scholar] [CrossRef]
- Wang, L.; Qu, Y.; Li, W.; Zhou, G. Deep learning for remote sensing image classification: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1346. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Chabrillat, S.; Foerster, S.; Segl, K.; Beamish, A.; Brell, M.; Asadzadeh, S.; Milewski, R.; Ward, K.J.; Brosinsky, A.; Koch, K.; et al. The EnMAP spaceborne imaging spectroscopy mission: Initial scientific results two years after launch. Remote Sens. Environ. 2024, 315, 114379. [Google Scholar] [CrossRef]
- Labate, D.; Ceccherini, M.; Cisbani, A.; De Cosmo, V.; Galeazzi, C.; Giunti, L.; Melozzi, M.; Pieraccini, S.; Stagi, M. The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission. Acta Astronaut. 2009, 65, 1429–1436. [Google Scholar] [CrossRef]
- Nieke, J.; Despoisse, L.; Gabriele, A.; Weber, H.; Strese, H.; Ghasemi, N.; Gascon, F.; Alonso, K.; Boccia, V.; Tsonevska, B.; et al. The copernicus hyperspectral imaging mission for the environment (CHIME): An overview of its mission, system and planning status. In Proceedings of the SPIE Remote Sensing: Sensors, Systems, and Next-Generation Satellites XXVII, Amsterdam, The Netherlands, 3–7 September 2023; SPIE Publications: Bellingham, WA, USA, 2023; Volume 12729, pp. 21–40. [Google Scholar]
- Cawse-Nicholson, K.; Townsend, P.A.; Schimel, D.; Assiri, A.M.; Blake, P.L.; Buongiorno, M.F.; Campbell, P.; Carmon, N.; Casey, K.A.; Correa-Pabón, R.E.; et al. NASA’s surface biology and geology designated observable: A perspective on surface imaging algorithms. Remote Sens. Environ. 2021, 257, 112349. [Google Scholar] [CrossRef]
- Wilson, A.M.; Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 2016, 14, e1002415. [Google Scholar] [CrossRef]
- Proença, V.; Martin, L.J.; Pereira, H.M.; Fernandez, M.; McRae, L.; Belnap, J.; Böhm, M.; Brummitt, N.; García-Moreno, J.; Gregory, R.D.; et al. Global biodiversity monitoring: From data sources to essential biodiversity variables. Biol. Conserv. 2017, 213, 256–263. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Dor, E.B.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Quantification of soil properties with hyperspectral data: Selecting spectral variables with different methods to improve accuracies and analyze prediction mechanisms. Remote Sens. 2017, 9, 1103. [Google Scholar] [CrossRef]
- Chabrillat, S.; Eisele, A.; Guillaso, S.; Rogaß, C.; Ben-Dor, E.; Kaufmann, H. HYSOMA: An easy-to-use software interface for soil mapping applications of hyperspectral imagery. In Proceedings of the 7th EARSeL SIG Imaging Spectroscopy Workshop, Edinburgh, UK, 11–13 April 2011; pp. 11–13. [Google Scholar]
- Mielke, C.; Chabrillat, S.; Rogass, C.; Boesche, N.K.; Guillaso, S.; Foerster, S.; Segl, K.; Guanter, L. Engeomap and ensomap: Software interfaces for mineral and soil mapping under development in the frame of the enmap mission. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8369–8372. [Google Scholar]
- Jacquemoud, S.; Baret, F.; Hanocq, J. Modeling spectral and bidirectional soil reflectance. Remote Sens. Environ. 1992, 41, 123–132. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [Google Scholar] [CrossRef]
- van der Tol, C.; Rossini, M.; Cogliati, S.; Verhoef, W.; Colombo, R.; Rascher, U.; Mohammed, G. A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops. Remote Sens. Environ. 2016, 186, 663–677. [Google Scholar] [CrossRef]
- North, P.R. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans. Geosci. Remote Sens. 2002, 34, 946–956. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.P.; Demarez, V.; Pinel, V.; Zagolski, F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens. Environ. 1996, 58, 131–156. [Google Scholar] [CrossRef]
- Labarre, S.; Ferrari, C.; Jacquemoud, S. Surface roughness retrieval by inversion of the Hapke model: A multiscale approach. Icarus 2017, 290, 63–80. [Google Scholar] [CrossRef]
- Verhoef, W.; Van Der Tol, C.; Middleton, E.M. Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX–Sentinel-3 tandem mission multi-sensor data. Remote Sens. Environ. 2018, 204, 942–963. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Bablet, A.; Vu, P.; Jacquemoud, S.; Viallefont-Robinet, F.; Fabre, S.; Briottet, X.; Sadeghi, M.; Whiting, M.L.; Baret, F.; Tian, J. MARMIT: A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm). Remote Sens. Environ. 2018, 217, 1–17. [Google Scholar] [CrossRef]
- Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. Solid Earth 1981, 86, 3039–3054. [Google Scholar] [CrossRef]
- Ångström, A. The albedo of various surfaces of ground. Geogr. Ann. 1925, 7, 323–342. [Google Scholar]
- Lekner, J.; Dorf, M.C. Why some things are darker when wet. Appl. Opt. 1988, 27, 1278–1280. [Google Scholar] [CrossRef]
- Bach, H.; Mauser, W. Modelling and model verification of the spectral reflectance of soils under varying moisture conditions. In Proceedings of the IGARSS’94-1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 2354–2356. [Google Scholar]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Jones, A.; Fernandez-Ugalde, O.; Scarpa, S. LUCAS 2015 Topsoil Survey. Present. Dataset Results EUR 2020, 30332, 616084. [Google Scholar]
- Kooistra, L.; Clevers, J.G. Estimating potato leaf chlorophyll content using ratio vegetation indices. Remote Sens. Lett. 2016, 7, 611–620. [Google Scholar] [CrossRef]
- Botha, E.J.; Leblon, B.; Zebarth, B.; Watmough, J. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 360–374. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Lee, D.; Margenot, A.J.; Ge, Y.; Peng, J.; Zhou, W.; Zhou, Q.; Huang, Y. Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing. Remote Sens. Environ. 2022, 271, 112914. [Google Scholar] [CrossRef]
- Casa, R.; Jones, H. Retrieval of crop canopy properties: A comparison between model inversion from hyperspectral data and image classification. Int. J. Remote Sens. 2004, 25, 1119–1130. [Google Scholar] [CrossRef]
- Abdelbaki, A.; Schlerf, M.; Verhoef, W.; Udelhoven, T. Introduction of variable correlation for the improved retrieval of crop traits using canopy reflectance model inversion. Remote Sens. 2019, 11, 2681. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020, 367, 114208. [Google Scholar] [CrossRef]
- Saberioon, M.; Gholizadeh, A.; Ghaznavi, A.; Chabrillat, S.; Khosravi, V. Enhancing soil organic carbon prediction of LUCAS soil database using deep learning and deep feature selection. Comput. Electron. Agric. 2024, 227, 109494. [Google Scholar] [CrossRef]
- Stolt, M.H.; Bakken, J. Inconsistencies in terminology and definitions of organic soil materials. Soil Sci. Soc. Am. J. 2014, 78, 1332–1337. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sens. Environ. 2003, 87, 23–41. [Google Scholar] [CrossRef]
- Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef]
- Yang, P.; van der Tol, C.; Yin, T.; Verhoef, W. The SPART model: A soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum. Remote Sens. Environ. 2020, 247, 111870. [Google Scholar] [CrossRef]
- Kubelka, P. Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Wu, F.; Tan, K.; Wang, X.; Ding, J.; Liu, Z.; Han, B. A semi-analytical radiative transfer model for explaining soil spectral features. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103250. [Google Scholar] [CrossRef]
- Ou, D.; Tan, K.; Li, J.; Wu, Z.; Zhao, L.; Ding, J.; Wang, X.; Zou, B. Prediction of soil organic matter by Kubelka-Munk based airborne hyperspectral moisture removal model. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103493. [Google Scholar] [CrossRef]
- Wu, F.; Tan, K.; Wang, X.; Ding, J.; Liu, Z. A novel semi-empirical soil multi-factor radiative transfer model for soil organic matter estimation based on hyperspectral imagery. Geoderma 2023, 437, 116605. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, X.; Yan, C.; Chen, S.; Wang, S.; Zhang, J.; Xu, Z.; Ju, X.; Ding, N.; Dong, Y.; et al. Wavelength selection for estimating soil organic matter contents through the radiative transfer model. IEEE Access 2020, 8, 176286–176293. [Google Scholar] [CrossRef]
- Ou, D.; Tan, K.; Wang, X.; Wu, Z.; Li, J.; Ding, J. Modified soil scattering coefficients for organic matter inversion based on Kubelka-Munk theory. Geoderma 2022, 418, 115845. [Google Scholar] [CrossRef]
- Yuan, J.; Hu, C.; Yan, C.; Li, Z.; Chen, S.; Wang, S.; Wang, X.; Xu, Z.; Ju, X. Semi-empirical soil organic matter retrieval model with spectral reflectance. IEEE Access 2019, 7, 134164–134172. [Google Scholar] [CrossRef]
- Seidel, M.; Vohland, M.; Greenberg, I.; Ludwig, B.; Ortner, M.; Thiele-Bruhn, S.; Hutengs, C. Soil moisture effects on predictive VNIR and MIR modeling of soil organic carbon and clay content. Geoderma 2022, 427, 116103. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Guo, L.; Fei, T.; Qi, K. Estimating soil organic carbon of cropland soil at different levels of soil moisture using VIS-NIR spectroscopy. Remote Sens. 2016, 8, 755. [Google Scholar] [CrossRef]
- Yang, P.; Wang, Y.; Hu, B.; Li, S.; Chen, S.; Luo, D.; Peng, J. Predicting soil organic carbon content using simulated insitu spectra and moisture correction algorithms in southern Xinjiang, China. Geoderma Reg. 2024, 37, e00783. [Google Scholar] [CrossRef]
- Sakhaee, A.; Gebauer, A.; Ließ, M.; Don, A. Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms. Soil 2022, 8, 587–604. [Google Scholar] [CrossRef]
- Alcántara, V.; Don, A.; Well, R.; Nieder, R. Deep ploughing increases agricultural soil organic matter stocks. Glob. Change Biol. 2016, 22, 2939–2956. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, X.; Xu, Z.; Ding, M. Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks. Geoderma 2021, 402, 115366. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef]
- Berger, K.; Rivera Caicedo, J.P.; Martino, L.; Wocher, M.; Hank, T.; Verrelst, J. A survey of active learning for quantifying vegetation traits from terrestrial earth observation data. Remote Sens. 2021, 13, 287. [Google Scholar] [CrossRef]
Layer Type | Filters | Kernel Size | Width | Activation Function |
---|---|---|---|---|
Convolutional + Batch Normalization | 32 | 3 × 1 | 20 | ReLU |
Max Pooling | – | 2 × 1 | – | – |
Convolutional + Batch Normalization | 64 | 3 × 1 | 20 | ReLU |
Max Pooling | – | 2 × 1 | – | – |
Convolutional + Batch Normalization | 128 | 3 × 1 | 20 | ReLU |
Max Pooling | – | 2 × 1 | – | – |
Fully Connected | – | – | 256 | ReLU |
Fully Connected | – | – | 64 | ReLU |
Dropout | – | – | 0.2 | – |
Scenarios | Number of Samples | Training | Validation | Testing |
---|---|---|---|---|
1—Bare soil-SSL (Baseline) | ||||
(A) All measured datasets (organic and mineral soils) | 8941 | 7152 | 894 | 894 |
(B) Mineral soils | 8896 | 7116 | 890 | 890 |
(C) Organic soils | 45 | - | - | - |
2—Mixed scenario DSSL | ||||
(A) All simulated datasets (organic and mineral soils) | 822,572 | 658,057 | 82,257 | 82,258 |
(B) Simulated datasets based on mineral soils | 818,432 | 654,745 | 81,843 | 81,844 |
(C) Simulated datasets based on organic soils | 4140 | 3312 | 414 | 414 |
(D) Bare soil and SMC (mineral soils) | 35,764 | 28,467 | 3558 | 3559 |
(E) Bare soil, SMC, and PV (mineral soils) | 393,404 | 313,139 | 39,142 | 39,143 |
(F) Bare soil, SMC, and NPV (mineral soils) | 393,404 | 313,139 | 39,142 | 39,143 |
Properties | Samples | Mean | Median | Std. Dev. | Max | Min | CV (%) | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|---|
Clay (%) | 830 | 25.53 | 25.00 | 11.71 | 45.86 | 2.00 | 45.86 | 2.72 | 0.38 |
Sand (%) | 830 | 33.90 | 31.00 | 18.47 | 93.00 | 2.00 | 54.47 | 2.69 | 0.63 |
Silt (%) | 830 | 40.55 | 40.00 | 11.55 | 67.00 | 5.00 | 28.48 | 2.76 | −0.08 |
pH | 8941 | 6.86 | 7.09 | 1.07 | 9.63 | 3.58 | 15.59 | 2.12 | −0.50 |
OC (g kg−1) | 8941 | 17.62 | 14.30 | 19.15 | 519.10 | 0.10 | 108.63 | 196.00 | 10.97 |
CaCO3 (g kg−1) | 8941 | 84.86 | 2.00 | 157.48 | 976.00 | 0.00 | 185.59 | 7.63 | 82.21 |
EC (mS/m) | 8941 | 22.12 | 17.47 | 22.95 | 383.00 | 0.45 | 103.71 | 61.17 | 6.51 |
Scenarios | SOC Prediction Metrics | |||||
---|---|---|---|---|---|---|
R | R2 | RMSE | RPD | RPIQ | Bias | |
1—Bare soil | 0.84 | 0.71 | 6.01 | 1.81 | 1.51 | 0.5 |
2—Bare soil and moisture effects | 0.93 | 0.86 | 4.05 | 2.69 | 2.44 | 0.05 |
3—Bare soil, moisture effects, and PV | 0.85 | 0.71 | 6.31 | 1.77 | 1.58 | 1.27 |
4—Bare soil, moisture effects, and NPV | 0.87 | 0.74 | 5.84 | 1.91 | 1.71 | 0.40 |
5—DSSL: Bare soil, moisture effects, PV, and NPV | 0.87 | 0.76 | 5.49 | 2.03 | 1.82 | 0.45 |
Method | Input Data | Accuracy Metrics | Reference |
---|---|---|---|
- MLC with CNN (hybrid model) | Mixed scenarios based on LUCAS | R2 = 0.87, RMSE = 5.49 | Present study |
- SCOPE with LSTM (hybrid model) | Mixed scenarios based on USDA-SSL | R2 = 0.71, RMSE = 10.60 | Wang et al. [50] |
- Inversion of KM theory | Local soil spectra (no disturbance) | R2 = 0.86, RMSEP = 0.18% | Yuan et al. [65] |
- KM theory with wavelength selection | Local soil spectra (no disturbance) | R2 = 0.86, RMSEP = 0.234% | Yuan et al. [63] |
- SESMRT model with SVR (hybrid model) | ICRAF–ISRIC–SSL datasets | R2 = 0.66, RMSE = 3.923 (GF5); R2 = 0.69, RMSE = 3.54 (HyMap) | Wu et al. [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelbaki, A.; Milewski, R.; Saberioon, M.; Berger, K.; Demattê, J.A.M.; Chabrillat, S. Radiative Transfer Model-Integrated Approach for Hyperspectral Simulation of Mixed Soil-Vegetation Scenarios and Soil Organic Carbon Estimation. Remote Sens. 2025, 17, 2355. https://doi.org/10.3390/rs17142355
Abdelbaki A, Milewski R, Saberioon M, Berger K, Demattê JAM, Chabrillat S. Radiative Transfer Model-Integrated Approach for Hyperspectral Simulation of Mixed Soil-Vegetation Scenarios and Soil Organic Carbon Estimation. Remote Sensing. 2025; 17(14):2355. https://doi.org/10.3390/rs17142355
Chicago/Turabian StyleAbdelbaki, Asmaa, Robert Milewski, Mohammadmehdi Saberioon, Katja Berger, José A. M. Demattê, and Sabine Chabrillat. 2025. "Radiative Transfer Model-Integrated Approach for Hyperspectral Simulation of Mixed Soil-Vegetation Scenarios and Soil Organic Carbon Estimation" Remote Sensing 17, no. 14: 2355. https://doi.org/10.3390/rs17142355
APA StyleAbdelbaki, A., Milewski, R., Saberioon, M., Berger, K., Demattê, J. A. M., & Chabrillat, S. (2025). Radiative Transfer Model-Integrated Approach for Hyperspectral Simulation of Mixed Soil-Vegetation Scenarios and Soil Organic Carbon Estimation. Remote Sensing, 17(14), 2355. https://doi.org/10.3390/rs17142355