Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = constellation translation and rotation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3553 KB  
Article
Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology
by Wei Xiao, Zhengcheng Wu, Zongnan Li, Lei Fan, Shiwei Guo and Yilun Chen
Remote Sens. 2025, 17(14), 2342; https://doi.org/10.3390/rs17142342 - 8 Jul 2025
Cited by 1 | Viewed by 1120
Abstract
The Beidou Global System (BDS-3) innovatively achieves autonomous navigation using inter-satellite links (ISL) across the entire constellation, but it still faces challenges such as the limitations of the prior constraint orbital accuracy and the overall constellation rotation. The gradual availability of satellite laser [...] Read more.
The Beidou Global System (BDS-3) innovatively achieves autonomous navigation using inter-satellite links (ISL) across the entire constellation, but it still faces challenges such as the limitations of the prior constraint orbital accuracy and the overall constellation rotation. The gradual availability of satellite laser ranging (SLR) data, with advantages of high precision and no ambiguous parameters, can provide new ideas for solving the current problem. This work firstly deduces the mathematical model for orbit determination by combining inter-satellite links and the introduced satellite laser ranging observations, then designs orbit determination experiments with different prior orbit constraints and different observation data, and finally evaluates the impacts of the prior orbits and the introduction of SLR observations from two dimensions: orbit accuracy and constellation rotation. The experimental results using one month of measured data show the following: (1) There is good consistency among different days, and the accuracy of the prior orbits affects the performance of the orbit determination and the consistency. Compared with broadcast ephemerides, using precise ephemerides as prior constraints significantly improves the consistency, and the orbit accuracy can be increased by about 75%. (2) The type of observation data affects the performance of the orbit determination. Introducing SLR observations can improve the orbit accuracy by approximately 13% to 26%. (3) Regardless of whether broadcast ephemerides or precise ephemerides are used as prior constraints, the constellation translation and rotation still exist after introducing SLR observations. Among the translation parameters, TX is the largest, followed by TY, and TZ is the smallest; all three rotation parameters (RX, RY, and RZ) show relatively large values, which may be related to the limited number of available satellite laser ranging stations during this period. (4) After considering the constellation translation and rotation, the orbit accuracy under different prior constraints remains at the same level. The statistical root mean square error (RMSE) indicates that the orbit accuracy of inclined geosynchronous orbit (IGSO) satellites in three directions is better than 20 cm, while the accuracy of medium earth orbit (MEO) satellites in along-track, cross-track, and radial directions is better than 10 cm, 8 cm, and 5 cm, respectively. Full article
Show Figures

Figure 1

19 pages, 12714 KB  
Article
RAMC: A Rotation Adaptive Tracker with Motion Constraint for Satellite Video Single-Object Tracking
by Yuzeng Chen, Yuqi Tang, Te Han, Yuwei Zhang, Bin Zou and Huihui Feng
Remote Sens. 2022, 14(13), 3108; https://doi.org/10.3390/rs14133108 - 28 Jun 2022
Cited by 18 | Viewed by 3182
Abstract
Single-object tracking (SOT) in satellite videos (SVs) is a promising and challenging task in the remote sensing community. In terms of the object itself and the tracking algorithm, the rotation of small-sized objects and tracking drift are common problems due to the nadir [...] Read more.
Single-object tracking (SOT) in satellite videos (SVs) is a promising and challenging task in the remote sensing community. In terms of the object itself and the tracking algorithm, the rotation of small-sized objects and tracking drift are common problems due to the nadir view coupled with a complex background. This article proposes a novel rotation adaptive tracker with motion constraint (RAMC) to explore how the hybridization of angle and motion information can be utilized to boost SV object tracking from two branches: rotation and translation. We decouple the rotation and translation motion patterns. The rotation phenomenon is decomposed into the translation solution to achieve adaptive rotation estimation in the rotation branch. In the translation branch, the appearance and motion information are synergized to enhance the object representations and address the tracking drift issue. Moreover, an internal shrinkage (IS) strategy is proposed to optimize the evaluation process of trackers. Extensive experiments on space-born SV datasets captured from the Jilin-1 satellite constellation and International Space Station (ISS) are conducted. The results demonstrate the superiority of the proposed method over other algorithms. With an area under the curve (AUC) of 0.785 and 0.946 in the success and precision plots, respectively, the proposed RAMC achieves optimal performance while running at real-time speed. Full article
Show Figures

Figure 1

Back to TopTop