Retrieval of Internal Solitary Wave Parameters and Analysis of Their Spatial Variability in the Northern South China Sea Based on Continuous Satellite Imagery
Abstract
1. Introduction
2. Data and Methods
2.1. Satellite Remote Sensing Data and ISW Parameter Extraction
2.2. ISW Theoretical Equations and Parameter Extraction
3. Results
3.1. Retrieval of ISW Parameters in the Deep-Water Region
3.2. Retrieval of ISW Parameters in the Transitional Region
3.3. Retrieval of ISW Parameters in the Shallow-Water Region
3.4. Spatial Variability of ISW Parameters in the Northern South China Sea
4. Discussion
4.1. Impact of Seasonal Stratification Variations on the Retrieval of ISW Parameters
4.2. Comparison Between Retrieved ISW Parameters and In Situ Observations
4.3. An Example of the Propagation and Evolution of a Particular ISW in the Northern South China Sea
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, C.R. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. Ocean. 2007, 112, C11012. [Google Scholar] [CrossRef]
- Klymak, J.M.; Pinkel, R.; Liu, C.-T.; Liu, A.K.; David, L. Prototypical solitons in the South China Sea. Geophys. Res. Lett. 2006, 33, 11. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Z.; Zhao, W.; Zhang, Z.; Zhou, C.; Yang, Q.; Tian, J. An extreme internal solitary wave event observed in the northern South China Sea. Sci. Rep. 2016, 6, 30041. [Google Scholar] [CrossRef] [PubMed]
- Grue, J.; Jensen, A.; Rusås, P.-O.; Sveen, J.K. Properties of large-amplitude internal waves. J. Fluid Mech. 1999, 380, 257–278. [Google Scholar] [CrossRef]
- Lamb, K.G. A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J. Fluid Mech. 2002, 451, 109–144. [Google Scholar] [CrossRef]
- Alford, M.H.; Lien, R.-C.; Simmons, H.; Klymak, J.; Ramp, S.; Yang, Y.J.; Tang, D.; Chang, M.-H. Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr. 2010, 40, 1338–1355. [Google Scholar] [CrossRef]
- da Silva, J.C.B.; New, A.L.; Magalhaes, J.M. On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 229–240. [Google Scholar] [CrossRef]
- Osborne, A.R.; Burch, T.L. Internal solitons in the Andaman Sea. Science 1980, 208, 451–460. [Google Scholar] [CrossRef]
- Xu, A.; Chen, X. A Strong Internal Solitary Wave with Extreme Velocity Captured Northeast of Dong-Sha Atoll in the Northern South China Sea. J. Mar. Sci. Eng. 2021, 9, 1277. [Google Scholar] [CrossRef]
- Purwandana, A.; Cuypers, Y. Characteristics of internal solitary waves in the Maluku Sea, Indonesia. Oceanologia 2023, 65, 333–342. [Google Scholar] [CrossRef]
- Tian, Z.; Jia, Y.; Du, Q.; Zhang, S.; Guo, X.; Tian, W.; Zhang, M.; Song, L. Shearing stress of shoaling internal solitary waves over the slope. Ocean Eng. 2021, 241, 110046. [Google Scholar] [CrossRef]
- Huang, S.; Huang, X.; Zhao, W.; Chang, Z.; Xu, X.; Yang, Q.; Tian, J. Shear instability in internal solitary waves in the northern South China Sea induced by multiscale background processes. J. Phys. Oceanogr. 2022, 52, 2975–2994. [Google Scholar] [CrossRef]
- Xu, J.; Xie, J.; Chen, Z.; Cai, S.; Long, X. Enhanced mixing induced by internal solitary waves in the South China Sea. Cont. Shelf Res. 2012, 49, 34–43. [Google Scholar] [CrossRef]
- Bian, C.; Ruan, X.; Wang, H.; Jiang, W.; Liu, X.; Jia, Y. Internal solitary waves enhancing turbulent mixing in the bottom boundary layer of continental slope. J. Mar. Syst. 2022, 236, 103805. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Tai, J.-H.; Ko, C.-Y.; Hsieh, C.-H.; Chen, C.-C.; Jiao, N.; Liu, H.-B.; Shiah, F.-K. Nutrient pulses driven by internal solitary waves enhance heterotrophic bacterial growth in the South China Sea. Environ. Microbiol. 2016, 18, 4312–4323. [Google Scholar] [CrossRef] [PubMed]
- Reid, E.C.; DeCarlo, T.M.; Cohen, A.L.; Wong, G.T.; Lentz, S.J.; Safaie, A.; Hall, A.; Davis, K.A. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnol. Oceanogr. 2019, 64, 1949–1965. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, W.; Chen, H.; Meng, Z.; Shi, X.; Tian, J. Asymmetry of internal waves and its effects on the ecological environment observed in the northern South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 98, 94–101. [Google Scholar] [CrossRef]
- Woodson, C.B. The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 2018, 10, 421–441. [Google Scholar] [CrossRef]
- Badiey, M.; Wan, L.; Song, A. Three-dimensional mapping of evolving internal waves during the Shallow Water 2006 experiment. J. Acoust. Soc. Am. 2013, 134, EL7–EL13. [Google Scholar] [CrossRef]
- Apel, J.R.; Ostrovsky, L.A.; Stepanyants, Y.A.; Lynch, J.F. Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am. 2007, 121, 695–722. [Google Scholar] [CrossRef]
- Huang, M.; Gao, C.; Zhang, N. Numerical research on hydrodynamic characteristics and influence factors of underwater vehicle in internal solitary waves. Int. J. Offshore Polar Eng. 2023, 33, 27–35. [Google Scholar] [CrossRef]
- Cheng, L.; Du, P.; Hu, H.; Xie, Z.; Yuan, Z.; Kaidi, S.; Chen, X.; Xie, L.; Huang, X.; Wen, J. Control of underwater suspended vehicle to avoid ‘falling deep’ under the influence of internal solitary waves. Ships Offshore Struct. 2024, 19, 1349–1367. [Google Scholar] [CrossRef]
- Song, Z.J.; Teng, B.; Gou, Y.; Lu, L.; Shi, Z.M.; Xiao, Y.; Qu, Y. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Appl. Ocean Res. 2011, 33, 120–129. [Google Scholar] [CrossRef]
- Cui, J.; Dong, S.; Wang, Z.; Han, X.; Yu, M. Experimental research on internal solitary waves interacting with moored floating structures. Mar. Struct. 2019, 67, 102641. [Google Scholar] [CrossRef]
- Lien, R.-C.; Tang, T.Y.; Chang, M.H.; D’Asaro, E.A. Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett. 2005, 32, L05615. [Google Scholar] [CrossRef]
- Simmons, H.; Chang, M.-H.; Chang, Y.-T.; Chao, S.-Y.; Fringer, O.; Jackson, C.R.; Ko, D.S. Modeling and prediction of internal waves in the South China Sea. Oceanography 2011, 24, 88–99. Available online: https://www.jstor.org/stable/24861123 (accessed on 20 May 2025). [CrossRef]
- Ramp, S.R.; Tang, T.Y.; Duda, T.F.; Lynch, J.F.; Liu, A.K.; Chiu, C.-S.; Bahr, F.L.; Kim, H.R.; Yang, Y.J. Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE J. Ocean. Eng. 2004, 29, 1157–1181. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Tang, T.Y.; Chang, M.H.; Liu, A.K.; Hsu, M.-K.; Ramp, S.R. Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J. Ocean. Eng. 2004, 29, 1182–1199. [Google Scholar] [CrossRef]
- Ramp, S.R.; Yang, Y.J.; Bahr, F.L. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Process. Geophys. 2010, 17, 481–498. [Google Scholar] [CrossRef]
- Lien, R.-C.; Henyey, F.; Ma, B.; Yang, Y.J. Large-amplitude internal solitary waves observed in the northern South China Sea: Properties and energetics. J. Phys. Oceanogr. 2014, 44, 1095–1115. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, Q.; Xiong, X.; Yuan, Y.; Xie, H.; Guo, Y.; Yu, L.; Yun, S. Dynamic and statistical features of internal solitary waves on the continental slope in the northern South China Sea derived from mooring observations. J. Geophys. Res. Ocean. 2019, 124, 4078–4097. [Google Scholar] [CrossRef]
- Chang, M.-H.; Cheng, Y.-H.; Yang, Y.J.; Jan, S.; Ramp, S.R.; Reeder, D.B.; Hsieh, W.-T.; Ko, D.S.; Davis, K.A.; Shao, H.-J.; et al. Direct measurements reveal instabilities and turbulence within large amplitude internal solitary waves beneath the ocean. Commun. Earth Environ. 2021, 2, 15. [Google Scholar] [CrossRef]
- Ramp, S.R.; Yang, Y.-J.; Jan, S.; Chang, M.-H.; Davis, K.A.; Sinnett, G.; Bahr, F.L.; Reeder, D.B.; Ko, D.S.; Pawlak, G. Solitary waves impinging on an isolated tropical reef: Arrival patterns and wave transformation under shoaling. J. Geophys. Res. Ocean. 2022, 127, e2021JC017781. [Google Scholar] [CrossRef]
- Zheng, Q.; Yuan, Y.; Klemas, V.; Yan, X.-H. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. J. Geophys. Res. Ocean. 2001, 106, 31415–31423. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Su, F.-C.; Wang, C.-M.; Liu, C.-T.; Tseng, R.-S. Derivation of internal solitary wave amplitude in the South China Sea deep basin from satellite images. J. Oceanogr. 2011, 67, 689–697. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, W. Information of Internal Solitary Wave Extracted from MODIS Image: A Case in the Deep Water of Northern South China Sea. Period. Ocean Univ. China 2014, 44, 19–23. [Google Scholar]
- Zhang, X.; Wang, J.; Sun, L.; Meng, J. Study on the amplitude inversion of internal waves at Wenchang area of the South China Sea. Acta Oceanol. Sin. 2016, 35, 14–19. [Google Scholar] [CrossRef]
- Jia, T.; Liang, J.; Li, X.-M.; Fan, K. Retrieval of internal solitary wave amplitude in shallow water by tandem spaceborne SAR. Remote Sens. 2019, 11, 1706. [Google Scholar] [CrossRef]
- Xie, H.; Xu, Q.; Zheng, Q.; Xiong, X.; Ye, X.; Cheng, Y. Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea. Acta Oceanol. Sin. 2022, 41, 137–145. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Cui, J.; Xia, H.; Guo, W. Application of different internal solitary wave theories for SAR remote sensing inversion in the northern South China Sea. Ocean Eng. 2023, 283, 115015. [Google Scholar] [CrossRef]
- Choi, W.; Camassa, R. Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 1999, 396, 1–36. [Google Scholar] [CrossRef]
- Helfrich, K.R.; Melville, W.K. Long nonlinear internal waves. Annu. Rev. Fluid Mech. 2006, 38, 395–425. [Google Scholar] [CrossRef]
- Grue, J.; Jensen, A.; Rusås, P.-O.; Sveen, J.K. Breaking and broadening of internal solitary waves. J. Fluid Mech. 2000, 413, 181–217. [Google Scholar] [CrossRef]
- Stanton, T.P.; Ostrovsky, L.A. Observations of highly nonlinear internal solitons over the continental shelf. Geophys. Res. Lett. 1998, 25, 2695–2698. [Google Scholar] [CrossRef]
- Chang, M.-H.; Lien, R.-C.; Lamb, K.G.; Diamessis, P.J. Long-term observations of shoaling internal solitary waves in the Northern South China Sea. J. Geophys. Res. Ocean. 2021, 126, e2020JC017129. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, X.; Zhao, W.; Zhou, C.; Huang, S.; Zhang, Z.; Tian, J. Internal solitary Waves in the Andaman Sea revealed by longterm mooring observations. J. Phys. Oceanogr. 2021, 51, 3609–3627. [Google Scholar] [CrossRef]
- Huang, X.; Huang, S.; Zhao, W.; Zhang, Z.; Zhou, C.; Tian, J. Temporal variability of internal solitary waves in the northern South China Sea revealed by long-term mooring observations. Prog. Oceanogr. 2022, 201, 102716. [Google Scholar] [CrossRef]
- Xu, T.; Chen, X.; Li, Q.; He, X.; Wang, J.; Meng, J. Strongly nonlinear effects on determining internal solitary wave parameters from surface signatures with potential for remote sensing applications. Geophys. Res. Lett. 2023, 50, e2023GL105814. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Wang, S.; Liu, Y.; Yu, W.; Wang, J.; Xu, Q.; Li, X. Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model. Remote Sens. Environ. 2022, 272, 112940. [Google Scholar] [CrossRef]
- Reagan, J.R.; Boyer, T.P.; García, H.E.; Locarnini, R.A.; Baranova, O.K.; Bouchard, C.; Cross, S.L.; Mishonov, A.V.; Paver, C.R.; Seidov, D.; et al. World Ocean Atlas 2023; NOAA National Centers for Environmental Information: Silver Spring, MD, USA, 2024. Available online: https://www.ncei.noaa.gov/products/world-ocean-atlas (accessed on 20 May 2025).
- Long, R.R. Some aspects of the flow of stratified fluids: I. A theoretical investigation. Tellus 1953, 5, 42–58. [Google Scholar] [CrossRef]
- Stastna, M.; Lamb, K.G. Large fully nonlinear internal solitary waves: The effect of background current. Phys. Fluids 2002, 14, 2987–2999. [Google Scholar] [CrossRef]
- Millero, F.J.; Poisson, A. International one-atmosphere equation of state of seawater. Deep Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 625–629. [Google Scholar] [CrossRef]
- Dunphy, M.; Subich, C.; Stastna, M. Spectral methods for internal waves: Indistinguishable density profiles and double-humped solitary waves. Nonlinear Process. Geophys. 2011, 18, 351–358. [Google Scholar] [CrossRef]
- Lu, K.; Xu, T.; Chen, X.; He, X.; Tan, J. Relationships between internal solitary wave surface features in optical and SAR satellite images: Insights from remote sensing and laboratory. Ocean Eng. 2024, 309, 118500. [Google Scholar] [CrossRef]
- Xue, J.; Graber, H.C.; Lund, B.; Romeiser, R. Amplitudes estimation of large internal solitary waves in the Mid-Atlantic Bight using synthetic aperture radar and marine X-band radar images. IEEE Trans. Geosci. Remote Sens. 2012, 51, 3250–3258. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Z.; Zhang, X.; Qian, H.; Zhao, W.; Tian, J. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations. J. Phys. Oceanogr. 2017, 47, 1539–1554. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, X.; Cao, A.; Meng, J.; Yang, X.; Liu, T. Modulation of internal solitary waves by the Kuroshio in the northern South China Sea. Sci. Rep. 2023, 13, 6070. [Google Scholar] [CrossRef]
- Lamb, K.G.; Warn-Varnas, A. Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea. Nonlinear Process. Geophys. 2015, 22, 289–312. [Google Scholar] [CrossRef]
- Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1895, 39, 422–443. [Google Scholar] [CrossRef]
Index | Observation Period | ISW Packets | Index | Observation Period | ISW Packets |
---|---|---|---|---|---|
1 | 2 June 2022 03:01:00–09:01:00 | 5 | 24 | 19 June 2023 02:02:00–09:02:00 | 5 |
2 | 5 June 2022 02:01:00–09:01:00 | 4 | 25 | 20 June 2023 03:01:00–09:41:00 | 5 |
3 | 18 June 2022 02:01:00–06:31:00 | 5 | 26 | 21 June 2023 01:01:00–09:01:00 | 5 |
4 | 19 June 2022 02:01:00–05:01:00 | 3 | 27 | 22 June 2023 02:31:00–09:01:00 | 3 |
5 | 3 July 2022 03:02:00–09:02:00 | 3 | 28 | 24 June 2023 06:31:00–07:31:00 | 1 |
6 | 4 July 2022 05:31:00–08:31:00 | 1 | 29 | 25 June 2023 04:37:00–08:37:00 | 2 |
7 | 26 August 2022 03:01:00–09:01:00 | 2 | 30 | 26 June 2023 04:01:00–08:01:00 | 2 |
8 | 27 August 2022 01:12:00–08:02:00 | 1 | 31 | 20 July 2023 03:01:00–06:51:00 | 7 |
9 | 3 September 2022 00:01:00–08:01:00 | 4 | 32 | 22 July 2023 04:01:00–08:01:00 | 4 |
10 | 4 September 2022 02:31:00–06:31:00 | 3 | 33 | 23 July 2023 05:01:00–08:01:00 | 4 |
11 | 5 September 2022 03:01:00–08:01:00 | 3 | 34 | 24 July 2023 04:01:00–09:01:00 | 1 |
12 | 13 September 2022 01:01:00–09:01:00 | 5 | 35 | 15 August 2023 02:01:00–05:01:00 | 1 |
13 | 14 September 2022 03:01:00–06:01:00 | 4 | 36 | 16 August 2023 05:01:00–09:01:00 | 2 |
14 | 4 May 2023 03:01:00–08:01:00 | 2 | 37 | 17 August 2023 04:31:00–05:31:00 | 1 |
15 | 5 May 2023 03:01:00–08:01:00 | 5 | 38 | 22 August 2023 02:01:00–09:01:00 | 6 |
16 | 6 May 2023 03:01:00–09:01:00 | 2 | 39 | 20 September 2023 04:01:00–08:01:00 | 1 |
17 | 7 May 2023 03:01:00–07:01:00 | 2 | 40 | 30 April 2024 00:01:00–08:01:00 | 2 |
18 | 31 May 2023 03:01:00–08:01:00 | 1 | 41 | 1 June 2024 02:01:00–05:01:00 | 1 |
19 | 6 June 2023 05:01:00–07:01:00 | 1 | 42 | 10 June 2024 02:01:00–05:01:00 | 1 |
20 | 7 June 2023 03:01:00–08:01:00 | 5 | 43 | 21 June 2024 00:01:00–05:01:00 | 3 |
21 | 8 June 2023 00:31:00–08:31:00 | 4 | 44 | 9 July 2024 03:31:00–05:31:00 | 4 |
22 | 9 June 2023 00:01:00–09:01:00 | 5 | 45 | 10 July 2024 01:01:00–07:01:00 | 4 |
23 | 18 June 2023 01:01:00–09:01:00 | 2 | 46 | 11 July 2024 02:01:00–05:01:00 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Xu, T.; Jia, C.; Chen, X.; He, X. Retrieval of Internal Solitary Wave Parameters and Analysis of Their Spatial Variability in the Northern South China Sea Based on Continuous Satellite Imagery. Remote Sens. 2025, 17, 2159. https://doi.org/10.3390/rs17132159
Lu K, Xu T, Jia C, Chen X, He X. Retrieval of Internal Solitary Wave Parameters and Analysis of Their Spatial Variability in the Northern South China Sea Based on Continuous Satellite Imagery. Remote Sensing. 2025; 17(13):2159. https://doi.org/10.3390/rs17132159
Chicago/Turabian StyleLu, Kexiao, Tao Xu, Cun Jia, Xu Chen, and Xiao He. 2025. "Retrieval of Internal Solitary Wave Parameters and Analysis of Their Spatial Variability in the Northern South China Sea Based on Continuous Satellite Imagery" Remote Sensing 17, no. 13: 2159. https://doi.org/10.3390/rs17132159
APA StyleLu, K., Xu, T., Jia, C., Chen, X., & He, X. (2025). Retrieval of Internal Solitary Wave Parameters and Analysis of Their Spatial Variability in the Northern South China Sea Based on Continuous Satellite Imagery. Remote Sensing, 17(13), 2159. https://doi.org/10.3390/rs17132159