Geophysical and Remote Sensing Techniques for Large-Volume and Complex Landslide Assessment
Abstract
:1. Introduction
1.1. Large-Volume Landslide Background
1.2. Geological, Geophysical, and SAR Investigation for Slope Instability Characterization
1.3. Case Study
2. Materials and Methods
2.1. Geological and Morphological Reconstruction
2.2. Geophysical and Satellite Analyses
3. Results
3.1. Reconstruction of Geological and Geomorphological Framework
3.2. Evidence from the Interpretation of SRT, ERT, and SAR Data
4. Discussion
5. Conclusions
5.1. Key Findings
5.2. Methodological Contributions and Technical Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Ao, M.; Wei, L.; Liao, M.; Zhang, L.; Dong, J.; Liu, S. Incremental multi temporal InSAR analysis via recursive sequential estimator for long-term landslide deformation monitoring. ISPRS J. Photogramm. Remote Sens. 2024, 215, 313–330. [Google Scholar] [CrossRef]
- Auflič, M.J.; Herrera, G.; Mateos, R.M.; Poyiadji, E.; Quental, L.; Severine, B.; Peternel, T.; Podolszki, L.; Calcaterra, S.; Kociu, A.; et al. Landslide Monitoring Techniques in the Geological Surveys of Europe. Landslides 2023, 20, 951–965. [Google Scholar] [CrossRef]
- Bentivenga, M.; Bellanova, J.; Calamita, G.; Capece, A.; Cavalcante, F.; Gueguen, E.; Guglielmi, P.; Murgante, B.; Palladino, G.; Perrone, A.; et al. Geomorphological and Geophysical Surveys with InSAR Analysis Applied to the Picerno Earth Flow (Southern Apennines, Italy). Landslides 2021, 18, 471–483. [Google Scholar] [CrossRef]
- Boyd, J.; Chambers, J.; Wilkinson, P.; Peppa, M.; Watlet, A.; Kirkham, M.; Jones, L.; Swift, R.; Meldrum, P.; Uhlemann, S.; et al. A linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides 2021, 18, 2689–2704. [Google Scholar] [CrossRef]
- Cassiani, G.; Godio, A.; Stocco, S.; Villa, A.; Deiana, R.; Frattini, P.; Rossi, M. Monitoring the hydrologic behaviour of a mountain slope via time-lapse electrical resistivity tomography. Near Surf. Geophys. 2009, 7, 475–486. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Linares, R.; Roqué, C.; Zarroca, M.; Carbonel, D.; Rosell, J.; Gutiérrez, M. Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees): Detailed geological–geomorphological mapping, trenching and electrical resistivity imaging. Geomorphology 2015, 241, 224–242. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, H.; Zhu, Y.; Liu, Z.; Pei, Y.; Ma, S.; Du, C.; Sun, H.; Liu, Y.; Cao, M. Landslide Characteristics and Evolution: What We Can Learn from Three Adjacent Landslides. Remote Sens. 2021, 13, 4579. [Google Scholar] [CrossRef]
- Aringoli, D.; Farabollini, P.; Pambianchi, G.; Materazzi, M.; Bufalini, M.; Fuffa, E.; Gentilucci, M.; Scalella, G. Geomorphological hazard in active tectonics area: Study cases from Sibillini Mountains thrust system (Central Apennines). Land 2021, 10, 510. [Google Scholar] [CrossRef]
- Della Seta, M.; Esposito, C.; Marmoni, G.M.; Martino, S.; Scarascia Mugnozza, G.; Troiani, F. Morpho–structural evolution of the valley—Slope systems and related implications on slope–scale gravitational processes: New results from the Mt. Genzana case history (Central Apennines, Italy). Geomorphology 2017, 289, 60–77. [Google Scholar] [CrossRef]
- Mangifesta, M.; Aringoli, D.; Pambianchi, G.; Giannini, L.M.; Scalella, G.; Sciarra, N. A Methodologic Approach to Study Large and Complex Landslides: An Application in Central Apennines. Geosciences 2024, 14, 272. [Google Scholar] [CrossRef]
- Santangelo, M.; Marchesini, I.; Bucci, F.; Cardinali, M.; Cavalli, M.; Crema, S.; Marchi, L.; Alvioli, M.; Guzzetti, F. Exposure to landslides in rural areas in Central Italy. J. Maps 2021, 17, 124–132. [Google Scholar] [CrossRef]
- Břežný, M.; Pánek, T. Deep-seated landslides affecting monoclinal flysch morphostructure: Evaluation of LiDAR-derived topography of the highest range of the Czech Carpathians. Geomorphology 2017, 285, 44–57. [Google Scholar] [CrossRef]
- Chalupa, V.; Pánek, T.; Břežný, M.; Gutiérrez, F.; Medialdea, A. Evolution of deep-seated gravitational slope deformation in a deep valley of the Czech Flysch Carpathians. Geomorphology 2025, 470, 109545. [Google Scholar] [CrossRef]
- Merritt, A.; Chambers, J.; Murphy, W.; Wilkinson, P.; West, L.; Gunn, D.; Meldrum, P.; Kirkham, M.; Dixon, N. 3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides 2014, 11, 537–550. [Google Scholar] [CrossRef]
- Bièvre, G.; Jongmans, D.; Goutaland, D.; Pathier, E.; Zumbo, V. Geophysical characterization of the lithological control on the kinematic pattern in a large clayey landslide (Avignonet, French Alps). Landslides 2016, 13, 423–436. [Google Scholar] [CrossRef]
- Hu, S.; Wang, X.; Wang, N.; Yang, D.; Wang, D.; Ma, S.; Song, Z.; Cao, M. Dynamic process, influence, and triggering mechanism of slope remodelling by landslide clusters in the South Jingyang Tableland, China. CATENA 2022, 217, 106518. [Google Scholar] [CrossRef]
- Kasprzak, M.; Jancewicz, K.; Różycka, M.; Kotwicka, W.; Migoń, P. Geomorphology-and geophysics-based recognition of stages of deep-seated slope deformation (Sudetes, SW Poland). Eng. Geol. 2019, 260, 105230. [Google Scholar] [CrossRef]
- Bellanova, J.; Calamita, G.; Giocoli, A.; Luongo, R.; Macchiato, M.; Perrone, A.; Uhlemann, S.; Piscitelli, S. Electrical resistivity imaging for the characterization of the Montaguto landslide (southern Italy). Eng. Geol. 2018, 243, 272–281. [Google Scholar] [CrossRef]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Soto, J.; Galve, J.P.; Palenzuela, J.A.; Azañón, J.M.; Tamay, J.; Irigaray, C. A Multi-Method Approach for the Characterization of Landslides in an Intramontane Basin in the Andes (Loja, Ecuador). Landslides 2017, 14, 1929–1947. [Google Scholar] [CrossRef]
- Li, R.; Hu, X.; Xu, D.; Liu, Y.; Yu, N. Characterizing the 3D hydrogeological structure of a debris landslide using the transient electromagnetic method. J. Appl. Geophys. 2020, 175, 103991. [Google Scholar] [CrossRef]
- Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J. Landslide characterization using P-and S-wave seismic refraction tomography—The importance of elastic moduli. J. Appl. Geophys. 2016, 134, 64–76. [Google Scholar] [CrossRef]
- Aguzzoli, A.; Arosio, D.; Mulas, M.; Ciccarese, G.; Bayer, B.; Winkler, G.; Ronchetti, F. Multidisciplinary non-invasive investigations to develop a hydrogeological conceptual model supporting slope kinematics at Fontana Cornia landslide, Northern Apennines, Italy. Environ. Earth Sci. 2022, 81, 471. [Google Scholar] [CrossRef]
- Podolszki, L.; Kosović, I.; Novosel, T.; Kurečić, T. Multi-Level Sensing Technologies in Landslide Research—Hrvatska Kostajnica Case Study, Croatia. Sensors 2022, 22, 177. [Google Scholar] [CrossRef]
- Bounab, A.; El Kharim, Y.; El Hamdouni, R.; Hlila, R. A multidisciplinary approach to study slope instability in the Alboran Sea shoreline: Study of the Tamegaret deep-seated slow-moving landslide in Northern Morocco. J. Afr. Earth Sci. 2021, 184, 104345. [Google Scholar] [CrossRef]
- Giannini, L.M.; Younsi, S.; Burchini, B.; Deiana, R.; Cassiani, G.; Ciampi, P. Integrating Geophysical Methods, InSAR, and Field Observations to Address Geological Hazards and Buried Archaeological Features in Urban Landscapes. J. Appl. Geophys. 2025, 238, 105726. [Google Scholar] [CrossRef]
- Kannaujiya, S.; Chattoraj, S.L.; Jayalath, D.; Champati Ray, P.K.; Bajaj, K.; Podali, S.; Bisht, M.P.S. Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Nat. Hazards 2019, 97, 1191–1208. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Peng, J.; Zhu, W.; Lu, Z. Multi-Temporal Loess Landslide Inventory Mapping with C-, X- and L-Band SAR Datasets—A Case Study of Heifangtai Loess Landslides, China. Remote Sens. 2018, 10, 1756. [Google Scholar] [CrossRef]
- Himi, M.; Anton, M.; Sendrós, A.; Abancó, C.; Ercoli, M.; Lovera, R.; Deidda, G.P.; Urruela, A.; Rivero, L.; Casas, A. Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees. Remote Sens. 2022, 14, 6333. [Google Scholar] [CrossRef]
- Pastor, J.L.; Tomás, R.; Lettieri, L.; Riquelme, A.; Cano, M.; Infante, D.; Ramondini, M.; Di Martire, D. Multi-Source Data Integration to Investigate a Deep-Seated Landslide Affecting a Bridge. Remote Sens. 2019, 11, 1878. [Google Scholar] [CrossRef]
- Qi, S.; Zou, Y.; Wu, F.; Yan, C.; Fan, J.; Zang, M.; Zhang, S.; Wang, R. A Recognition and Geological Model of a Deep-Seated Ancient Landslide at a Reservoir under Construction. Remote Sens. 2017, 9, 383. [Google Scholar] [CrossRef]
- Sciarra, N.; Mangifesta, M.; Carabba, L.; Mischiatti, L. Methodological Approach for the Study of Historical Centres of High Architectural Value Affected by Geo-Hydrological Hazards: The Case of Lanciano (Abruzzo Region—Central Italy). Geosciences 2022, 12, 193. [Google Scholar] [CrossRef]
- Orozco, A.F.; Bücker, M.; Steiner, M.; Malet, J.P. Complex-conductivity imaging for the understanding of landslide architecture. Eng. Geol. 2018, 243, 241–252. [Google Scholar] [CrossRef]
- Pavoni, M.; Carrera, A.; Boaga, J. Improving the Galvanic Contact Resistance for Geoelectrical Measurements in Debris Areas: A Case Study. Near Surf. Geophys. 2022, 20, 178–191. [Google Scholar] [CrossRef]
- Ciampi, P.; Giannini, L.M.; Cassiani, G.; Esposito, C.; Petrangeli, P.M. Geo-constrained clustering of resistivity data revealing the heterogeneous lithological architectures and the distinctive geoelectrical signature of shallow deposits. Eng. Geol. 2024, 337, 107589. [Google Scholar] [CrossRef]
- Samodra, G.; Ramadhan, M.F.; Sartohadi, J.; Setiawan, M.A.; Christanto, N.; Sukmawijaya, A. Characterization of Displacement and Internal Structure of Landslides from Multitemporal UAV and ERT Imaging. Landslides 2020, 17, 2455–2468. [Google Scholar] [CrossRef]
- Xu, D.; Hu, X.Y.; Shan, C.L.; Li, R.H. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography. Appl. Geophys. 2016, 13, 1–2. [Google Scholar] [CrossRef]
- Sun, M.; Liu, J.; Ou, J.; Liu, R.; Zhu, L. Electrical Resistivity Tomography (ERT) Investigation for Landslides: Case Study in the Hunan Province, China. Appl. Sci. 2024, 14, 3007. [Google Scholar] [CrossRef]
- Huntley, D.; Bobrowsky, P.; Hendry, M.; Macciotta, R.; Best, M. Multi-technique geophysical investigation of a very slow-moving landslide near Ashcroft, British Columbia, Canada. J. Environ. Eng. Geophys. 2019, 24, 87–110. [Google Scholar] [CrossRef]
- Huayllazo, Y.; Infa, R.; Soto, J.; Lazarte, K.; Huanca, J.; Alvarez, Y.; Teixidó, T. Using Electrical Resistivity Tomography Method to Determine the Inner 3D Geometry and the Main Runoff Directions of the Large Active Landslide of Pie de Cuesta in the Vítor Valley (Peru). Geosciences 2023, 13, 342. [Google Scholar] [CrossRef]
- Imani, P.; El-Raouf, A.A.; Tian, G. Landslide investigation using Seismic Refraction Tomography method: A review. Ann. Geophys. 2022, 64, SE657. [Google Scholar] [CrossRef]
- Mreyen, A.S.; Cauchie, L.; Micu, M.; Onaca, A.; Havenith, H.B. Multiple geophysical investigations to characterize massive slope failure deposits: Application to the Balta rockslide, Carpathians. Geophys. J. Int. 2021, 225, 1032–1047. [Google Scholar] [CrossRef]
- Wróbel, M.; Stan-Kłeczek, I.; Marciniak, A.; Majdański, M.; Kowalczyk, S.; Nawrot, A.; Cader, J. Integrated Geophysical Imaging and Remote Sensing for Enhancing Geological Interpretation of Landslides with Uncertainty Estimation—A Case Study from Cisiec, Poland. Remote Sens. 2023, 15, 238. [Google Scholar] [CrossRef]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Rabus, B.; Engelbrecht, J.; Clague, J.J.; Newman, S.D.; Francioni, M. Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data. Remote Sens. 2024, 16, 117. [Google Scholar] [CrossRef]
- Bian, S.; Chen, G.; Zeng, R.; Meng, X.; Jin, J.; Lin, L.; Zhang, Y.; Shi, W. Post-failure evolution analysis of an irrigation-induced loess landslide using multiple remote sensing approaches integrated with time-lapse ERT imaging: Lessons from Heifangtai, China. Landslides 2022, 19, 1179–1197. [Google Scholar] [CrossRef]
- Perrone, A.; Zeni, G.; Piscitelli, S.; Pepe, A.; Loperte, A.; Lapenna, V.; Lanari, R. Joint analysis of SAR interferometry and electrical resistivity tomography surveys for investigating ground deformation: The case-study of Satriano di Lucania (Potenza, Italy). Eng. Geol. 2006, 88, 260–273. [Google Scholar] [CrossRef]
- Mangifesta, M.; Ciampi, P.; Giannini, L.M.; Esposito, C.; Scalella, G.; Sciarra, N. DsGSD numerical modelling supported by an integrated geognostic surveys: The case of the Borrano (Abruzzo Region—Central Italy). Geosciences 2025, 15, 134. [Google Scholar] [CrossRef]
- Il Portale dei Dati Aperti Della Regione Abruzzo. Available online: http://opendata.regione.abruzzo.it/ (accessed on 18 March 2025).
- Geoportale Nazionale MASE. Available online: https://gn.mase.gov.it/portale/home (accessed on 18 March 2025).
- ERTLab Studio. Available online: http://www.geostudiastier.it/area_en.asp?idCanale=56&sezione=1 (accessed on 18 March 2025).
- ASF Data Search. Available online: https://search.asf.alaska.edu/ (accessed on 18 March 2025).
- SNAP Download. Available online: https://step.esa.int/main/download/snap-download/ (accessed on 18 March 2025).
- STAMPS.com. Available online: https://www.stamps.com/download/ (accessed on 18 March 2025).
- Petronio, L.; Boaga, J.; Cassiani, G. Characterization of the vajont landslide (north-eastern italy) by means of reflection and surface wave seismics. J. Appl. Geophys. 2016, 128, 58–67. [Google Scholar] [CrossRef]
- Boyd, J.P.; Binley, A.; Wilkinson, P.; Holmes, J.; Bruce, E.; Chambers, J. Practical considerations for using petrophysics and geoelectrical methods on clay rich landslides. Eng. Geol. 2024, 334, 107506. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Nasta, P.; Boaga, J.; Deiana, R.; Cassiani, G.; Romano, N. Comparing ERT-and Scaling-Based Approaches to Parameterize Soil Hydraulic Properties for Spatially Distributed Model Applications. Adv. Water Res. 2019, 126, 155–167. [Google Scholar] [CrossRef]
- Holmes, J.; Chambers, J.; Wilkinson, P.; Meldrum, P.; Cimpoiaşu, M.; Boyd, J.; Huntley, D.; Williamson, P.; Gunn, D.; Dashwood, B.; et al. Application of petrophysical relationships to electrical resistivity models for assessing the stability of a landslide in British Columbia, Canada. Eng. Geol. 2022, 301, 106613. [Google Scholar] [CrossRef]
- Hübner, R.; Heller, K.; Günther, T.; Kleber, A. Monitoring Hillslope Moisture Dynamics with Surface ERT for Enhancing Spatial Significance of Hydrometric Point Measurements. Hydrol. Earth Syst. Sci. 2015, 19, 225–240. [Google Scholar] [CrossRef]
- Zito, C.; Mangifesta, M.; Francioni, M.; Guerriero, L.; Di Martire, D.; Calcaterra, D.; Sciarra, N. Cascading Landslide: Kinematic and Finite Element Method Analysis through Remote Sensing Techniques. Remote Sens. 2024, 16, 3423. [Google Scholar] [CrossRef]
- Kelevitz, K.; Novellino, A.; Watlet, A.; Boyd, J.; Whiteley, J.; Chambers, J.; Jordan, C.; Wright, T.; Hooper, A.; Biggs, J. Ground and Satellite-Based Methods of Measuring Deformation at a UK Landslide Observatory: Comparison and Integration. Remote Sens. 2022, 14, 2836. [Google Scholar] [CrossRef]
- Rathore, H.A.; Abrar, N.; Farooq, M.; Khan, M.Y.; Turab, S.A.; Saralioglu, E.; Noor, S.; Niaz, J. Geophysical and geotechnical characterization of Lower Sudhan Gali Landslide (LSGL), Bagh Azad Jammu & Kashmir. Geomat. Nat. Hazards Risk 2024, 15, 2383775. [Google Scholar] [CrossRef]
- Jaramillo, G.G.; Galve, J.P.; Ortiz, M.F.G.; Reyes-Carmona, C.; Luzuriaga, J.S.; Azañón, J.M. Multi-technique approaches to diagnose unstable ground: Origin of the structural damages in Ciudad Victoria (Loja, Ecuador) case-study. J. S. Am. Earth Sci. 2024, 146, 105106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciampi, P.; Mangifesta, M.; Giannini, L.M.; Esposito, C.; Scalella, G.; Burchini, B.; Sciarra, N. Geophysical and Remote Sensing Techniques for Large-Volume and Complex Landslide Assessment. Remote Sens. 2025, 17, 2029. https://doi.org/10.3390/rs17122029
Ciampi P, Mangifesta M, Giannini LM, Esposito C, Scalella G, Burchini B, Sciarra N. Geophysical and Remote Sensing Techniques for Large-Volume and Complex Landslide Assessment. Remote Sensing. 2025; 17(12):2029. https://doi.org/10.3390/rs17122029
Chicago/Turabian StyleCiampi, Paolo, Massimo Mangifesta, Leonardo Maria Giannini, Carlo Esposito, Gianni Scalella, Benedetto Burchini, and Nicola Sciarra. 2025. "Geophysical and Remote Sensing Techniques for Large-Volume and Complex Landslide Assessment" Remote Sensing 17, no. 12: 2029. https://doi.org/10.3390/rs17122029
APA StyleCiampi, P., Mangifesta, M., Giannini, L. M., Esposito, C., Scalella, G., Burchini, B., & Sciarra, N. (2025). Geophysical and Remote Sensing Techniques for Large-Volume and Complex Landslide Assessment. Remote Sensing, 17(12), 2029. https://doi.org/10.3390/rs17122029