A New Sentinel-2 Spectral Index for Mapping Hydrilla verticillata in Shallow Freshwater Lakes in Florida, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground-Truth Surveys
2.3. Satellite Images
2.4. Submerged Aquatic Vegetation Index for Hydrilla (SVIH)
2.5. Other Vegetation Indices
2.6. Index Thresholding
- (i)
- Incremental searching for the optimal threshold value: This method incrementally adjusts the threshold value to determine the value that maximizes the Matthews correlation coefficient (MCC), which is a robust binary classification evaluation metric that accounts for all elements of the confusion matrix and performs reliably on imbalanced datasets [60,61].
- (ii)
- (iii)
- A zero-value threshold: A threshold of zero was previously used to evaluate the MFI index [23]. This threshold was applied exclusively to MFI and SVIH index comparisons.
2.7. Accuracy Assessment
2.8. Accuracy Assessment Metrics
3. Results
Vegetation Indices and Threshold Methods
4. Discussion
4.1. Performance of SVIH Compared to Other Indices
4.2. Thresholding Methods and Their Implications
4.3. Performance Comparison of ACOLITE vs. Sen2Cor
4.4. Challenges in Detecting Hydrilla in Deep Waters and Study Constraints
4.5. Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, E.E.; Brezonik, P.L. Limnological Characteristics of North and Central Florida Lakes1. Limnol. Oceanogr. 1972, 17, 97–110. [Google Scholar] [CrossRef]
- Schiffer, D.M. Hydrology of Central Florida Lakes—A Primer; U.S. Geological Survey Circular: Denver, CO, USA, 1998. [CrossRef]
- Beck, B.F. A generalized genetic framework for the development of sinkholes and Karst in Florida, U.S.A. Environ. Geol. Water Sci. 1986, 8, 5–18. [Google Scholar] [CrossRef]
- Brenner, M.; Whitmore, T.J.; Schelske, C.L. Paleolimnological evaluation of historical trophic state conditions in hypereutrophic Lake Thonotosassa, Florida, USA. Hydrobiologia 1996, 331, 143–152. [Google Scholar] [CrossRef]
- Dai, Y.; Feng, L.; Hou, X.; Tang, J. An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery. Remote Sens. Environ. 2021, 260, 112459. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Zeng, S.; Cai, X.; Bi, S.; Liu, H.; Mu, M.; Dong, X.; Li, J.; Xu, J.; et al. Recognition of aquatic vegetation above water using shortwave infrared baseline and phenological features. Ecol. Indic. 2022, 136, 108607. [Google Scholar] [CrossRef]
- Schmitz, D.C.; Nelson, B.V.; Nail, L.E.; Schardt, J.D. Exotic Aquatic Plants in Florida: A Historical Perspective and Review of the Present Aquatic Plant Regulation Program. In Proceedings of the Symposium on Exotic Pest Plants, Miami, FL, USA, 2–4 November 1988. Chapter 21. [Google Scholar]
- Langeland, K.A. Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), “the perfect aquatic weed”. Castanea 1996, 61, 293–304. [Google Scholar]
- Kumar, A.; Cooper, C.; Remillard, C.M.; Ghosh, S.; Haney, A.; Braun, F.; Conner, Z.; Page, B.; Boyd, K.; Wilde, S.; et al. Spatiotemporal monitoring of hydrilla [Hydrilla verticillata (L. f.) Royle] to aid management actions. Weed Technol. 2019, 33, 518–529. [Google Scholar] [CrossRef]
- Blanco, A.; Qu, J.J.; Roper, W.E. Spectral signatures of hydrilla from a tank and field setting. Front. Earth Sci. 2012, 6, 453–460. [Google Scholar] [CrossRef]
- Hauxwell, J.; Knight, S.; Wagner, K.; Mikulyuk, A.; Nault, M.; Porzky, M.; Chase, S. Recommended Baseline Monitoring of Aquatic Plants in Wisconsin: Sampling Design, Field and Laboratory Procedures, Data Entry and Analysis, and Applications; PUB-SS-1068; Wisconsin Department of Natural Resources Bureau of Science Services: Madison, WI, USA, 2010.
- Madsen, J.D. Point Intercept and Line Intercept Methods for Aquatic Plant Management; TN APCRP-M1-02; APCRP Technical Notes Collection; Army Engineer Research and Development Center: Vicksburg, MS, USA, 1999. [Google Scholar] [CrossRef]
- Valley, R.D.; Drake, M.T. Accuracy and Precision of Hydroacoustic Estimates of Aquatic Vegetation and the Repeatability of Whole-Lake Surveys: Field Tests with a Commercial Echosounder; Investigational Report 527; Minnesota Department of Natural Resources Divsion of Fisheries and Wildlife: Saint Paul, MN, USA, 2005; Available online: https://files.dnr.state.mn.us/publications/fisheries/investigational_reports/527.pdf (accessed on 4 March 2025).
- Shuchman, R.A.; Sayers, M.J.; Brooks, C.N. Mapping and monitoring the extent of submerged aquatic vegetation in the Laurentian Great Lakes with multi-scale satellite remote sensing. J. Great Lakes Res. 2013, 39, 78–89. [Google Scholar] [CrossRef]
- Luo, J.; Ma, R.; Duan, H.; Hu, W.; Zhu, J.; Huang, W.; Lin, C. A New Method for Modifying Thresholds in the Classification of Tree Models for Mapping Aquatic Vegetation in Taihu Lake with Satellite Images. Remote Sens. 2014, 6, 7442–7462. [Google Scholar] [CrossRef]
- Luo, J.; Ni, G.; Zhang, Y.; Wang, K.; Shen, M.; Cao, Z.; Qi, T.; Xiao, Q.; Qiu, Y.; Cai, Y.; et al. A new technique for quantifying algal bloom, floating/emergent and submerged vegetation in eutrophic shallow lakes using Landsat imagery. Remote Sens. Environ. 2023, 287, 113480. [Google Scholar] [CrossRef]
- Rotta, L.H.S.; Mishra, D.R.; Watanabe, F.S.Y.; Rodrigues, T.W.P.; Alcântara, E.H.; Imai, N.N. Analyzing the feasibility of a space-borne sensor (SPOT-6) to estimate the height of submerged aquatic vegetation (SAV) in inland waters. ISPRS J. Photogramm. Remote Sens. 2018, 144, 341–356. [Google Scholar] [CrossRef]
- Bubenheim, D.; Genovese, V.; Madsen, J.; Hard, E. Remote sensing and mapping of floating aquatic vegetation in the Sacramento–San Joaquin River Delta. J. Aquat. Plant Manag. 2021, 59s, 46–54. [Google Scholar]
- Kislik, C.; Dronova, I.; Grantham, T.E.; Kelly, M. Mapping algal bloom dynamics in small reservoirs using Sentinel-2 imagery in Google Earth Engine. Ecol. Indic. 2022, 140, 109041. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Shi, K.; Zhou, Y.; Tang, X.; Zhu, G.; Qin, B. Mapping aquatic vegetation in a large, shallow eutrophic lake: A Frequency-Based approach using multiple years of MODIS data. Remote Sens. 2015, 7, 10295–10320. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Wang, C.; Mao, D.; Zhang, Y. A new vegetation index to detect periodically submerged mangrove forest using Single-Tide Sentinel-2 imagery. Remote Sens. 2019, 11, 2043. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2012, 23, 344–351. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Liang, S.; Gong, Z.; Wang, Y.; Zhao, J.; Zhao, W. Accurate monitoring of submerged aquatic vegetation in a macrophytic lake using Time-Series Sentinel-2 images. Remote Sens. 2022, 14, 640. [Google Scholar] [CrossRef]
- Gao, H.; Li, R.; Shen, Q.; Yao, Y.; Shao, Y.; Zhou, Y.; Li, W.; Li, J.; Zhang, Y.; Liu, M. Deep-Learning-Based Automatic Extraction of Aquatic Vegetation from Sentinel-2 Images—A Case Study of Lake Honghu. Remote Sens. 2024, 16, 867. [Google Scholar] [CrossRef]
- Liang, Y.; Gong, Z.; Zhao, Y.; Yang, Y. Assessing the influence of the ecological restoration project on the submerged aquatic vegetation in the Baiyangdian Lake, northern China. Ecohydrol. Hydrobiol. 2024, 24, 864–874. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, S.; Ke, Y. A simple Phenology-Based vegetation index for mapping invasive Spartina alterniflora using Google Earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 190–201. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Ustin, S. Modeling Leaf Optical Properties: Prospect. In Leaf Optical Properties; Cambridge University Press eBooks: Cambridge, UK, 2019; pp. 265–291. [Google Scholar] [CrossRef]
- John, C.M.; Kavya, N. Integration of multispectral satellite and hyperspectral field data for aquatic macrophyte studies. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Technical Commission VIII Symposium, Hyderabad, India, 9–12 December 2014; Volume XL-8, pp. 581–588. [Google Scholar] [CrossRef]
- Ghoussein, Y.; Faour, G.; Fadel, A.; Haury, J.; Abou-Hamdan, H.; Nicolas, H. Hyperspectral discrimination of Eichhornia crassipes covers, in the red edge and near infrared in a Mediterranean river. Biol. Invasions 2023, 25, 3619–3635. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the application of remote sensing in effective monitoring of water quality parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- Moore, G.K. Satellite remote sensing of water turbidity/Sonde de télémesure par satellite de la turbidité de l’eau. Hydrol. Sci. Bull. 1980, 25, 407–421. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Gordon, H.R.; Clark, D.K.; Hovis, W.A.; Austin, R.W.; Yentsch, C.S. Chapter 8 Ocean color measurements. In Advances in geophysics; Elsevier: Amsterdam, The Netherlands, 1985; Volume 27, pp. 297–320. [Google Scholar] [CrossRef]
- Cho, H.J.; Mishra, D.; Wood, J. Remote sensing of submerged aquatic vegetation. In Remote Sensing–Applications; Ramirez, B.E., Ed.; Intech eBooks: London, UK, 2012; pp. 297–308. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, H.; Wang, D.; Li, D.; Liu, W.; Si, Y.; Liu, Y.; Li, J.; Duan, H.; Shen, M. Assessment of atmospheric Correction Algorithms for correcting sunglint effects in Sentinel-2 MSI Imagery: A case study in clean lakes. Remote Sens. 2024, 16, 3060. [Google Scholar] [CrossRef]
- Pan, Y.; Bélanger, S.; Huot, Y. Evaluation of Atmospheric Correction Algorithms over Lakes for High-Resolution Multispectral Imagery: Implications of Adjacency Effect. Remote Sens. 2022, 14, 2979. [Google Scholar] [CrossRef]
- Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdú, A.; Delegido, J.; Tenjo, C.; Soria-Perpinyà, X.; Vicente, E.; Soria, J.; Moreno, J. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 2019, 11, 1469. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Nazeer, M.; Alsahli, M.M.M.; Nichol, J.E.; Pan, J.; Wu, W.; Bilal, M.; Saeed, U. A novel three-band macroalgae detection index (TMI) for aquatic environments. Int. J. Remote Sens. 2023, 44, 2359–2381. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec. Publ. 1974, 351, 309. Available online: http://ui.adsabs.harvard.edu/abs/1974NASSP.351..309R/abstract (accessed on 10 April 2025).
- Villa, P.; Laini, A.; Bresciani, M.; Bolpagni, R. A remote sensing approach to monitor the conservation status of lacustrine Phragmites australis beds. Wetl. Ecol. Manag. 2013, 21, 399–416. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- The U.S. Environmental Protection Agency. (USEPA) National Eutrophication Survey Working Paper Series. In Report on Lake Yale, Lake County, Florida, EPA Region IV; Working Paper No. 280; USEPA: Washington, DC, USA, 1977. [Google Scholar]
- Division of Environmental Assessment and Restoration, Water Quality Restoration Program, Florida Department of Environmental Protection; Upper Ocklawaha River Basin Stakeholders. Upper Ocklawaha River Basin Management Action Plan Amendment; Blair Stone Road: Tallahassee, FL, USA, 2019; Available online: https://publicfiles.dep.state.fl.us/DEAR/DEARweb/BMAP/Upper%20Ocklawaha%20River%20Basin%20Phase%202/Upper%20Ocklawaha%20BMAP%20Amendment%20_Final_ADA_compliant%206-17-19.pdf (accessed on 10 April 2025).
- Hestand III, R.S.; Thompson, B.Z.; Mallison, C.T. Effects of triploid grass carp and sonar treatments on aquatic plants in Lake Yale. In Proceedings of the Grass Carp symposium, Gainesville, FL, USA, 7–9 March 1994. [Google Scholar]
- USF Water Institute, School of Geosciences, University of South Florida. Lake Yale-Lake County Water Atlas. Available online: https://lake.wateratlas.usf.edu/waterbodies/lakes/8080/lake-yale#:~:text=53.56%20%2D%2060.28%20ft (accessed on 11 April 2025).
- Ji, G.; Havens, K. Periods of extreme shallow depth hinder but do not stop Long-Term improvements of water quality in Lake Apopka, Florida (USA). Water 2019, 11, 538. [Google Scholar] [CrossRef]
- Bachmann, R.W.; Hoyer, M.V.; Canfield, D.E., Jr. The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia 1999, 394, 219–232. [Google Scholar] [CrossRef]
- Coveney, M.F.; Stites, D.L.; Lowe, E.F.; Battoe, L.E.; Conrow, R. Nutrient removal from eutrophic lake water by wetland filtration. Ecol. Eng. 2002, 19, 141–159. [Google Scholar] [CrossRef]
- USF Water Institute, School of Geosciences, University of South Florida. Lake Apopka-Lake County Water Atlas. Available online: https://lake.wateratlas.usf.edu/waterbodies/lakes/7800/lake-apopka (accessed on 11 April 2025).
- Florida Fish and Wildlife Conservation Commission (FWC). Available online: https://myfwc.com/research/freshwater/freshwater-projects/long-term-monitoring/project/ (accessed on 11 April 2025).
- Thayer, J.; Enloe, S.; Prince, C.; MacDonald, G.; Leary, J. Spatial-temporal shifts in submersed aquatic vegetation community structure resulting from a selective herbicide treatment in Lake Sampson, Florida, USA. Lake Reserv. Manag. 2024, 40, 248–263. [Google Scholar] [CrossRef]
- Van, T.K.; Haller, W.T.; Garrard, L.A. The effect of day length and temperature on hydrilla growth and tuber production. J. Aquat. Plant Manage. 1977, 16, 57–59. [Google Scholar]
- Hydrilla, Invasive Aquatic Plants. 2023. Available online: https://seagrant.psu.edu/wp-content/uploads/2023/10/PA-Sea-Grant-AIS-fact-sheet-Hydrilla-2023.pdf (accessed on 11 April 2025).
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. SENTINEL-2 SEN2COR: L2A Processor for users. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Baldi, P.; Brunak, S.; Chauvin, Y.; Nielsen, H. Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics 2000, 16, 412–424. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews Correlation Coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.T.; Li, H.W.; Zhang, B.; Lv, J.R. Research on Geographical Environment Unit Division based on the Method of Natural Breaks (JENKs). In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 5–6 December 2013; Volume XL-4/W3, pp. 47–50. Available online: https://doi.org/10.5194/isprsarchives-xl-4-w3-47-2013 (accessed on 11 April 2025). [CrossRef]
- Anchang, J.Y.; Ananga, E.O.; Pu, R. An efficient unsupervised index-based approach for mapping urban vegetation from IKONOS imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 211–220. [Google Scholar] [CrossRef]
- Saleh, M. Evaluation of Jenks natural Breaks clustering algorithm for Changepoint identification in streaming sensor data. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Bostrom, K.J.; Chlus, A.; Hammerstrom, K.; Thompson, D.R.; Lee, Z. Pushing the limits of seagrass remote sensing in the turbid waters of Elkhorn Slough, California. Remote Sens. 2019, 11, 1664. [Google Scholar] [CrossRef]
- Dierssen, H.M. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Proc. Natl. Acad. Sci. USA 2010, 107, 17073–17078. [Google Scholar] [CrossRef]
- Kutser, T. Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. Int. J. Remote Sens. 2009, 30, 4401–4425. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
Lake &Year | Rake Sampling Date * | Water Clarity Readings at the Time of Rake Sampling | Satellite Image Acquisition Date * | Water Clarity Readings at the Time of Satellite Image Acquisition | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SDD (m) | Date * | Turbidity (NTU) | Date * | SDD (m) | Date * | Turbidity (NTU) | Date * | |||
Apopka 2020 | 07/29 to 08/10 | NLA: 0.4 | 08/12 | NLA:10.03 | 08/12 | 10/30 | NLA:0.38 | 12/15 | NLA: 7.63 | 12/15 |
CLA:0.38 | 08/12 | CLA: 14.54 | 08/12 | CLA: 0.4 | 10/12 | CLA: 9.43 | 10/12 | |||
SLA: 0.41 | 08/12 | SLA: 10.42 | 08/12 | SLA: 0.51 | 12/15 | SLA: 6.64 | 12/15 | |||
Apopka 2021 | 08/17 to 09/29 | NLA: 1.2 | 08/16 | NLA: 2.16 | 08/16 | 10/30 | NLA:1.4 | 10/11 | NLA:2.76 | 10/11 |
CLA:0.34 | 09/13 | CLA: 14.33 | 09/13 | CLA: 0.38 | 10/11 | CLA:9.72 | 10/11 | |||
SLA: 0.35 | 08/16 | SLA: 15.61 | 08/16 | SLA: 0.42 | 10/11 | SLA: 7.71 | 10/11 | |||
Apopka 2022 | 08/03 to 09/22 | NLA:0.65 | 04/14 | NLA: 2.16 | 08/15 | 10/25 | NLA: 0.9 | 10/13 | NLA: 3.96 | 10/13 |
CLA: 0.5 | 09/12 | CLA: 10.74 | 09/12 | CLA: 0.3 | 10/10 | CLA:23.75 | 10/10 | |||
SLA: 0.4 | 08/15 | SLA: 11.22 | 08/15 | SLA: 0.3 | 10/10 | SLA:29.35 | 10/10 | |||
Yale 2021 | 09/16 to 09/21 | 0.4 | 09/28 | 3.77 | 09/21 | 10/30 | 0.7 | 10/26 | 0.5 | 11/30 |
Band | Resolution (m) | Central Wavelength | Description |
---|---|---|---|
B1 | 60 | 443 nm | Coastal aerosol |
B2 | 10 | 490 nm | Blue |
B3 | 10 | 560 nm | Green |
B4 | 10 | 665 nm | Red |
B5 | 20 | 705 nm | Red-edge (RE1) |
B6 | 20 | 740 nm | Red-edge (RE2) |
B7 | 20 | 783 nm | Red-edge (RE3) |
B8 | 10 | 842 nm | Near-infrared (NIR) |
B8a | 20 | 865 nm | Narrow NIR |
B9 | 60 | 940 nm | Water vapor |
B10 | 60 | 1375 nm | SWIR Cirrus |
B11 | 20 | 1610 nm | Shortwave infrared (SWIR1) |
B12 | 20 | 2190 nm | Shortwave infrared (SWIR2) |
Name | Expression | Reference |
---|---|---|
NDVI | [44] | |
NDAVI | [45] | |
FAI | [46] | |
MFI | where the is the reflectance of the band centered at λ, and i ranges from 1 to 4; λ1, λ2, λ3, λ4 correspond to the central wavelengths at 705, 740, 783, and 865 nm, respectively | [23] |
(a) Incremental search Threshold | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrilla Levels of Abundance | ACOLITE-corrected | Sen2Cor-corrected | |||||||||||
Index | Threshold | Accuracy | Precision | Recall | F1 | MCC | Threshold | Accuracy | Precision | recall | F1 | MCC | |
Level 3 (n = 165) | SVIH | −0.09 | 0.96 | 0.99 | 0.94 | 0.96 | 0.93 | −0.19 | 0.96 | 0.98 | 0.94 | 0.96 | 0.92 |
NDVI | 0.16 | 0.62 | 0.86 | 0.29 | 0.43 | 0.32 | −0.27 | 0.68 | 0.75 | 0.55 | 0.64 | 0.38 | |
NDAVI | 0.03 | 0.66 | 0.80 | 0.42 | 0.55 | 0.36 | −0.37 | 0.71 | 0.79 | 0.56 | 0.66 | 0.44 | |
FAI | 0.01 | 0.63 | 0.86 | 0.30 | 0.45 | 0.33 | 0 | 0.66 | 0.86 | 0.39 | 0.54 | 0.39 | |
MFI | 0 | 0.82 | 0.74 | 0.96 | 0.84 | 0.66 | 0 | 0.89 | 0.92 | 0.85 | 0.89 | 0.78 | |
Levels 2 and 3 (n = 165) | SVIH | −0.09 | 0.95 | 0.99 | 0.92 | 0.95 | 0.91 | −0.19 | 0.95 | 0.98 | 0.92 | 0.95 | 0.90 |
NDVI | 0.14 | 0.62 | 0.83 | 0.30 | 0.44 | 0.31 | −0.29 | 0.69 | 0.74 | 0.58 | 0.65 | 0.39 | |
NDAVI | 0.08 | 0.63 | 0.81 | 0.35 | 0.49 | 0.33 | −0.36 | 0.71 | 0.81 | 0.56 | 0.66 | 0.45 | |
FAI | 0.01 | 0.62 | 0.86 | 0.29 | 0.43 | 0.32 | 0 | 0.65 | 0.86 | 0.37 | 0.52 | 0.38 | |
MFI | 0 | 0.79 | 0.73 | 0.92 | 0.82 | 0.61 | 0 | 0.85 | 0.91 | 0.78 | 0.84 | 0.72 | |
Levels 1, 2, and 3 (n = 165) | SVIH | −0.09 | 0.94 | 0.99 | 0.88 | 0.93 | 0.88 | −0.19 | 0.93 | 0.98 | 0.87 | 0.92 | 0.86 |
NDVI | 0.10 | 0.61 | 0.78 | 0.31 | 0.44 | 0.28 | −0.30 | 0.67 | 0.73 | 0.55 | 0.62 | 0.35 | |
NDAVI | 0.03 | 0.64 | 0.78 | 0.38 | 0.51 | 0.32 | −0.36 | 0.70 | 0.80 | 0.53 | 0.64 | 0.42 | |
FAI | 0.01 | 0.60 | 0.84 | 0.25 | 0.38 | 0.28 | 0 | 0.65 | 0.85 | 0.35 | 0.50 | 0.36 | |
MFI | 0 | 0.80 | 0.74 | 0.93 | 0.82 | 0.62 | 0 | 0.86 | 0.92 | 0.80 | 0.85 | 0.73 | |
(b) Zero Threshold | |||||||||||||
Level 3 (n = 165) | SVIH | 0 | 0.95 | 0.99 | 0.91 | 0.95 | 0.91 | 0 | 0.92 | 0.99 | 0.85 | 0.92 | 0.86 |
MFI | 0 | 0.82 | 0.74 | 0.96 | 0.84 | 0.66 | 0 | 0.89 | 0.92 | 0.85 | 0.89 | 0.78 | |
Levels 2 and 3 (n = 165) | SVIH | 0 | 0.93 | 0.99 | 0.87 | 0.93 | 0.87 | 0 | 0.88 | 0.99 | 0.77 | 0.87 | 0.78 |
MFI | 0 | 0.79 | 0.73 | 0.92 | 0.82 | 0.61 | 0 | 0.85 | 0.91 | 0.78 | 0.84 | 0.72 | |
Levels 1, 2, and 3 (n = 165) | SVIH | 0 | 0.92 | 0.99 | 0.85 | 0.92 | 0.86 | 0 | 0.89 | 0.99 | 0.78 | 0.87 | 0.79 |
MFI | 0 | 0.80 | 0.74 | 0.93 | 0.82 | 0.62 | 0 | 0.86 | 0.92 | 0.80 | 0.85 | 0.73 | |
(c) Natural breaks Threshold | |||||||||||||
Level 3 (n = 165) | SVIH | −0.02 | 0.95 | 0.99 | 0.92 | 0.95 | 0.91 | −0.11 | 0.95 | 0.99 | 0.92 | 0.95 | 0.91 |
NDVI | 0.01 | 0.61 | 0.71 | 0.38 | 0.50 | 0.25 | −0.04 | 0.65 | 0.86 | 0.36 | 0.50 | 0.37 | |
NDAVI | 0.05 | 0.64 | 0.80 | 0.38 | 0.52 | 0.33 | −0.10 | 0.66 | 0.86 | 0.38 | 0.53 | 0.39 | |
FAI | 0.02 | 0.57 | 0.92 | 0.15 | 0.25 | 0.25 | 0.02 | 0.57 | 0.92 | 0.15 | 0.25 | 0.25 | |
MFI | 0.03 | 0.58 | 0.91 | 0.18 | 0.29 | 0.27 | 0.03 | 0.58 | 0.91 | 0.18 | 0.30 | 0.27 | |
Levels 2 and 3 (n = 165) | SVIH | −0.02 | 0.94 | 0.99 | 0.88 | 0.94 | 0.88 | −0.11 | 0.93 | 0.99 | 0.86 | 0.92 | 0.86 |
NDVI | 0.01 | 0.61 | 0.70 | 0.38 | 0.49 | 0.25 | −0.04 | 0.65 | 0.85 | 0.35 | 0.50 | 0.36 | |
NDAVI | 0.05 | 0.63 | 0.79 | 0.36 | 0.49 | 0.31 | −0.10 | 0.65 | 0.86 | 0.36 | 0.51 | 0.37 | |
FAI | 0.02 | 0.55 | 0.90 | 0.11 | 0.19 | 0.20 | 0.02 | 0.55 | 0.90 | 0.11 | 0.19 | 0.20 | |
MFI | 0.03 | 0.56 | 0.88 | 0.13 | 0.23 | 0.22 | 0.03 | 0.56 | 0.89 | 0.15 | 0.25 | 0.23 | |
Levels 1, 2, and 3 (n = 165) | SVIH | −0.02 | 0.92 | 0.99 | 0.85 | 0.92 | 0.86 | −0.11 | 0.92 | 0.99 | 0.84 | 0.91 | 0.84 |
NDVI | 0.01 | 0.60 | 0.69 | 0.35 | 0.47 | 0.22 | −0.04 | 0.64 | 0.85 | 0.34 | 0.48 | 0.35 | |
NDAVI | 0.05 | 0.64 | 0.80 | 0.38 | 0.52 | 0.33 | −0.10 | 0.67 | 0.87 | 0.39 | 0.54 | 0.40 | |
FAI | 0.02 | 0.54 | 0.89 | 0.10 | 0.17 | 0.19 | 0.02 | 0.54 | 0.88 | 0.09 | 0.16 | 0.18 | |
MFI | 0.03 | 0.56 | 0.89 | 0.15 | 0.25 | 0.23 | 0.03 | 0.57 | 0.90 | 0.16 | 0.27 | 0.25 |
(a) Incremental search Threshold | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrilla Levels of Abundance | ACOLITE-corrected | Sen2Cor-corrected | |||||||||||
Index | Threshold | Accuracy | Precision | Recall | F1 | MCC | Threshold | Accuracy | Precision | recall | F1 | MCC | |
Level 3 (n = 47) | SVIH | −0.03 | 0.81 | 0.97 | 0.64 | 0.77 | 0.66 | −0.03 | 0.82 | 0.94 | 0.68 | 0.79 | 0.66 |
NDVI | −0.44 | 0.77 | 0.82 | 0.68 | 0.74 | 0.54 | −0.34 | 0.76 | 0.93 | 0.55 | 0.69 | 0.56 | |
NDAVI | −0.26 | 0.76 | 0.83 | 0.64 | 0.72 | 0.53 | −0.11 | 0.74 | 1.00 | 0.49 | 0.66 | 0.57 | |
FAI | −0.01 | 0.78 | 0.72 | 0.91 | 0.80 | 0.58 | −0.01 | 0.83 | 0.86 | 0.79 | 0.82 | 0.66 | |
MFI | −0.005 | 0.82 | 0.79 | 0.87 | 0.83 | 0.64 | 0 | 0.78 | 0.96 | 0.57 | 0.72 | 0.60 | |
Levels 2 and 3 (n = 135) | SVIH | −0.03 | 0.76 | 0.96 | 0.53 | 0.69 | 0.57 | −0.03 | 0.77 | 0.95 | 0.56 | 0.71 | 0.58 |
NDVI | −0.43 | 0.65 | 0.71 | 0.50 | 0.59 | 0.31 | −0.39 | 0.67 | 0.84 | 0.43 | 0.57 | 0.40 | |
NDAVI | 0.03 | 0.60 | 0.86 | 0.24 | 0.37 | 0.29 | −0.26 | 0.67 | 0.78 | 0.47 | 0.58 | 0.36 | |
FAI | −0.01 | 0.73 | 0.68 | 0.84 | 0.75 | 0.47 | −0.01 | 0.78 | 0.82 | 0.73 | 0.77 | 0.57 | |
MFI | −0.005 | 0.73 | 0.70 | 0.79 | 0.74 | 0.46 | 0 | 0.71 | 0.94 | 0.46 | 0.62 | 0.50 | |
Levels 1, 2, and 3 (n = 215) | SVIH | −0.03 | 0.70 | 0.95 | 0.43 | 0.59 | 0.49 | −0.03 | 0.73 | 0.95 | 0.48 | 0.64 | 0.53 |
NDVI | −0.15 | 0.57 | 0.84 | 0.17 | 0.29 | 0.23 | −0.37 | 0.63 | 0.85 | 0.33 | 0.47 | 0.34 | |
NDAVI | 0.03 | 0.57 | 0.87 | 0.16 | 0.27 | 0.23 | −0.26 | 0.63 | 0.78 | 0.37 | 0.50 | 0.31 | |
FAI | −0.01 | 0.69 | 0.66 | 0.76 | 0.71 | 0.38 | −0.01 | 0.74 | 0.81 | 0.62 | 0.70 | 0.49 | |
MFI | −0.005 | 0.69 | 0.68 | 0.73 | 0.71 | 0.39 | 0 | 0.67 | 0.95 | 0.36 | 0.52 | 0.43 | |
(b) Zero Threshold | |||||||||||||
Level 3 (n = 47) | SVIH | 0 | 0.80 | 0.97 | 0.62 | 0.75 | 0.64 | 0 | 0.78 | 0.96 | 0.57 | 0.72 | 0.60 |
MFI | 0 | 0.78 | 0.93 | 0.60 | 0.73 | 0.59 | 0 | 0.78 | 0.96 | 0.57 | 0.72 | 0.60 | |
Levels 2 and 3 (n = 135) | SVIH | 0 | 0.74 | 0.99 | 0.50 | 0.66 | 0.56 | 0 | 0.73 | 0.98 | 0.47 | 0.64 | 0.55 |
MFI | 0 | 0.70 | 0.86 | 0.47 | 0.61 | 0.45 | 0 | 0.71 | 0.94 | 0.46 | 0.62 | 0.50 | |
Levels 1, 2, and 3 (n = 215) | SVIH | 0 | 0.69 | 0.99 | 0.39 | 0.56 | 0.48 | 0 | 0.68 | 0.99 | 0.37 | 0.54 | 0.47 |
MFI | 0 | 0.66 | 0.88 | 0.37 | 0.52 | 0.39 | 0 | 0.67 | 0.95 | 0.36 | 0.52 | 0.43 | |
(c) Natural breaks Threshold | |||||||||||||
Level 3 (n = 47) | SVIH | 0.01 | 0.78 | 1.00 | 0.55 | 0.71 | 0.62 | 0.02 | 0.79 | 1.00 | 0.57 | 0.73 | 0.63 |
NDVI | −0.33 | 0.69 | 0.80 | 0.51 | 0.62 | 0.41 | −0.17 | 0.72 | 1.00 | 0.45 | 0.62 | 0.54 | |
NDAVI | −0.19 | 0.71 | 0.81 | 0.55 | 0.66 | 0.45 | −0.06 | 0.71 | 0.95 | 0.45 | 0.61 | 0.50 | |
FAI | 0.03 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 | |
MFI | 0.01 | 0.70 | 1.00 | 0.40 | 0.58 | 0.50 | 0.01 | 0.70 | 1.00 | 0.40 | 0.58 | 0.50 | |
Levels 2 and 3 (n = 135) | SVIH | 0.01 | 0.73 | 1.00 | 0.45 | 0.62 | 0.54 | 0.02 | 0.73 | 1.00 | 0.45 | 0.62 | 0.54 |
NDVI | −0.33 | 0.63 | 0.80 | 0.33 | 0.47 | 0.31 | −0.17 | 0.61 | 1.00 | 0.22 | 0.36 | 0.35 | |
NDAVI | −0.19 | 0.64 | 0.79 | 0.37 | 0.51 | 0.32 | −0.06 | 0.62 | 0.94 | 0.25 | 0.40 | 0.35 | |
FAI | 0.03 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 | |
MFI | 0.01 | 0.60 | 1.00 | 0.19 | 0.32 | 0.33 | 0.01 | 0.60 | 1.00 | 0.21 | 0.34 | 0.34 | |
Levels 1, 2, and 3 (n = 215) | SVIH | 0.01 | 0.68 | 1.00 | 0.35 | 0.52 | 0.46 | 0.02 | 0.67 | 1.00 | 0.35 | 0.52 | 0.46 |
NDVI | −0.33 | 0.58 | 0.74 | 0.26 | 0.38 | 0.22 | −0.17 | 0.57 | 1.00 | 0.15 | 0.26 | 0.28 | |
NDAVI | −0.19 | 0.59 | 0.72 | 0.28 | 0.41 | 0.22 | −0.06 | 0.58 | 0.93 | 0.18 | 0.30 | 0.28 | |
FAI | 0.03 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 | |
MFI | 0.01 | 0.56 | 1.00 | 0.13 | 0.22 | 0.26 | 0.01 | 0.57 | 1.00 | 0.13 | 0.24 | 0.27 |
(a) Incremental search Threshold | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrilla Levels of Abundance | ACOLITE-corrected | Sen2Cor-corrected | |||||||||||
Index | Threshold | Accuracy | Precision | Recall | F1 | MCC | Threshold | Accuracy | Precision | recall | F1 | MCC | |
Level 3 (n = 290) | SVIH | −0.05 | 0.88 | 0.99 | 0.76 | 0.86 | 0.77 | −0.05 | 0.88 | 0.96 | 0.79 | 0.87 | 0.77 |
NDVI | −0.44 | 0.81 | 0.84 | 0.77 | 0.81 | 0.63 | −0.46 | 0.80 | 0.95 | 0.63 | 0.76 | 0.64 | |
NDAVI | −0.17 | 0.74 | 0.90 | 0.55 | 0.68 | 0.53 | −0.37 | 0.76 | 0.97 | 0.53 | 0.69 | 0.58 | |
FAI | −0.005 | 0.81 | 0.91 | 0.69 | 0.79 | 0.64 | −0.01 | 0.87 | 0.82 | 0.95 | 0.88 | 0.75 | |
MFI | 0 | 0.83 | 0.97 | 0.69 | 0.80 | 0.69 | 0 | 0.82 | 0.99 | 0.65 | 0.79 | 0.69 | |
Levels 2 and 3 (n = 508) | SVIH | −0.05 | 0.79 | 0.98 | 0.60 | 0.74 | 0.64 | −0.05 | 0.80 | 0.97 | 0.62 | 0.76 | 0.64 |
NDVI | −0.44 | 0.76 | 0.83 | 0.65 | 0.73 | 0.53 | −0.45 | 0.72 | 0.94 | 0.47 | 0.63 | 0.51 | |
NDAVI | −0.17 | 0.68 | 0.87 | 0.41 | 0.56 | 0.41 | −0.37 | 0.68 | 0.94 | 0.39 | 0.55 | 0.45 | |
FAI | −0.01 | 0.79 | 0.71 | 0.98 | 0.82 | 0.63 | −0.01 | 0.84 | 0.80 | 0.90 | 0.85 | 0.68 | |
MFI | 0 | 0.75 | 0.95 | 0.52 | 0.67 | 0.55 | 0 | 0.80 | 0.78 | 0.82 | 0.80 | 0.60 | |
Levels 1, 2, and 3 (n = 721) | SVIH | −0.05 | 0.72 | 0.98 | 0.44 | 0.61 | 0.52 | −0.03 | 0.71 | 0.98 | 0.43 | 0.60 | 0.51 |
NDVI | −0.46 | 0.72 | 0.77 | 0.62 | 0.69 | 0.45 | −0.45 | 0.67 | 0.92 | 0.37 | 0.52 | 0.42 | |
NDAVI | −0.17 | 0.64 | 0.84 | 0.35 | 0.49 | 0.35 | −0.37 | 0.63 | 0.90 | 0.30 | 0.45 | 0.36 | |
FAI | −0.01 | 0.78 | 0.70 | 0.96 | 0.81 | 0.59 | −0.01 | 0.80 | 0.79 | 0.83 | 0.81 | 0.61 | |
MFI | 0 | 0.72 | 0.67 | 0.87 | 0.76 | 0.46 | 0 | 0.74 | 0.77 | 0.69 | 0.73 | 0.48 | |
(b) Zero Threshold | |||||||||||||
Level 3 (n = 290) | SVIH | 0 | 0.83 | 1.00 | 0.67 | 0.80 | 0.71 | 0 | 0.85 | 0.99 | 0.71 | 0.82 | 0.73 |
MFI | 0 | 0.82 | 0.94 | 0.69 | 0.80 | 0.67 | 0 | 0.81 | 0.96 | 0.65 | 0.78 | 0.66 | |
Levels 2 and 3 (n = 508) | SVIH | 0 | 0.75 | 1.00 | 0.50 | 0.67 | 0.57 | 0 | 0.76 | 0.99 | 0.53 | 0.69 | 0.59 |
MFI | 0 | 0.74 | 0.93 | 0.52 | 0.67 | 0.54 | 0 | 0.73 | 0.96 | 0.48 | 0.64 | 0.53 | |
Levels 1, 2, and 3 (n = 721) | SVIH | 0 | 0.68 | 1.00 | 0.36 | 0.53 | 0.47 | 0 | 0.69 | 0.99 | 0.39 | 0.55 | 0.48 |
MFI | 0 | 0.68 | 0.93 | 0.40 | 0.56 | 0.45 | 0 | 0.67 | 0.96 | 0.36 | 0.53 | 0.44 | |
(c) Natural breaks Threshold | |||||||||||||
Level 3 (n = 290) | SVIH | 0.02 | 0.81 | 1.00 | 0.63 | 0.77 | 0.68 | 0.03 | 0.81 | 1.00 | 0.63 | 0.77 | 0.68 |
NDVI | −0.23 | 0.69 | 0.91 | 0.43 | 0.59 | 0.46 | −0.25 | 0.69 | 0.95 | 0.40 | 0.57 | 0.47 | |
NDAVI | −0.07 | 0.70 | 0.90 | 0.46 | 0.60 | 0.46 | −0.19 | 0.68 | 0.96 | 0.38 | 0.55 | 0.46 | |
FAI | 0.02 | 0.56 | 1.00 | 0.11 | 0.20 | 0.24 | 0.02 | 0.55 | 1.00 | 0.11 | 0.19 | 0.24 | |
MFI | 0.02 | 0.60 | 1.00 | 0.20 | 0.33 | 0.33 | 0.02 | 0.61 | 1.00 | 0.22 | 0.36 | 0.35 | |
Levels 2 and 3 (n = 508) | SVIH | 0.02 | 0.73 | 1.00 | 0.47 | 0.64 | 0.55 | 0.03 | 0.73 | 1.00 | 0.46 | 0.63 | 0.55 |
NDVI | −0.23 | 0.63 | 0.86 | 0.30 | 0.45 | 0.33 | −0.25 | 0.63 | 0.94 | 0.27 | 0.42 | 0.36 | |
NDAVI | −0.07 | 0.63 | 0.85 | 0.32 | 0.46 | 0.34 | −0.19 | 0.62 | 0.95 | 0.25 | 0.40 | 0.35 | |
FAI | 0.02 | 0.53 | 1.00 | 0.07 | 0.13 | 0.19 | 0.02 | 0.53 | 1.00 | 0.07 | 0.13 | 0.19 | |
MFI | 0.02 | 0.56 | 1.00 | 0.13 | 0.22 | 0.26 | 0.02 | 0.57 | 1.00 | 0.14 | 0.25 | 0.27 | |
Levels 1, 2, and 3 (n = 721) | SVIH | 0.02 | 0.67 | 1.00 | 0.34 | 0.50 | 0.45 | 0.03 | 0.67 | 1.00 | 0.34 | 0.50 | 0.45 |
NDVI | −0.23 | 0.60 | 0.85 | 0.24 | 0.38 | 0.28 | −0.25 | 0.60 | 0.93 | 0.21 | 0.34 | 0.31 | |
NDAVI | −0.07 | 0.60 | 0.84 | 0.25 | 0.39 | 0.29 | −0.19 | 0.59 | 0.94 | 0.19 | 0.32 | 0.30 | |
FAI | 0.02 | 0.53 | 1.00 | 0.05 | 0.10 | 0.16 | 0.02 | 0.53 | 1.00 | 0.05 | 0.10 | 0.16 | |
MFI | 0.02 | 0.55 | 1.00 | 0.09 | 0.17 | 0.22 | 0.02 | 0.55 | 1.00 | 0.10 | 0.19 | 0.23 |
(a) Incremental search Threshold | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrilla Levels of Abundance | ACOLITE-corrected | Sen2Cor-corrected | |||||||||||
Index | Threshold | Accuracy | Precision | Recall | F1 | MCC | Threshold | Accuracy | Precision | recall | F1 | MCC | |
Level 3 (n = 272) | SVIH | −0.16 | 0.74 | 0.98 | 0.50 | 0.66 | 0.56 | −0.29 | 0.70 | 0.99 | 0.41 | 0.58 | 0.50 |
NDVI | −0.72 | 0.72 | 0.73 | 0.68 | 0.71 | 0.43 | −0.08 | 0.86 | 0.91 | 0.80 | 0.85 | 0.73 | |
NDAVI | −0.59 | 0.60 | 0.62 | 0.50 | 0.56 | 0.20 | −0.07 | 0.75 | 0.70 | 0.89 | 0.78 | 0.52 | |
FAI | −0.015 | 0.78 | 0.72 | 0.90 | 0.80 | 0.57 | −0.015 | 0.87 | 0.86 | 0.88 | 0.87 | 0.74 | |
MFI | −0.01 | 0.81 | 0.77 | 0.88 | 0.82 | 0.62 | −0.01 | 0.87 | 0.82 | 0.93 | 0.87 | 0.74 | |
Levels 2 and 3 (n = 479) | SVIH | −0.16 | 0.65 | 0.96 | 0.31 | 0.47 | 0.41 | −0.29 | 0.62 | 0.98 | 0.25 | 0.39 | 0.37 |
NDVI | −0.73 | 0.67 | 0.69 | 0.61 | 0.65 | 0.34 | −0.09 | 0.82 | 0.82 | 0.81 | 0.81 | 0.63 | |
NDAVI | −0.59 | 0.57 | 0.59 | 0.42 | 0.49 | 0.14 | −0.07 | 0.73 | 0.70 | 0.82 | 0.76 | 0.47 | |
FAI | −0.015 | 0.74 | 0.71 | 0.80 | 0.75 | 0.48 | −0.015 | 0.82 | 0.86 | 0.76 | 0.81 | 0.64 | |
MFI | −0.01 | 0.75 | 0.75 | 0.75 | 0.75 | 0.51 | −0.01 | 0.83 | 0.83 | 0.82 | 0.83 | 0.66 | |
Levels 1, 2, and 3 (n = 853) | SVIH | −0.16 | 0.59 | 0.92 | 0.19 | 0.31 | 0.29 | −0.29 | 0.57 | 0.96 | 0.15 | 0.26 | 0.27 |
NDVI | −0.73 | 0.60 | 0.64 | 0.49 | 0.55 | 0.22 | −0.09 | 0.74 | 0.78 | 0.65 | 0.71 | 0.48 | |
NDAVI | −0.59 | 0.54 | 0.56 | 0.36 | 0.44 | 0.09 | −0.07 | 0.67 | 0.66 | 0.70 | 0.68 | 0.34 | |
FAI | −0.015 | 0.68 | 0.69 | 0.68 | 0.68 | 0.37 | −0.015 | 0.74 | 0.84 | 0.59 | 0.69 | 0.50 | |
MFI | −0.01 | 0.67 | 0.71 | 0.58 | 0.64 | 0.35 | −0.01 | 0.74 | 0.79 | 0.64 | 0.71 | 0.48 | |
(b) Zero Threshold | |||||||||||||
Level 3 (n = 272) | SVIH | 0 | 0.60 | 1.00 | 0.19 | 0.32 | 0.33 | 0 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 |
MFI | 0 | 0.57 | 0.95 | 0.15 | 0.27 | 0.27 | 0 | 0.58 | 0.98 | 0.17 | 0.29 | 0.30 | |
Levels 2 and 3 (n = 479) | SVIH | 0 | 0.56 | 1.00 | 0.12 | 0.21 | 0.25 | 0 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 |
MFI | 0 | 0.54 | 0.96 | 0.09 | 0.17 | 0.21 | 0 | 0.55 | 0.98 | 0.11 | 0.19 | 0.23 | |
Levels 1, 2, and 3 (n = 853) | SVIH | 0 | 0.53 | 1.00 | 0.06 | 0.12 | 0.18 | 0 | 0.50 | 1.00 | 0.00 | 0.00 | 0.00 |
MFI | 0 | 0.53 | 0.94 | 0.06 | 0.11 | 0.16 | 0 | 0.53 | 0.96 | 0.06 | 0.12 | 0.17 | |
(c) Natural breaks Threshold | |||||||||||||
Level 3 (n = 272) | SVIH | −0.11 | 0.70 | 0.99 | 0.40 | 0.57 | 0.49 | −0.28 | 0.64 | 0.99 | 0.28 | 0.44 | 0.40 |
NDVI | −0.58 | 0.62 | 0.86 | 0.28 | 0.42 | 0.32 | 0.02 | 0.50 | 1.00 | 0.01 | 0.01 | 0.06 | |
NDAVI | −0.47 | 0.60 | 0.80 | 0.26 | 0.40 | 0.27 | 0.00 | 0.51 | 1.00 | 0.03 | 0.05 | 0.11 | |
FAI | 0.01 | 0.51 | 1.00 | 0.01 | 0.02 | 0.07 | 0.01 | 0.51 | 1.00 | 0.02 | 0.04 | 0.11 | |
MFI | −0.002 | 0.59 | 0.96 | 0.19 | 0.32 | 0.31 | 0.004 | 0.53 | 1.00 | 0.06 | 0.11 | 0.17 | |
Levels 2 and 3 (n = 479) | SVIH | −0.11 | 0.62 | 0.99 | 0.24 | 0.38 | 0.36 | −0.28 | 0.58 | 0.99 | 0.17 | 0.29 | 0.30 |
NDVI | −0.58 | 0.57 | 0.77 | 0.19 | 0.30 | 0.20 | 0.02 | 0.50 | 1.00 | 0.00 | 0.01 | 0.05 | |
NDAVI | −0.47 | 0.55 | 0.67 | 0.19 | 0.29 | 0.14 | 0.00 | 0.51 | 1.00 | 0.02 | 0.03 | 0.09 | |
FAI | 0.01 | 0.50 | 1.00 | 0.01 | 0.01 | 0.06 | 0.01 | 0.51 | 1.00 | 0.01 | 0.02 | 0.08 | |
MFI | −0.002 | 0.56 | 0.97 | 0.12 | 0.22 | 0.24 | 0.004 | 0.52 | 1.00 | 0.04 | 0.07 | 0.14 | |
Levels 1, 2, and 3 (n = 853) | SVIH | −0.11 | 0.57 | 0.99 | 0.14 | 0.24 | 0.27 | −0.28 | 0.55 | 0.99 | 0.10 | 0.18 | 0.22 |
NDVI | −0.58 | 0.53 | 0.66 | 0.13 | 0.22 | 0.11 | 0.02 | 0.50 | 0.75 | 0.00 | 0.01 | 0.02 | |
NDAVI | −0.47 | 0.52 | 0.57 | 0.14 | 0.22 | 0.05 | 0.00 | 0.51 | 0.91 | 0.01 | 0.02 | 0.07 | |
FAI | 0.01 | 0.50 | 0.80 | 0.00 | 0.01 | 0.03 | 0.01 | 0.50 | 0.88 | 0.01 | 0.02 | 0.05 | |
MFI | −0.002 | 0.54 | 0.95 | 0.07 | 0.14 | 0.18 | 0.004 | 0.51 | 0.95 | 0.02 | 0.05 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
M, A.M.; Abd-Elrahman, A.; Leary, J.K. A New Sentinel-2 Spectral Index for Mapping Hydrilla verticillata in Shallow Freshwater Lakes in Florida, USA. Remote Sens. 2025, 17, 1894. https://doi.org/10.3390/rs17111894
M AM, Abd-Elrahman A, Leary JK. A New Sentinel-2 Spectral Index for Mapping Hydrilla verticillata in Shallow Freshwater Lakes in Florida, USA. Remote Sensing. 2025; 17(11):1894. https://doi.org/10.3390/rs17111894
Chicago/Turabian StyleM, Ayesha Malligai, Amr Abd-Elrahman, and James K. Leary. 2025. "A New Sentinel-2 Spectral Index for Mapping Hydrilla verticillata in Shallow Freshwater Lakes in Florida, USA" Remote Sensing 17, no. 11: 1894. https://doi.org/10.3390/rs17111894
APA StyleM, A. M., Abd-Elrahman, A., & Leary, J. K. (2025). A New Sentinel-2 Spectral Index for Mapping Hydrilla verticillata in Shallow Freshwater Lakes in Florida, USA. Remote Sensing, 17(11), 1894. https://doi.org/10.3390/rs17111894