Constructing Rainfall Threshold for Debris Flows of a Defined Hazardous Magnitude
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. The TRIGRS Model
3.2. The MassFlow Model
4. Results
4.1. Slope Stability of YPY
4.2. Result of MassFlow Simulation
4.3. I–D Threshold in Study Area
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takahashi, T. Debris flow. Annu. Rev. Fluid Mech. 1981, 13, 57–77. [Google Scholar] [CrossRef]
- Jakob, M.; Hungr, O.; Jakob, D.M. Debris-Flow Hazards and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Xu, H. Environmental Geology; Geology Press-Beijing: Beijing, China, 2009. [Google Scholar]
- Wahab, M.K.A.; Zainol, M.R.R.M.A.; Ikhsan, J.; Zawawi, M.H.; Abas, M.A.; Mohamed Noor, N.; Abdul Razak, N.; Sholichin, M. Assessment of Debris Flow Impact Based on Experimental Analysis along a Deposition Area. Sustainability 2023, 15, 13132. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Zhuang, J.; Cui, P.; Wang, G.; Chen, X.; Iqbal, J.; Guo, X. Rainfall thresholds for the occurrence of debris flows in the Jiangjia Gully, Yunnan Province, China. Eng. Geol. 2015, 195, 335–346. [Google Scholar] [CrossRef]
- Hirschberg, J.; Fatichi, S.; Bennett, G.L.; McArdell, B.W.; Peleg, N.; Lane, S.N.; Schlunegger, F.; Molnar, P. Climate change impacts on sediment yield and debris-flow activity in an alpine catchment. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005739. [Google Scholar] [CrossRef]
- Liu, Z. Evaluation of rainfall thresholds triggering debris flows in western China with gauged-and satellite-based precipitation measurement. J. Hydrol. 2023, 620, 129500. [Google Scholar] [CrossRef]
- Tropeano, D.; Turconi, L. Using historical documents for landslide, debris flow and stream flood prevention. Applications in Northern Italy. Nat. Hazards 2004, 31, 663–679. [Google Scholar] [CrossRef]
- Turconi, L.; De, S.K.; Demurtas, F.; Demurtas, L.; Pendugiu, B.; Tropeano, D.; Savio, G. An analysis of debris-flow events in the Sardinia Island (Thyrrenian Sea, Italy). Environ. Earth Sci. 2013, 69, 1509–1521. [Google Scholar] [CrossRef]
- Guo, X.; Cui, P.; Li, Y.; Ma, L.; Ge, Y.; Mahoney, W.B. Intensity–duration threshold of rainfall-triggered debris flows in the Wenchuan earthquake affected area, China. Geomorphology 2016, 253, 208–216. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Chien-Yuan, C.; Tien-Chien, C.; Fan-Chieh, Y.; Wen-Hui, Y.; Chun-Chieh, T. Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ. Geol. 2005, 47, 715–724. [Google Scholar] [CrossRef]
- Tang, H.; McGuire, L.A.; Rengers, F.K.; Kean, J.W.; Staley, D.M.; Smith, J.B. Developing and testing physically based triggering thresholds for runoff-generated debris flows. Geophys. Res. Lett. 2019, 46, 8830–8839. [Google Scholar] [CrossRef]
- Marchi, L.; Cazorzi, F.; Arattano, M.; Cucchiaro, S.; Cavalli, M.; Crema, S. Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019. Nat. Hazards Earth Syst. Sci. 2021, 21, 87–97. [Google Scholar] [CrossRef]
- Berti, M.; Bernard, M.; Gregoretti, C.; Simoni, A. Physical interpretation of rainfall thresholds for runoff-generated debris flows. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005513. [Google Scholar] [CrossRef]
- Li, Y.; Meng, X.; Guo, P.; Dijkstra, T.; Zhao, Y.; Chen, G.; Yue, D. Constructing rainfall thresholds for debris flow initiation based on critical discharge and S-hydrograph. Eng. Geol. 2021, 280, 105962. [Google Scholar] [CrossRef]
- Iverson, R.M.; Reid, M.E.; LaHusen, R.G. Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 1997, 25, 85–138. [Google Scholar] [CrossRef]
- Park, D.W.; Nikhil, N.V.; Lee, S.R. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat. Hazards Earth Syst. Sci. 2013, 13, 2833–2849. [Google Scholar] [CrossRef]
- Fusco, F.; De Vita, P.; Mirus, B.B.; Baum, R.L.; Allocca, V.; Tufano, R.; Di Clemente, E.; Calcaterra, D. Physically based estimation of rainfall thresholds triggering shallow landslides in volcanic slopes of Southern Italy. Water 2019, 11, 1915. [Google Scholar] [CrossRef]
- Berti, M.; Martina, M.L.; Franceschini, S.; Pignone, S.; Simoni, A.; Pizziolo, M. Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J. Geophys. Res. Earth Surf. 2012, 117, F04006. [Google Scholar] [CrossRef]
- Trancoso Gomes, R.A.; Guimarães, R.F.; de Carvalho Júnior, O.A.; Fernandes, N.F.; Vargas do Amaral Júnior, E. Combining spatial models for shallow landslides and debris-flows prediction. Remote Sens. 2013, 5, 2219–2237. [Google Scholar] [CrossRef]
- Zhou, W.; Qiu, H.; Wang, L.; Pei, Y.; Tang, B.; Ma, S.; Yang, D.; Cao, M. Combining rainfall-induced shallow landslides and subsequent debris flows for hazard chain prediction. Catena 2022, 213, 106199. [Google Scholar] [CrossRef]
- Ouyang, C.; He, S.; Tang, C. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Eng. Geol. 2015, 194, 62–72. [Google Scholar] [CrossRef]
- Horton, A.J.; Hales, T.C.; Ouyang, C.; Fan, X. Identifying post-earthquake debris flow hazard using Massflow. Eng. Geol. 2019, 258, 105134. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, Q.; Zhou, S.; Peng, D.; Zhou, X.; Qi, X. Research on the movement process of sudden loess landslide based on numerical simulation: Taking the Chenjia 8# landslide in Heifangtai as an example. Mt. Res. 2019, 37, 528–537. [Google Scholar]
- Chen, G.; Meng, X.; Qiao, L.; Zhang, Y.; Wang, S. Response of a loess landslide to rainfall: Observations from a field artificial rainfall experiment in Bailong River Basin, China. Landslides 2018, 15, 895–911. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yue, D.X.; Wang, Y.Q.; Du, J.; Guo, J.J.; Ma, J.H.; Meng, X.M. Spatial pattern analysis of geohazards and human activities in Bailong River Basin. Adv. Mater. Res. 2012, 518, 5822–5829. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, X.; Qi, T.; Chen, G.; Li, Y.; Yue, D.; Qing, F. Modeling the spatial distribution of debris flows and analysis of the controlling factors: A machine learning approach. Remote Sens. 2021, 13, 4813. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Chen, G.; Qiao, L.; Zeng, R.; Chang, J. Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides 2016, 13, 1273–1284. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Jordan, C.; Novellino, A.; Dijkstra, T.; Chen, G. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides 2018, 15, 1299–1315. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, X.; Qi, T.; Qing, F.; Xiong, M.; Li, Y.; Guo, P.; Chen, G. AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China. Geomorphology 2020, 359, 107125. [Google Scholar] [CrossRef]
- Meng, X.; Chen, G.; Guo, P.; Xiong, M.; Janusz, W. Research of landslides and debris flows in Bailong River Basin: Progress and prospect. Mar. Geol. Quat. Geol. 2013, 33, 1–15. [Google Scholar] [CrossRef]
- Guo, P.; Meng, X.; Xue, Y.; Xiong, M.; Zhao, Y. Impact of Wenchuan earthquake on deo-hazards in Bailong River Basin: A case study of Goulinping Valley, Wudu county. J. Lanzhou Univ. 2015, 51, 313–318. [Google Scholar]
- Zhang, P. Quantitative Study on the Risk Zoning of Rainfall Landslides in Typical Small Watersheds in Wudu Region. Master’s Thesis, China University of Geosciences, Beijing, China, 2020. [Google Scholar]
- Dijkstra, T.A.; Wasowski, J.; Winter, M.G.; Meng, X.M. Introduction to geohazards of Central China. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 195–199. [Google Scholar] [CrossRef]
- Wang, S.; Meng, X.; Chen, G.; Guo, P.; Xiong, M.; Zeng, R. Effects of vegetation on debris flow mitigation: A case study from Gansu province, China. Geomorphology 2017, 282, 64–73. [Google Scholar] [CrossRef]
- Xiong, M.; Meng, X.; Wang, S.; Guo, P.; Li, Y.; Chen, G.; Qing, F.; Cui, Z.; Zhao, Y. Effectiveness of debris flow mitigation strategies in mountainous regions. Prog. Phys. Geogr. Earth Environ. 2016, 40, 768–793. [Google Scholar] [CrossRef]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS: A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0; US Geological Survey: Reston, VA, USA, 2008.
- Salciarini, D.; Godt, J.W.; Savage, W.Z.; Baum, R.L.; Conversini, P. Modeling landslide recurrence in Seattle, Washington, USA. Eng. Geol. 2008, 102, 227–237. [Google Scholar] [CrossRef]
- Alvioli, M.; Baum, R.L. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ. Model. Softw. 2016, 81, 122–135. [Google Scholar] [CrossRef]
- Marin, R.J. Physically based and distributed rainfall intensity and duration thresholds for shallow landslides. Landslides 2020, 17, 2907–2917. [Google Scholar] [CrossRef]
- Ciurleo, M.; Ferlisi, S.; Foresta, V.; Mandaglio, M.C.; Moraci, N. Landslide susceptibility analysis by applying TRIGRS to a reliable geotechnical slope model. Geosciences 2021, 12, 18. [Google Scholar] [CrossRef]
- Hou, K. Research on the Application of Hydraulic Diffusivity Automatic Testing System for Laboratory Unsaturated Soil. Gansu Sci. Technol. 2009, 25, 36–39. [Google Scholar]
- Ma, S.; Shao, X.; Xu, C.; He, X.; Zhang, P. MAT. TRIGRS (V1. 0): A new open-source tool for predicting spatiotemporal distribution of rainfall-induced landslides. Nat. Hazards Res. 2021, 1, 161–170. [Google Scholar] [CrossRef]
- Lu, N.; Godt, J.W. Hillslope Hydrology and Stability; Cambridge University Press: London, UK, 2013. [Google Scholar]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS–A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. US Geol. Surv. Open File Rep. 2002, 424, 38. [Google Scholar]
- Savage, W.Z.; Godt, J.W.; Baum, R.L. A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. In Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland, 10–12 September 2003; Volume 1, pp. 179–187. [Google Scholar]
- Salciarini, D.; Godt, J.W.; Savage, W.Z.; Conversini, P.; Baum, R.L.; Michael, J.A. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 2006, 3, 181–194. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Savage, W.Z.; Godt, J.W.; Baum, R.L. Modeling time-dependent areal slope stability. Landslides-Evaluation and Stabilization. In Proceedings of the 9th International Symposium on Landslides, Rio de Janeiro, Brazil, 28 June–2 July 2004; Volume 1, pp. 23–36. [Google Scholar]
- Ouyang, C.; He, S.; Xu, Q.; Luo, Y.; Zhang, W. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput. Geosci. 2013, 52, 1–10. [Google Scholar] [CrossRef]
- Voellmy, A. Uber die zerstorungskraft von lawinen. Bauzeitung 1955, 73, 159–165. [Google Scholar]
- La Chapelle, E.R.; Lang, T.E. A comparison of observed and calculated avalanche velocities. J. Glaciol. 1980, 25, 309–314. [Google Scholar] [CrossRef]
- Martinelli, M.; Lang, T.E.; Mears, A.I. Calculations of avalanche friction coefficients from field data. J. Glaciol. 1980, 26, 109–119. [Google Scholar] [CrossRef]
- Shuman, F.G. A Modified Threat Score and a Measure of Placement Error; NOAA, NWS Office Note 210; National Meteorological Center: Washington, DC, USA, 1980. [Google Scholar]
- Mesinger, F. Bias adjusted precipitation threat scores. Adv. Geosci. 2008, 16, 137–142. [Google Scholar] [CrossRef]
- Schilirò, L.; Montrasio, L.; Mugnozza, G.S. Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study. Sci. Total Environ. 2016, 569, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z. Study on Starting Mechanism and Early Warning Theory of Diluted Debris Flow in Northeast China. Ph.D. Thesis, College of Construction Engineering, Jilin University, Changchun, China, 2023. [Google Scholar]
- Liu, K.F.; Huang, M.C. Numerical simulation of debris flow with application on hazard area mapping. Comput. Geosci. 2006, 10, 221–240. [Google Scholar] [CrossRef]
- Ouyang, C.; Wang, Z.; An, H.; Liu, X.; Wang, D. An example of a hazard and risk assessment for debris flows—A case study of Niwan Gully, Wudu, China. Eng. Geol. 2019, 263, 105351. [Google Scholar] [CrossRef]
- Ning, S.; Ge, Y.; Bai, S.; Ma, C.; Sun, Y. I–D Threshold Analysis of Rainfall-Triggered Landslides Based on TRMM Precipitation Data in Wudu, China. Remote Sens. 2023, 15, 3892. [Google Scholar] [CrossRef]
- Marchi, L.; Arattano, M.; Deganutti, A.M. Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 2002, 46, 1–17. [Google Scholar] [CrossRef]
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. Ser. A Phys. Geogr. 1980, 62, 23–27. [Google Scholar]
- Baum, R.L.; Godt, J.W.; Harp, E.L.; McKenna, J.P.; McMullen, S.R. Early warning of land-slides for rain traffic between Seattle and Everett, Washington. In Landslide Risk Management; AA Balkema Publishers: New York, NY, USA, 2005; pp. 731–740. [Google Scholar]
- Giannecchini, R. Rainfall triggering soil slips in the southern Apuan Alps (Tuscany, Italy). Adv. Geosci. 2005, 2, 21–24. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, C. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China. Landslides 2014, 11, 877–887. [Google Scholar] [CrossRef]
- Larsen, M.C.; Simon, A. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr. Ann. Ser. A Phys. Geogr. 1993, 75, 13–23. [Google Scholar] [CrossRef]
Property Zones | (kPa) | (°) | (m/s) | (m/s) | (m) | (m) | |
---|---|---|---|---|---|---|---|
Phyllite regolith | 12 | 26 | 1.1 × 10−8 | 1.1 × 10−6 | 2.5 | 2.0 | 1.8 × 10−5 |
Loess area | 20 | 35 | 9.7 × 10−9 | 9.7 × 10−7 | 2.0 | 1.6 | 4.6 × 10−6 |
Bedrock area | 15 | 40 | 0 | 0 | 0 | 0 | 0 |
Duration | ≤1 | 1–1.1 | 1.1–1.2 | 1.3–1.5 | ≥1.5 |
---|---|---|---|---|---|
0 h | 0.000 | 0.000 | 0.000 | 19.309 | 80.691 |
1 h | 0.000 | 0.000 | 0.000 | 19.297 | 80.703 |
2 h | 0.000 | 0.000 | 0.000 | 18.997 | 81.003 |
3 h | 0.000 | 0.000 | 4.562 | 18.488 | 76.950 |
4 h | 0.000 | 0.000 | 6.546 | 17.646 | 75.808 |
5 h | 0.000 | 0.201 | 8.316 | 16.533 | 74.950 |
6 h | 0.000 | 1.805 | 8.810 | 15.256 | 74.129 |
7 h | 0.000 | 3.378 | 9.333 | 13.986 | 73.303 |
8 h | 0.000 | 4.909 | 10.009 | 12.776 | 72.306 |
9 h | 0.000 | 6.592 | 10.589 | 11.727 | 71.092 |
10 h | 0.000 | 8.508 | 10.953 | 10.850 | 69.689 |
11 h | 0.000 | 10.486 | 11.162 | 10.038 | 68.314 |
12 h | 0.786 | 11.665 | 11.307 | 9.354 | 66.888 |
13 h | 2.177 | 12.329 | 11.219 | 8.781 | 65.494 |
14 h | 3.767 | 12.865 | 10.882 | 8.286 | 64.200 |
15 h | 5.439 | 13.320 | 10.298 | 7.837 | 63.106 |
16 h | 5.927 | 14.880 | 9.626 | 7.414 | 62.153 |
CASE | H | F | O | TS | ||
---|---|---|---|---|---|---|
1 | 0.1 | 500 | 4228.4 | 5063.028 | 11,079.77 | 0.354898334 |
2 | 0.12 | 1000 | 4230.3 | 6722.733 | 11,079.77 | 0.31168853 |
3 | 0.1 | 800 | 6051.37 | 10257.78 | 11,079.77 | 0.395871958 |
4 | 0.1 | 900 | 6228.8 | 10,426.47 | 11,079.77 | 0.407712287 |
5 | 0.09 | 800 | 7455.8 | 12,006.391 | 11,079.77 | 0.477007537 |
6 | 0.09 | 900 | 7605.79 | 12,057.949 | 11,079.77 | 0.489687405 |
7 | 0.09 | 1000 | 8695.45 | 8917.487 | 11,079.77 | 0.769385816 |
Intensity (mm/h) | Duration (s) | Duration (h) | Grid Number |
---|---|---|---|
1 | 156,600 | 43.5 | 39,703 |
1.5 | 108,800 | 30.22 | 39,790 |
2 | 82,900 | 23.03 | 40,149 |
2.5 | 70,400 | 19.56 | 40,234 |
3 | 62,900 | 17.47 | 39,435 |
3.5 | 52,600 | 14.61 | 40,063 |
4 | 47,000 | 13.05 | 39,773 |
4.5 | 42,200 | 11.72 | 39,867 |
5 | 38,500 | 10.69 | 39,945 |
6 | 38,370 | 10.66 | 40,013 |
7 | 38,230 | 10.62 | 40,157 |
8 | 38,160 | 10.60 | 39,994 |
9 | 38,120 | 10.59 | 39,922 |
10 | 38,100 | 10.59 | 39,938 |
Reference | I–D Threshold | Geohazard Type | Region |
---|---|---|---|
Baum et al. (2005) [65] | I = 82.73 × D−1.13 | Landslide | Washington, USA |
Giannecchini et al. (2005) [66] | I = 85.584 × D−0.781 | Landslide | Italian Alps |
Ning et al. (2023) [62] | I = 50.73 × D−1.004 | Landslide | Central Bailong River |
Larsen et al. (1993) [69] | I = 91.46 × D−0.82 | Landslide | the Greater Antilles |
Dahal et al. (2008) [67] | I = 73.90 × D−0.79 | Landslide | the Himalaya |
YPY | I = 74.255D−1.14 | Debris flow | Central Bailong River |
Chien et al. (2005) [13] | I = 115.47 × D−0.80 | Debris flow | Taiwan |
Li et al. (2021) [17] | I = 20.3D−0.87 | Debris flow | Central Bailong River |
Marchi et al. (2002) [63] | I = 15 × D−0.70 | Debris flow | Italian Alps |
Zhou et al. (2014) [68] | I = 66.36 × D−0.79 | Debris flow | Wenchuan earthquake–stricken area |
Zhuang et al. (2015) [6] | I =15.87 × D−0.5952 | Debris flow | Mountainous southwestern China |
Caine (1980) [64] | I = 14.82 × D−0.39 | Landslide and Debris flow | World |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, M.; Ma, F.; Zhang, J.; Li, G.; Meng, X.; Chen, G.; Yue, D.; Guo, F.; Zhao, Y. Constructing Rainfall Threshold for Debris Flows of a Defined Hazardous Magnitude. Remote Sens. 2024, 16, 1265. https://doi.org/10.3390/rs16071265
Li Y, Wang M, Ma F, Zhang J, Li G, Meng X, Chen G, Yue D, Guo F, Zhao Y. Constructing Rainfall Threshold for Debris Flows of a Defined Hazardous Magnitude. Remote Sensing. 2024; 16(7):1265. https://doi.org/10.3390/rs16071265
Chicago/Turabian StyleLi, Yajun, Mengyu Wang, Fukang Ma, Jun Zhang, Guowei Li, Xingmin Meng, Guan Chen, Dongxia Yue, Fuyun Guo, and Yan Zhao. 2024. "Constructing Rainfall Threshold for Debris Flows of a Defined Hazardous Magnitude" Remote Sensing 16, no. 7: 1265. https://doi.org/10.3390/rs16071265
APA StyleLi, Y., Wang, M., Ma, F., Zhang, J., Li, G., Meng, X., Chen, G., Yue, D., Guo, F., & Zhao, Y. (2024). Constructing Rainfall Threshold for Debris Flows of a Defined Hazardous Magnitude. Remote Sensing, 16(7), 1265. https://doi.org/10.3390/rs16071265