Remote Sensing and GIS in Landslide Management: An Example from the Kravarsko Area, Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site-Specific Geohazard Mapping
2.3. Developed Landslide Inventory
3. Results
3.1. Slope Gradient Data
3.2. Engineering Geological Units
3.3. Land-Cover Data
3.4. Development of the Kravarsko Landslide Susceptibility Map
3.5. Development of the Kravarsko Area Terrain Stability Map
4. Discussion
4.1. Comments on Input Layers
4.2. Comments on the Kravarsko Landslide Inventory and Landslide Susceptibility Map
4.3. Comments on the Kravarsko Area Terrain Stability Map
4.4. Reflections and Comments on the Presented Perennial Research
4.4.1. Innovation and Novelty of the Research
4.4.2. Validation and Field Research
4.4.3. Research Limitations
4.4.4. Broader Implications and Scalability
4.4.5. Research Steps and Technical Explanations
- Step 1: The interpretation of hrDEMs and LI development based on the applied scoring system (described in more detail in [32]);
- Step 2: The verification of results in terms of the cabinet (historical data review) and field research (calibration of the mapping and scoring system, if needed) described in more detail in [32]);
- Step 3: Product development, i.e., the development of a TSM with key infrastructure (presented in this paper).
5. Conclusions
- The LSM presented here was developed for the Kravarsko PA; however, it should be noted that the developed LSM is heavily influenced by terrain slope inclination and geology (EGU) data.
- The developed TSM is also heavily influenced by landslide inventory data.
- The novelty of the results presented herein resides in their focus on the development of a reliable LI based on high-resolution RS data in combination with the available digital key infrastructure data in order to provide a simple and usable map for local community, i.e., the TSM.
- With the TSM, the areas with higher landslide frequency (“risk”) are reduced (optimized). In the TSM, the area of (intensive) natural hazard management is reduced practically by half (50%), and key infrastructure “maintenance” is reduced by 40–60% for the Kravarsko PA.
- We advise that future periodic (landslide) data gathering, the analysis of hazards, and the development of risk maps are still needed for the PA; these measures would improve the present state of natural hazard (landslide) management in the Kravarsko area.
- The presented methodology for TSM development is described according to three steps and defined prerequisites.
- With the provision of adequate data, the TSM can be used/upscaled for larger areas and regions or used at the national level, regardless of the differing topographies and climates of these regions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, F.G. Geological Hazards: Their Assessments, Avoidance and Mitigation; E&FN Spon Press: London, UK, 2003; pp. 1–648. [Google Scholar]
- Mateos, R.M.; López-Vinielles, J.; Poyiadji, E.; Tsagkas, D.; Sheehy, M.; Hadjicharalambous, K.; Liscák, P.; Podolski, L.; Laskowicz, I.; Iadanza, C.; et al. Integration of landslide hazard into urban planning across Europe. Landsc. Urban Plan. 2020, 196, 103740. [Google Scholar] [CrossRef]
- Podolszki, L.; Kosović, I.; Novosel, T.; Kurečić, T. Multi-Level Sensing Technologies in Landslide Research—Hrvatska Kostajnica Case Study, Croatia. Sensors 2022, 22, 177. [Google Scholar] [CrossRef] [PubMed]
- Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- The International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (WP/WLI). A suggested method for reporting a landslide. Bull. Int. Assoc. Eng. Geol. 1990, 41, 5–12. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. In Landslides: Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; Transportation Research Board: Washington, DC, USA, 1978; Special Report 176; pp. 11–33. Available online: https://www.engr.hk/T05/176-002.pdf (accessed on 16 August 2023).
- Cornforth, D.H. Landslides in Practice: Investigation, Analysis, and Remedial/Preventative Options in Soils; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 1–596. ISBN 978-0-471-67816-8. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides—Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Boar: Washington, DC, USA, 1996; Special Report 247; pp. 36–75. Available online: http://onlinepubs.trb.org/Onlinepubs/sr/sr247/sr247-003.pdf (accessed on 17 August 2023).
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; US Geological Survey: Denver, CO, USA, 2008; pp. 1–147. [Google Scholar] [CrossRef]
- Liu, P.; Wei, Y.; Wang, Q.; Chen, Y.; Xie, J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef]
- Komolvilas, V.; Tanapalungkorn, W.; Latcharote, P.; Likitlersuang, S. Failure analysis on a heavy rainfall-induced landslide in Huay Khab Mountain in Northern Thailand. J. Mt. Sci. 2021, 18, 2580–2596. [Google Scholar] [CrossRef]
- Korup, O.; Seidemann, J.; Mohr, C.H. Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile. Nat. Geosci. 2019, 12, 284–289. [Google Scholar] [CrossRef]
- Karagianni, A.; Lazos, I.; Chatzipetros, A. Remote sensing techniques in disaster management: Amynteon mine landslides, Greece. In Lecture Notes in Geoinformation and Cartography; Cartwright, W., Gartner, G., Meng, L., Peterson, M.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Mao, H. Influence of human activity on landslide susceptibility development in the Three Gorges area. Nat. Hazards 2020, 104, 2115–2151. [Google Scholar] [CrossRef]
- Manchado, A.M.-T.; Ballesteros-Cánovas, J.A.; Allen, S.; Stoffel, M. Deforestation controls landslide susceptibility in Far-Western Nepal. CATENA 2022, 219, 106627. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Z.; Yin, K.; Shrestha, D.P.; Jin, S. The influence of land use and land cover change on landslide susceptibility: A case study in Zhushan Town, Xuan’en County (Hubei, China). Nat. Hazards Earth Syst. Sci. 2019, 19, 2207–2228. [Google Scholar] [CrossRef]
- Chacón, J.; Irigaray, C.; Fernández, T.; El Hamdouni, R. Engineering Geology Maps: Landslides and Geographical Information Systems. Bull. Eng. Geol. Environ. 2006, 65, 341–411. [Google Scholar] [CrossRef]
- Filipović, M.; Mišur, I.; Gulam, V.; Horvat, M. A case study in the research polygon in Glina and Dvor municipality, Croatia–landslide susceptibility assessment of geological units. Geol. Croat. 2022, 75, 17–33. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Kang-Tsung, C. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Corominas, J.; Van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the Quantitative Analysis of Landslide Risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide Hazard and Risk Assessment. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2006. [Google Scholar]
- Pollak, D.; Hećej, N.; Grizelj, A. Landslide inventory and characteristics, based on LiDAR scanning and optimised field investigations in the Kutina area, Croatia. Geol. Croat. 2022, 75, 83–99. [Google Scholar] [CrossRef]
- Herrera, G.; Mateos, R.M.; García-Davalillo, C.J.; Grandjean, G.; Poyiadji, E.; Maftei, R.; Filipciuc, T.C.; Jemec Auflič, M.; Jež, J.; Podolszki, L.; et al. Landslide databases in the Geological Surveys of Europe. Landslides 2018, 15, 359–379. [Google Scholar] [CrossRef]
- Bostjančić, I.; Filipović, M.; Gulam, V.; Pollak, D. Regional-Scale Landslide Susceptibility Mapping Using Limited LiDAR-Based Landslide Inventories for Sisak-Moslavina County, Croatia. Sustainability 2021, 13, 4543. [Google Scholar] [CrossRef]
- Frangen, T.; Pavić, M.; Gulam, V.; Kurečić, T. Use of a LiDAR-derived landslide inventory map in assessing Influencing factors for landslide susceptibility of geological units in the Petrinja area (Croatia). Geol. Croat. 2022, 75, 35–49. [Google Scholar] [CrossRef]
- Podolszki, L.; Miklin, L.; Kosović, I.; Gulam, V. Multi-Level Data Analyses in the Gajevo Landslide Research, Croatia. Remote Sens. 2023, 15, 200. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Miyagi, T.; Prasad, B.G.; Tanavud, C.; Potichan, A.; Hamasaki, E. Landslide Risk Evaluation and Mapping—Manual of Aerial Photo Interpretation for Landslide Topography and Risk Management. Report of the National Research Institute for Earth Science and Disaster Prevention, Japan. 2004, No. 66, pp. 75–137. Available online: https://www.researchgate.net/profile/Eisaku-Hamasaki-2/publication/242516740_Landslide_Risk_Evaluation_and_Mapping_-_Manual_of_Aerial_Photo_Interpretation_for_Landslide_Topography_and_Risk_Management/links/5961f922a6fdccc9b132c467/Landslide-Risk-Evaluation-and-Mapping-Manual-of-Aerial-Photo-Interpretation-for-Landslide-Topography-and-Risk-Management.pdf (accessed on 5 July 2023).
- Paine, D.P.; Kiser, J.D. Aerial Photogrametry and Image Interpretation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 1–629. [Google Scholar]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Slaughter, S.L.; Burns, W.J.; Mickelson, K.A.; Jacobacci, K.E.; Biel, A.; Contreras, T.A. Protocol for Landslide Inventory Mapping from LIDAR Data in Washington State; Washington Geological Survey, USGS: Washington, DC, USA, 2017; pp. 1–26. [Google Scholar]
- Podolszki, L.; Kurečić, T.; Bateson, L.; Svennevig, K. Remote Landslide Mapping, Field Validation and Model Development—An Example from Kravarsko, Croatia. Geol. Croat. 2022, 75, 67–82. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Van Asch, T.W.; Soeters, R. Landslide hazard and risk zonation-why is it so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Mersha, T.; Meten, M. GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenviron. Disasters 2020, 7, 20. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Teimoori Yansari, Z.; Panagos, P.; Pradhan, B. Analysis and evaluation of landslide susceptibility: A review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab. J. Geosci. 2018, 11, 193. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide Susceptibility Mapping: Machine and Ensemble Learning Based on Remote Sensing Big Data. Remote Sens. 2020, 12, 1737. [Google Scholar] [CrossRef]
- Lv, L.; Chen, T.; Dou, J.; Plaza, A. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102713. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.-W.; Lee, S. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J. Environ. Manag. 2022, 305, 114367. [Google Scholar] [CrossRef]
- Sun, D.; Chen, D.; Zhang, J.; Mi, C.; Gu, Q.; Wen, H. Landslide Susceptibility Mapping Based on Interpretable Machine Learning from the Perspective of Geomorphological Differentiation. Land 2023, 12, 1018. [Google Scholar] [CrossRef]
- Zagrebačka Županija. Proglašena Elementarna Nepogoda Za Općinu Kravarsko [Zagreb County. Declared Natural Disaster for Kravarsko Municipality—In Croatian] (19.02.2014). Available online: https://www.zagrebacka-zupanija.hr/vijesti/1763/proglasena-elementarna-nepogoda-za-opcinu-kravarsko (accessed on 7 July 2023).
- Miklin, L.; Podolszki, L.; Gulam, V.; Markotić, I. The Impact of Climate Changes on Slope Stability and Landslide Conditioning Factors: An Example from Kravarsko, Croatia. Remote Sens. 2022, 14, 1794. [Google Scholar] [CrossRef]
- Dashwood, C.; Podolszki, L.; Pedersen, S.A.S.; Gulam, V.; Kosović, I.; Novellino, A.; Bostjančić, I.; Pollak, D.; Svennevig, K.; Marchant, B.; et al. CGS GeoTwinn Project Report: Training Results Report—WP3—Deliverable 3.3; Internal Data Base of H2020-WIDESPREAD-05-2017-Twinning Project 809943: Strengthening Research in the Croatian Geological Survey; Croatian Geological Survey: Zagreb, Croatia, 2021; pp. 1–49. [Google Scholar]
- Pikija, M. Osnovna Geološka Karta SFRJ 1:100.000—List Sisak L33-93 [Basic Geological Map SFRY in Scale of 1:100,000—Sheet Sisak L33-93—In Croatian]; Institut za Geološka Istraživanja: Belgrade, Serbia, 1987. [Google Scholar]
- Čubrilović, P.; Palavestrić, L.; Nikolić, T. Inženjerskogeološka Karta Jugoslavije 1:500,000 [Engineering–geological Map of Yugoslavia in Scale of 1:500,000—In Croatian]; Institut za Geološka Istraživanja: Belgrade, Serbia, 1967. [Google Scholar]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide inventory maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Zhengjing, M.; Gang, M. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Sci. Rev. 2021, 223, 103858. [Google Scholar] [CrossRef]
- Tokarev, M.J.; Roslyakov, A.G.; Terehina, Y.E. Geophysical Approach to the Geohazard Classification in Marine Engineering and Geological Surveys; European Association of Geoscientists & Engineers Marine Technologies: Gelendzhik, Russia, 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Culshaw, M.G. Geohazards. In Encyclopedia of Engineering Geology; Bobrowsky, P., Marker, B., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Mihalić Arbanas, S.; Krkač, M.; Bernat, S. Application of innovative technologies in landslide research in the area of the City of Zagreb (Croatia, Europe). Geol. Croat. 2016, 69, 231–243. [Google Scholar] [CrossRef]
- Jagodnik, P.; Jagodnik, V.; Arbanas, Ž.; Mihalić Arbanas, S. Landslide types in the Slani Potok gully, Croatia. Geol. Croat. 2020, 73, 13–28. [Google Scholar] [CrossRef]
- McCalpin, J. Preliminary age classification of landslides for inventory mapping. In Proceedings of the 21st Annual Symposium on Engineering Geology and Soil Engineering Symposium; University Press: Moscow, Russia, 1984; pp. 99–111. [Google Scholar]
- Podolszki, L.; Pollak, D.; Gulam, V.; Miklin, Ž. Development of Landslide Susceptibility Map of Croatia. In Engineering Geology for Society and Territory—Volume 2: Landslide Processes; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 2, pp. 947–950. [Google Scholar] [CrossRef]
- Pollak, D.; Bostjančić, I.; Gulam, V. CGS SafEarth Project Report: Landslide Susceptibility Map in Scale of 1:100,000—Zagreb County (Project ID: HR-BA-ME59, WP Implementation Deliverable: T1.3.2a, LSM in Small Scale (HGI), Annex 3 LSM in Small Scale for Zagreb County); Internal Data Base of Interreg—IPA CBC Croatia—Bosnia and Herzegovina—Montenegro; Croatian Geological Survey: Zagreb, Croatia, 2018; pp. 1–2, 1 map. [Google Scholar]
- Çellek, S. Effect of the Slope Angle and Its Classification on Landslide. Nat. Hazards Earth Syst. Sci. Discuss. 2020. [Google Scholar] [CrossRef]
- Günther, A.; Reichenbach, P.; Malet, J.P.; Van Den Eeckhaut, M.; Hervás, J.; Dashwood, C.; Guzzetti, F. Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 2013, 10, 529–546. [Google Scholar] [CrossRef]
- Kincal, C.; Kayhan, H. A Combined Method for Preparation of Landslide Susceptibility Map in Izmir (Türkiye). Appl. Sci. 2022, 12, 9029. [Google Scholar] [CrossRef]
- Leoni, G.; Campolo, D.; Falconi, L.; Gioè, C.; Lumaca, S.; Puglisi, C.; Torre, A. Heuristic method for landslide susceptibility assessment in the Messina municipality. In Engineering Geology for Society and Territory—Volume 2: Landslide Processes; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 2, pp. 501–504. [Google Scholar] [CrossRef]
- Sinčić, M.; Bernat Gazibara, S.; Krkač, M.; Lukačić, H.; Mihalić Arbanas, S. The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments. Land 2022, 11, 1360. [Google Scholar] [CrossRef]
- Pacheco Quevedo, R.; Velastegui-Montoya, A.; Montalván-Burbano, N.; Morante-Carballo, F.; Korup, O.; Daleles Rennó, C. Land use and land cover as a conditioning factor in landslide susceptibility: A literature review. Landslides 2023, 20, 967–982. [Google Scholar] [CrossRef]
- Rohan, T.; Shelef, E.; Mirus, B. Prolonged influence of urbanization on landslide susceptibility. Landslides 2023, 20, 1433–1447. [Google Scholar] [CrossRef]
- Sinčić, M.; Bernat Gazibara, S.; Krkač, M.; Mihalić Arbanas, S. Landslide susceptibility assessment of the City of Karlovac using the bivariate statistical analysis. Rud. Geološko Naft. Zb. 2022, 37, 149–170. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Rogers, J.D.; ISMAIL, E.H. A regional level preliminary landslide susceptibility study of the upper Indus river basin. Eur. J. Remote Sens. 2014, 47, 343–373. [Google Scholar] [CrossRef]
- Peshevski, I.; Jovanovski, M.; Abolmasov, B.; Papić, J.; Đurić, U.; Majranović, M.; Haque, U.; Nedelkovska, N. Preliminary regional landslide susceptibility assessment using limited data. Geol. Croat. 2019, 72, 81–92. [Google Scholar] [CrossRef]
- Ruff, M.; Czurda, K. Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology 2008, 94, 314–324. [Google Scholar] [CrossRef]
- Shano, L.; Raghuvanshi, T.K.; Meten, M. Landslide susceptibility evaluation and hazard zonation techniques—A review. Geoenviron. Disasters 2020, 7, 18. [Google Scholar] [CrossRef]
- Stanley, T.; Kirschbaum, D.B. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards 2017, 87, 145–164. [Google Scholar] [CrossRef]
- Bukhari, M.H.; Da Silva, P.F.; Pilz, J.; Istanbulluoglu, E.; Görüm, T.; Lee, J.; Karamehic-Muratovic, A.; Urmi, T.; Soltani, A.; Wilopo, W.; et al. Community perceptions of landslide risk and susceptibility: A multi-country study. Landslides 2023, 20, 1321–1334. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; Da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Jemec Auflič, M.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- He, Y.; Ding, M.; Liu, K.; Lei, M. The Impact of Geohazards on Sustainable Development of Rural Mountain Areas in the Upper Reaches of the Min River. Front. Earth Sci. 2022, 10, 862544. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Hervás, J.; Jaedicke, C.; Malet, J.-P.; Montanarella, L.; Nadim, F. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 2012, 9, 357–369. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; International Association of Engineering Geology: Paris, France, 1984; pp. 1–63. [Google Scholar]
Landslide Susceptibility Map Layer | Classes | Weight of Criteria (Layer) | Weight of Criteria (Overall) |
---|---|---|---|
Slope angle (°) | 0 | 1 | 0.5 |
1–5 | 3 | ||
6–15 | 6 | ||
16–25 | 9 | ||
26–35 | 12 | ||
36–45 | 15 | ||
46–60 | 17 | ||
61–75 | 18 | ||
76–90 | 19 | ||
Engineering geological units | Alluvial sediments | 5 | 0.4 |
Loess | 20 | ||
Vrbova fm. | 75 | ||
Land cover | Water | 0 | 0.1 |
Forest | 25 | ||
Urban | 35 | ||
Fields | 40 |
Resulting LSM Class | Percentage (%) | Area (km2) | Resulting LSM Zone |
---|---|---|---|
0 | 0.1 | 0.1 | Water |
1 | 31.4 | 19.1 | Low |
2 | 35.9 | 22.2 | Medium |
3 | 27.2 | 16.7 | High |
4 | 5.4 | 3.7 | Very high |
Anthropogenic Structures | Kravarsko PA (≈61.7 km2) | Stable Zone (~7.3 km2 of PA) | Possibly Unstable Zone (~23.0 km2 of PA) | Unstable Zone (~31.4 km2 of PA) |
---|---|---|---|---|
Settlements (km2) | 5.69 (~9% of PA) | 0.29 (~5% of sett.) | 2.13 (~37% of sett.) | 3.27 (~58% of sett.) |
Roads (km’) | 85.42 (100%) | 4.10 (~5% of roads) | 24.24 (~28% of roads) | 57.08 (~67% of roads) |
Water systems (km’) | 34.65 (100%) | 2.38 (~7% of w.s.) | 12.91 (~37% of w.s.) | 19.36 (~56% of w.s.) |
Power lines (km’) | 21.72 (100%) | 7.12 (~33% of p.l.) | 5.55 (~25% of p.l.) | 9.05 (~42% of p.l.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podolszki, L.; Karlović, I. Remote Sensing and GIS in Landslide Management: An Example from the Kravarsko Area, Croatia. Remote Sens. 2023, 15, 5519. https://doi.org/10.3390/rs15235519
Podolszki L, Karlović I. Remote Sensing and GIS in Landslide Management: An Example from the Kravarsko Area, Croatia. Remote Sensing. 2023; 15(23):5519. https://doi.org/10.3390/rs15235519
Chicago/Turabian StylePodolszki, Laszlo, and Igor Karlović. 2023. "Remote Sensing and GIS in Landslide Management: An Example from the Kravarsko Area, Croatia" Remote Sensing 15, no. 23: 5519. https://doi.org/10.3390/rs15235519
APA StylePodolszki, L., & Karlović, I. (2023). Remote Sensing and GIS in Landslide Management: An Example from the Kravarsko Area, Croatia. Remote Sensing, 15(23), 5519. https://doi.org/10.3390/rs15235519