A Disparate Disaster: Spatial Patterns of Building Damage Caused by Hurricane Ian and Associated Socio-Economic Factors
Abstract
:1. Introduction
2. Literature Review
2.1. Building Damage in Hurricanes
2.2. Socio-Economic Factors Related to Building Damage
3. Study Area and Data
3.1. Hurricane Ian and Its Affected Area
3.2. Datasets
4. Research Method
4.1. Calculation of Damage Status and Ratio
4.2. Building-Level Analysis
4.3. Census Tract-Level Analysis
4.4. Geographically Weighted Regression
5. Results
5.1. Accuracy Assessment of Damage Data
5.2. Spatial Pattern of Building Damage
5.3. Findings from the Building-Level Analysis
5.3.1. Student’s t-Test
5.3.2. Logistic Regression
5.4. Findings from the Census Tract-Level Analysis
5.4.1. Correlation between Damage Ratios and All Predictors
5.4.2. Socio-Economic Factors Influencing Building Damage
5.4.3. Spatial Variation and the Impact of Physical and Socio-Economic Factors in Building Damages
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E. Framing the way to relate climate extremes to climate change. Clim. Chang. 2012, 115, 283–290. [Google Scholar] [CrossRef]
- NOAA. Hurricane Costs. Available online: https://coast.noaa.gov/states/fast-facts/hurricane-costs.html (accessed on 17 July 2023).
- Klotzbach, P.P.J.; Bowen, S.G.; PielKe, R.G.R.; Bell, M. Continental U.S. Hurricane landfall frequency and associated damage: Observations and future risks. Bull. Am. Meteorol. Soc. 2018, 99, 1359–1376. [Google Scholar] [CrossRef]
- Malmstadt, J.; Scheitlin, K.; Elsner, J. Florida hurricanes and damage costs. Southeast. Geogr. 2009, 49, 108–131. [Google Scholar] [CrossRef]
- Larsen, L. Reimagining sustainable cities: Strategies for designing greener, healthier, more equitable communities. J. Am. Plan. Assoc. 2023, 89, 148–149. [Google Scholar] [CrossRef]
- NOAA. Monthly National Climate Report for September 2022. Available online: https://www.nhc.noaa.gov/data/tcr/ (accessed on 25 July 2023).
- Mazumder, R.K.; Enderami, S.A.; Sutley, E.J. A novel framework to study community-level social and physical impacts of hurricane-induced winds through synthetic scenario analysis. Front. Built Env. 2023, 9, 1005264. [Google Scholar] [CrossRef]
- Alduse, B.; Pang, W.; Tadinada, S.K.; Khan, S. A framework to model the wind-induced losses in buildings during hurricanes. Wind 2022, 2, 87–112. [Google Scholar] [CrossRef]
- Burton, C. Social vulnerability and hurricane impact modeling. Nat. Hazards Rev. 2010, 11, 58–68. [Google Scholar] [CrossRef]
- Milch, K.; Broad, K.; Orlove, B.; Meyer, R. Decision science perspectives on hurricane vulnerability: Evidence from the 2010-2012 Atlantic hurricane seasons. Atmosphere 2018, 9, 32. [Google Scholar] [CrossRef]
- Sutley, E.J.; Hamideh, S. Post disaster housing stages: A Markov chain approach to model sequences and duration based on social vulnerability. Risk Anal. 2020, 40, 2675–2695. [Google Scholar] [CrossRef]
- FEMA Building Performance: Hurricane Andrew in Florida. Available online: https://www.fema.gov/sites/default/files/2020-08/fia22_complete.pdf (accessed on 28 August 2022).
- Arch, G.; Hajra, B.; Moravej, M.; Zisis, I.; Irwin, P.; Chowdhury, A.G.; Suaris, W. An experimental study to assess the effect of soffit louvered vents on wind loads and wind driven rain intrusion on low rise buildings. Sustain. Cities Soc. 2017, 34, 43–55. [Google Scholar] [CrossRef]
- Paleo-Torres, A.; Gurley, K.; Pinelli, J.P.; Baradaranshoraka, M.; Zhao, M.; Suppasri, A.; Peng, X. Vulnerability of Florida residential structures to hurricane induced coastal flood. Eng. Struct. 2020, 220, 111004. [Google Scholar] [CrossRef]
- Li, Y.; van de Lindt, J.W.; Dao, T.; Bjarnadottir, S.; Ahuja, A. Loss analysis for combined wind and surge in hurricanes. Nat. Hazards Rev. 2012, 13, 1–10. [Google Scholar] [CrossRef]
- Mudd, L.; Wang, Y.; Letchford, C.; Rosowsky, D. Assessing climate change impact on the U.S. east coast hurricane hazard: Temperature, frequency, and track. Nat. Hazards Rev. 2014, 15, 04014001. [Google Scholar] [CrossRef]
- Xing, Z.; Yang, S.; Zan, X.; Dong, X.; Yao, Y.; Liu, Z.; Zhang, X. Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images. Sustain. Cities Soc. 2023, 92, 104467. [Google Scholar] [CrossRef]
- Ayscue, J.K. Hurricane Damage to Residential Structures: Risk and Mitigation; The Johns Hopkins University: Baltimore, MD, USA, 1996; Available online: https://hazards.colorado.edu/research/working-papers/94 (accessed on 25 July 2022).
- Svenningsen, L.S.; Bay, L.; Doemgaard, M.L.; Halsnaes, K.; Larsen, M.D. Beyond the stage-damage function: Estimating the economic damage on residential buildings from storm surges. Nat. Hazards Earth Syst. Sci. Discuss. 2020. [preprint]. [Google Scholar] [CrossRef]
- Nofal, O.M.; Amini, K.; Padgett, J.E.; van de Lindt, J.W.; Rosenheim, N.; Darestani, Y.M.; Enderami, A.; Sutley, E.J.; Hamideh, S.; Duenas-Osorio, L. Multi-Hazard socio-physical resilience assessment of hurricane-induced hazards on coastal communities. Resilient Cities Struct. 2023, 2, 67–81. [Google Scholar] [CrossRef]
- Xian, S.; Feng, K.; Lin, N.; Marsooli, R.; Chavas, D.; Chen, J.; Hatzikyriakou, A. Brief communication: Rapid assessment of damaged residential buildings in the Florida keys after Hurricane Irma. Nat. Hazards Earth Syst. Sci. 2018, 18, 2041–2045. [Google Scholar] [CrossRef]
- van Wiechen, P.P.J.; de Vries, S.; Reniers, A.J.H.M.; Aarninkhof, S.G.J. Dune erosion during storm surges: A review of the observations, physics and modelling of the collision regime. Coast. Eng. 2023, 186, 104383. [Google Scholar] [CrossRef]
- Shepard, C.C.; Crain, C.M.; Beck, M.W. The protective role of coastal marshes: A systematic review and meta-analysis. PLoS ONE 2011, 6, e27374. [Google Scholar] [CrossRef]
- Blendon, R.J.; John Benson, S.M.; Catherine DesRoches, M.M.; Katherine Lyon-Daniel, D.; Mitchell, E.W.; Pollard, W.E. The public’s preparedness for hurricanes in four affected regions. Public. Health Rep. 2007, 122, 167–176. [Google Scholar] [CrossRef]
- Abdelhady, A.U.; Spence, S.M.J.; McCormick, J. Risk and fragility assessment of residential wooden buildings subject to hurricane winds. Struct. Saf. 2022, 94, 102137. [Google Scholar] [CrossRef]
- Masters, F.J.; Gurley, K.R.; Shah, N.; Fernandez, G. The vulnerability of residential window glass to lightweight windborne debris. Eng. Struct. 2010, 32, 911–921. [Google Scholar] [CrossRef]
- Gurley, K.; Masters, F. Post-2004 hurricane field survey of residential building performance. Nat. Hazards Rev. 2011, 12, 177–183. [Google Scholar] [CrossRef]
- Fronstin, P.; Holtmann, A.G. The determinants of residential property damage caused by Hurricane Andrew. South. Econ. J. 1994, 61, 387–397. [Google Scholar] [CrossRef]
- Maalej, M.; Chhoa, C.Y.; Quek, S.T. Effect of cracking, corrosion and repair on the frequency response of RC beams. Constr. Build. Mater. 2010, 24, 719–731. [Google Scholar] [CrossRef]
- Siegmund, S. Protecting against hurricane damage with mathematics. Not. Am. Math. Soc. 2018, 65, 967–968. [Google Scholar] [CrossRef]
- FBC. Florida Building Code—Existing Building, 8th ed.; International Code Council: Nappanee, Indiana, 2023; ISBN 978-1-960701-22-0. [Google Scholar]
- Prevatt, D.O.; Roueche, D.B.; Van De Lindt, J.W.; Pei, S.; Dao, T.; Coulbourne, W.; Graettinger, A.J.; Gupta, R.; Grau, D. Building Damage Observations and EF classifications from the Tuscaloosa, AL, and Joplin, MO, tornadoes. ASCE 2012, 35, 999–1010. [Google Scholar] [CrossRef]
- Pinelli, J.; Weekes, J.; Pita, G.; Hamid, S.; Gurley, K.; Subramanian, C. Vulnerability of mid-high rise commercial-residential buildings in the Florida public hurricane loss model. Environ. Eng. Sci. 2009, 1140–1149. [Google Scholar] [CrossRef]
- Peacock, W.G.; Van Zandt, S.; Zhang, Y.; Highfield, W.E. Inequities in long-term housing recovery after disasters. J. Am. Plan. Assoc. 2014, 80, 356–371. [Google Scholar] [CrossRef]
- Miljkovic, T.; Miljkovic, D. Modeling impact of hurricane damages on income distribution in the coastal U.S. Int. J. Disaster Risk Sci. 2014, 5, 265–273. [Google Scholar] [CrossRef]
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Mitsova, D.; Esnard, A.M.; Sapat, A.; Lai, B.S. Socioeconomic vulnerability and electric power restoration timelines in Florida: The case of Hurricane Irma. Nat. Hazards 2018, 94, 689–709. [Google Scholar] [CrossRef]
- Emrich, C.T.; Tate, E.; Larson, S.E.; Zhou, Y. Measuring social equity in flood recovery funding. Environ. Hazards 2020, 19, 228–250. [Google Scholar] [CrossRef]
- SAMHSA Disaster Technical Assistance Center Supplemental Research Bulletin Greater Impact: How Disasters Affect People of Low Socioeconomic Status. Available online: https://www.samhsa.gov/sites/default/files/dtac/srb-low-ses_2.pdf (accessed on 17 June 2022).
- Zamboni, L.M.; Martin, E.G. Association of US households’ disaster preparedness with socioeconomic characteristics, composition, and region. JAMA Netw. Open 2020, 3, e206881. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.R.; Issar, S.; Xu, Z. Trapped in place? segmented resilience to hurricanes in the Gulf coast, 1970–2005. Demography 2016, 53, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Fan, C. Impacts of disaster exposure on climate adaptation injustice across U.S. cities. Sustain. Cities Soc. 2023, 89, 104371. [Google Scholar] [CrossRef]
- Eaton, K.J. Low-income housing and hurricanes. Wind. Eng. 1980, 1, 7–21. [Google Scholar] [CrossRef]
- Bukvic, A.; Gohlke, J.; Borate, A.; Suggs, J. Aging in flood-prone coastal areas: Discerning the health and well-being risk for older residents. Int. J. Environ. Res. Public. Health 2018, 15, 2900. [Google Scholar] [CrossRef]
- Acierno, R.; Ruggiero, K.J.; Galea, S.; Resnick, H.S.; Koenen, K.; Roitzsch, J.; de Arellano, M.; Boyle, J.; Kilpatrick, D.G. Psychological sequelae resulting from the 2004 Florida hurricanes: Implications for Post disaster intervention. Am. J. Public Health 2007, 97 (Suppl. S1), S103–S108. [Google Scholar] [CrossRef]
- Estrada, F.; Botzen, W.J.W.; Tol, R.S.J. Economic losses from U.S. hurricanes consistent with an influence from climate change. Nat. Geosci. 2015, 8, 880–884. [Google Scholar] [CrossRef]
- NOAA. Costliest U.S. Tropical Cyclones Tables Update. Available online: https://www.ncei.noaa.gov/access/billions/dcmi.pdf (accessed on 17 September 2023).
- Karimiziarani, M.; Moradkhani, H. Social response and disaster management: Insights from twitter data assimilation on Hurricane Ian. Int. J. Disaster Risk Reduct. 2023, 95, 103865. [Google Scholar] [CrossRef]
- Florida Department of Law Enforcement. Florida Medical Examiners Commission Hurricane Ian Deaths. Available online: https://www.fdle.state.fl.us/News/2023/January/Update-Florida-Medical-Examiners-Commission-Hu-(2) (accessed on 10 December 2022).
- ARIA. Hurricane Ian USA. Available online: https://aria-share.jpl.nasa.gov/202209-Hurricane_Ian_USA/DPM/ (accessed on 13 February 2023).
- Kristensen, L.; Casanova, M.; Courtney, M.; Troen, I. In search of a gust Definition. Bound. Layer. Meteorol. 1991, 55, 91–107. [Google Scholar] [CrossRef]
- Konthesingha, K.M.C.; Stewart, M.G.; Ryan, P.; Ginger, J.; Henderson, D. Reliability based vulnerability modelling of metal-clad industrial buildings to extreme wind loading for cyclonic regions. J. Wind. Eng. Ind. Aerodyn. 2015, 147, 176–185. [Google Scholar] [CrossRef]
- Wills, J.A.B.; Lee, B.E.; Wyatt, T.A. A model of wind-borne debris damage. J. Wind. Eng. Ind. Aerodyn. 2002, 90, 555–565. [Google Scholar] [CrossRef]
- Cugnoni, H.; Whitworth, I. Injuries related to wind speed. Ann. R. Coll. Surg. Engl. 1992, 74, 294–296. [Google Scholar]
- NOAA. NHC Data in GIS Formats. Available online: https://www.nhc.noaa.gov/gis/ (accessed on 25 June 2023).
- Townsend, B.W.; Ohanehi, D.; Dillard, D.; Austin, S.R.; Salmon, F.; Gagnon, D. Developing a simple damage model for the long-term durability of acrylic foam structural glazing tape subject to sustained wind loading. J. Archit. Eng. 2012, 18, 214–222. [Google Scholar] [CrossRef]
- Lin, N.; Emanuel, K.; Oppenheimer, M.; Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nat. Clim. Chang. 2012, 2, 462–467. [Google Scholar] [CrossRef]
- Emanuel, K.; Ravela, S.; Vivant, E.; Risi, C. Supplement to a statistical deterministic approach to hurricane risk assessment. Bull. Am. Meteorol. Soc. 2006, 87, S1–S5. [Google Scholar] [CrossRef]
- Ye, M.; Wu, J.; Liu, W.; He, X.; Wang, C. Dependence of tropical cyclone damage on maximum wind speed and socioeconomic factors. Environ. Res. Lett. 2020, 15, 094061. [Google Scholar] [CrossRef]
- Liew, H.-P.; Eidem, N. Examining the potential impacts of social vulnerability on damage levels in areas affected by Hurricane Harvey. J. Homel. Secur. Emerg. Manag. 2022, 19, 51–66. [Google Scholar] [CrossRef]
- Spekkers, M.H.; Kok, M.; Clemens, F.H.L.R.; Ten Veldhuis, J.A.E. Decision-tree analysis of factors influencing rainfall-related building structure and content damage. Nat. Hazards Earth Syst. Sci. 2014, 14, 2531–2547. [Google Scholar] [CrossRef]
- U.S. Census Bureau. American Community Survey, ACS 5-Year Estimates Subject Tables. Available online: https://www.census.gov/programs-surveys/acs (accessed on 5 March 2023).
- Katz, R.W. Stochastic modeling of hurricane damage. J. Appl. Meteorol. Clim. 2002, 41, 754–762. [Google Scholar] [CrossRef]
- Mitsova, D.; Escaleras, M.; Sapat, A.; Esnard, A.M.; Lamadrid, A.J. The effects of infrastructure service disruptions and socio-economic vulnerability on hurricane recovery. Sustainability 2019, 11, 516. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y. On the Importance of the Pearson Correlation Coefficient in Noise Reduction. IEEE Trans. Audio Speech Lang. Process 2008, 16, 757–765. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Routledge: London, UK, 2023. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environ. Plan. A Econ. Space 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Hoboken, NJ, USA, 2002; ISBN 978-0-471-49616-8. [Google Scholar]
- Birch, C.P.D.; Oom, S.P.; Beecham, J.A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 2007, 206, 347–359. [Google Scholar] [CrossRef]
- Carr, D.; Olsen, A.; White, D. Hexagon mosaic maps for display of univariate and bivariate geographical data. Cartogr. Geogr. Inf. Syst. 2013, 19, 228–236. [Google Scholar] [CrossRef]
- Boose, E.R.; Foster, D.R.; Fluet, M. Hurricane impacts to tropical and temperate forest landscapes. Ecol. Monogr. 1994, 64, 369–400. [Google Scholar] [CrossRef]
- Coch, N.K. Hurricane Hazards along the Northeastern Atlantic coast of the United States. J. Coast. Res. 1994, 115–147. Available online: http://www.jstor.org/stable/25735594 (accessed on 10 August 2023).
- Sun, H.; Cui, Y.; Wang, H.; Liu, H.; Wang, T. Comparison of methods for the detection of outliers and associated biomarkers in mislabeled omics data. BMC Bioinform. 2020, 21, 357. [Google Scholar] [CrossRef]
- Meloy, N.; Sen, R.; Pai, N.; Mullins, G. Roof Damage in New Homes Caused by Hurricane Charley. J. Perform. Constr. Facil. 2007, 21, 97–107. [Google Scholar] [CrossRef]
Theme | Variable | Variable Abbr. | Source | |
---|---|---|---|---|
Dependent Variable | Building Damage | Damage Ratio | DR | NASA |
Independent variable | Hurricane Intensity | Speed of Wind Gust (miles per hour) | Gust_wind | NOAA |
Speed of Sustained Wind (miles per hour) | Sust_wind | |||
Distance to Hurricane Track (meter) | Dist_Track | |||
Distance to Coast (meter) | Coast_Dist | U.S. Census | ||
Building Conditions | Age of Building (year) | Building_age | County Property Appraiser | |
Age of Roof (year) | Roof_age | |||
Building Type | Building_Type | |||
Average Building Size (square meters) | Building_Size | Microsoft Building Footprint (2011–2020) | ||
Socio-economic | Average House Value (dollars) | House_v | U.S. Census (2022) | |
Number of Population with Bachelor’s Degree | Bach | |||
Household Average Income (dollars) | Income | |||
Percentage of Owner-occupied Homes (%) | Own_h | |||
Unemployment Rate (%) | Unemployment | |||
Percentage of Individuals with Income under Poverty Level (%) | Poverty | |||
Population Density (1000/sqrt. km) | Density | |||
Median Rent Paid by Households (dollars) | Rent | |||
Population with Limited English Speaker | N_Eng | U.S. Census (2022) | ||
Demographic | Percentage of Hispanic/Latino Population (%) | Hispanic | ||
Percentage of White Population (%) | White | |||
Percentage of Black Population (%) | Black | |||
Percentage of Asian Population (%) | Asian | |||
Percentage of Population aged 65 and Above (%) | Elderly | |||
Percentage of Population under 5 Years Old (%) | Children |
Damage Status | |||
---|---|---|---|
Sample = 200 | Positive | Negative | |
Airbus Imagery (Validation Data) | Positive | 97 (48.50%) | 5 (2.50%) |
Negative | 3 (1.50%) | 95 (47.50%) |
Variables | Mean of Damaged Buildings | Mean of Undamaged Buildings | p-Value |
---|---|---|---|
Gust_wind (mph) | 55.7 | 40.4 | <0.001 |
Sust_wind (mph) | 38.9 | 28.2 | <0.001 |
Coast_Dist (m) | 10,975.2 | 14,401.8 | 0.020 |
Dist_Track (m) | 14,102.4 | 26,879.3 | <0.001 |
Building_Size (sq.m.) | 230.7 | 305.6 | <0.001 |
Building_age (year) | 35 | 27 | <0.001 |
Roof_age (year) | 19 | 23 | <0.001 |
House_value (dollars) | 763,939 | 901,869 | 0.470 |
Independent Variable | VIF | Coefficient | p-Value |
---|---|---|---|
Gust_wind (removed due to collinearity) | 17.34 | N/A | N/A |
Sust_wind | 17.11 | 1.628 | <0.001 |
Coast_Dist | 1.83 | −2.363 | <0.001 |
Dist_Track | 2.11 | −0.420 | 0.138 |
Building_Size | 1.31 | 0.175 | 0.501 |
Building_type: Single-Family Residential | 1.54 | −5.785 | <0.001 |
Building_age | 1.55 | 0.921 | 0.016 |
Roof_age | 1.58 | −0.681 | 0.049 |
House_value | 1.23 | 0.018 | 0.945 |
Model | Coefficient | Adjusted R2 | ∆R2 | p-Value |
---|---|---|---|---|
Baseline model | In Table 6 | 0.072 | <0.001 | |
Baseline model + Children | −0.369 | 0.167 | 0.10 | <0.001 |
Baseline model + Elderly | 0.338 | 0.164 | 0.09 | <0.001 |
Baseline model + Asian | −0.291 | 0.148 | 0.08 | <0.001 |
Baseline model + Building_Size | −0.279 | 0.137 | 0.07 | <0.001 |
Baseline model + Bach | −0.212 | 0.112 | 0.04 | <0.001 |
Baseline model + Density | −0.210 | 0.111 | 0.04 | <0.001 |
Baseline model + White | 0.201 | 0.102 | 0.03 | 0.001 |
Baseline model + Hispanic | −0.193 | 0.095 | 0.03 | 0.005 |
Baseline model + Black | −0.143 | 0.087 | 0.02 | 0.019 |
Baseline model + House_v | −0.139 | 0.083 | 0.01 | 0.037 |
Baseline model + Income | −0.126 | 0.082 | 0.01 | 0.048 |
Baseline model + Own_h | −0.106 | 0.081 | 0.01 | 0.061 |
Baseline model + Rent | −0.104 | 0.078 | 0.01 | 0.099 |
Baseline model + Poverty | 0.073 | 0.074 | 0.002 | 0.245 |
Baseline model + N_Eng | −0.088 | 0.076 | 0.004 | 0.150 |
Baseline model + Unemployment | −0.001 | 0.069 | <0.001 | 0.984 |
Baseline model + all other variables | In Table 6 | 0.361 | 0.29 | <0.001 |
Variables | Coefficient | Std. Error | p-Value |
---|---|---|---|
Sust_wind | 0.300 | 0.060 | <0.001 |
Coast_Dist | −0.335 | 0.068 | <0.001 |
Dist_Track | 0.071 | 0.061 | 0.248 |
Building_Size | −0.222 | 0.064 | 0.001 |
House_v | −0.221 | 0.109 | 0.043 |
Bach | −0.182 | 0.113 | 0.109 |
Income | −0.170 | 0.130 | 0.192 |
Own_h | 0.061 | 0.107 | 0.568 |
Unemployment | −0.089 | 0.055 | 0.103 |
Poverty | 0.134 | 0.073 | 0.066 |
Density | −0.164 | 0.060 | 0.006 |
Rent | 0.058 | 0.071 | 0.417 |
N_Eng | 0.042 | 0.085 | 0.619 |
Hispanic | 0.020 | 0.178 | 0.912 |
White | 0.248 | 0.178 | 0.165 |
Black | 0.067 | 0.120 | 0.575 |
Asian | −0.087 | 0.062 | 0.156 |
Elderly | 0.287 | 0.156 | 0.067 |
Children | −0.137 | 0.190 | 0.469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salim, M.Z.; Qiang, Y.; Dixon, B.; Collins, J. A Disparate Disaster: Spatial Patterns of Building Damage Caused by Hurricane Ian and Associated Socio-Economic Factors. Remote Sens. 2024, 16, 3792. https://doi.org/10.3390/rs16203792
Salim MZ, Qiang Y, Dixon B, Collins J. A Disparate Disaster: Spatial Patterns of Building Damage Caused by Hurricane Ian and Associated Socio-Economic Factors. Remote Sensing. 2024; 16(20):3792. https://doi.org/10.3390/rs16203792
Chicago/Turabian StyleSalim, Md Zakaria, Yi Qiang, Barnali Dixon, and Jennifer Collins. 2024. "A Disparate Disaster: Spatial Patterns of Building Damage Caused by Hurricane Ian and Associated Socio-Economic Factors" Remote Sensing 16, no. 20: 3792. https://doi.org/10.3390/rs16203792
APA StyleSalim, M. Z., Qiang, Y., Dixon, B., & Collins, J. (2024). A Disparate Disaster: Spatial Patterns of Building Damage Caused by Hurricane Ian and Associated Socio-Economic Factors. Remote Sensing, 16(20), 3792. https://doi.org/10.3390/rs16203792