Ku-Band SAR-Drone System and Methodology for Repeat-Pass Interferometry
Abstract
:1. Introduction
2. Ku-Band SAR-Drone System Description
2.1. Radar
- The power supply and clock distribution module generates the voltages used through the system as well as the clock signals needed by the transmitter to generate the chirp and by the acquisition module to sample the data.
- The transmitter module generates a linear chirp with configurable sweep time, Pulse Repetition Frequency (PRF), and output power to provide flexibility in system configuration. The chirp pulse is synthesized by Direct Digital Synthesis (DDS) and up-converted to Ku-band by using a frequency multiplier. The final stage consists of an amplification module before the chirp is delivered to the transmit antenna.
- The receiver module comprises two down-converters that first amplify the signal coming from the two receiving antennas and then performs the pulse compression. The gain of the receiving chain is designed to be configurable to minimize signal saturation in most scenarios.
- The acquisition module of the system consists of a Field-Programmable Gate Array (FPGA), a Linux-based computer, a Solid State Drive (SSD), two Ethernet ports, and one USB port. The module configures the RF components, monitors the transmitted power and temperature, configures the navigation system, and manages the radar data acquisition, which is sampled and saved into the SSD.
2.2. Antennas
2.3. Drone Platform
- On the one hand, the measured drone’s Doppler frequency standard deviation typically ranges around 60 Hz. This variation is largely influenced by both velocity and attitude deviations:
- -
- Velocity: The standard deviation of the nominal velocity in the track coordinate is 0.36 m/s, while in the cross-track and vertical coordinates it is 0.1 m/s.
- -
- Attitude: The typical standard deviations in yaw, pitch, and roll of the platform are 0.8 deg, 3.3 deg, and 1.3 deg, respectively.
- On the other hand, the height of ambiguity depends on the cross-track perpendicular baseline determined by the repeat-pass flight tube. The drone’s typical difference between the 5th and the 95th percentile is 1.8 m in the cross-track coordinate and 1.3 m in the vertical coordinate. The baselines typically achieved by the platform correspond to a minimum height of ambiguity of 2 m in the near range. An example of the flight tube of a repeat-pass flight is shown in Figure 2. The critical baseline, which exhibits significant variability with range due to the wide range of look angles covered by the system’s swath, is 2.5 m in the near range and extends beyond 100 m in the far range. It is important to note that the critical baseline can be reached in the first range bins for certain passes. These acquisitions are considered outliers and discarded in the processing.
3. Repeat-Pass Interferometric SAR-Drone Processing
- The first block exploits the cross-track single-pass interferometric capabilities of the SAR-Drone system and corrects for any DEM errors by performing a refined estimation of the topography using the entire dataset of single-pass interferograms.
- The second block utilizes the refined DEM provided by the first block to minimize focusing errors, enabling a more accurate coregistration of the stack of acquisitions by estimating the residual antenna position errors. As a result, repeat-pass interferograms free of residual motion errors and topographic residues are generated.
3.1. Single-Pass Interferometry DEM Update Processing Block
- The preprocessed data include the radar raw data of both channels, the antenna positions and orientation interpolated to each pulse timestamp, and the Doppler centroid frequency and Doppler bandwidth estimated using both the range compressed and the navigation data.
3.2. Coregistration and Repeat-Pass Interferometry Processing Block
4. Interferometric Data Processing Results
4.1. Single-Pass Interferometry DEM Update Analysis
4.2. Coregistration and Repeat-Pass Interferometric Stack Generation Analysis
- The coherence of the SRTM DEM interferogram, shown in Figure 11a, exhibits a discontinuity in azimuth. In contrast, the same discontinuity is significantly minimized in the updated DEM interferometric coherence, illustrated in Figure 11c. The same effect is appreciated in the interferometric phases depicted in Figure 11b and Figure 11d, respectively.
5. Discussion
- First, the quality of the high-resolution coregistered SLCs and the repeat-pass coherences demonstrate that change detection applications are feasible. For instance, the system could be deployed in scenarios requiring rapid response such as during natural disasters. Although the system’s operation is limited in poor weather conditions and over large areas, especially compared to space-borne SAR sensors, the drone’s ability to fly on demand is particularly valuable when rapid and frequent updates are needed in the affected areas.
- Furthermore, the presented data exhibit the potential for generating high-resolution and high-quality DEMs using repeat-pass interferograms with high height sensitivity and short temporal baselines, achieving standard deviations on the order of decimeters. In this context, the system can take advantage of acquiring data from different points of view to minimize the areas with no data or high standard deviation estimates due to radar geometric distortions and a low SNR, thereby improving the overall coverage and quality of the DEM.
- Finally, the overall coregistration quality, resulting in highly coherent repeat-pass interferograms, enables the effective estimation of ground displacement. The SAR-Drone, operating at the Ku band and capable of flying as often as needed, provides the ability to detect and monitor ground displacement processes within just a few hours, whereas lower frequency SAR systems may take days due to decreased sensitivity to displacement. However, the monitoring of vegetated areas remains limited at the Ku band due to decorrelation. Moreover, while the system offers rapid response capabilities, it cannot match the real-time performance of GBSAR systems, primarily due to the time required for data processing. Despite these limitations, the SAR-Drone addresses a critical challenge faced by space-borne SAR and GBSAR systems by allowing ground displacement to be estimated from multiple points of view. This capability potentially enables the retrieval of the full 3D displacement vector, rather than just its projection onto the LOS of the SAR sensor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOI | Area Of Interest |
APS | Atmospheric Phase Screen |
CR | Corner Reflector |
DDS | Direct Digital Synthesis |
DEM | Digital Elevation Model |
FMCW | Frequency Modulated Continuous Wave |
FPGA | Field-Programmable Gate Array |
GBSAR | Ground-based Synthetic Aperture Radar |
GNSS | Global Navigation Satellite System |
INS | Inertial Navigation System |
InSAR | Interferometric Synthetic Aperture Radar |
LOS | Line of Sight |
PCB | Printed Circuit Board |
PRF | Pulse Repetition Frequency |
RF | Radio Frequency |
RME | Residual Motion Error |
SAR | Synthetic Aperture Radar |
SLC | Single-Look Complex |
SNR | Signal to Noise Ratio |
SRTM | Shuttle Radar Topography Mission |
SSD | Solid State Drive |
TCE | True Coregistration Error |
TDBP | Time-Domain Backprojection |
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Reigber, A.; Prats, P.; Mallorqui, J.J. Refined estimation of time-varying baseline errors in airborne SAR interferometry. IEEE Geosci. Remote Sens. Lett. 2006, 3, 145–149. [Google Scholar] [CrossRef]
- de Macedo, K.A.C.; Scheiber, R.; Moreira, A. An Autofocus Approach for Residual Motion Errors with Application to Airborne Repeat-Pass SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3151–3162. [Google Scholar] [CrossRef]
- Perna, S.; Wimmer, C.; Moreira, J.; Fornaro, G. X-Band Airborne Differential Interferometry: Results of the OrbiSAR Campaign Over the Perugia Area. IEEE Trans. Geosci. Remote Sens. 2008, 46, 489–503. [Google Scholar] [CrossRef]
- Tebaldini, S.; Rocca, F.; d’Alessandro, M.M.; Ferro-Famil, L. Phase Calibration of Airborne Tomographic SAR Data via Phase Center Double Localization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1775–1792. [Google Scholar] [CrossRef]
- Pinheiro, M.; Reigber, A.; Scheiber, R.; Prats-Iraola, P.; Moreira, A. Generation of Highly Accurate DEMs Over Flat Areas by Means of Dual-Frequency and Dual-Baseline Airborne SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4361–4390. [Google Scholar] [CrossRef]
- Prats, P.; Reigber, A.; Mallorqui, J.; Blanco, P.; Moreira, A. Estimation of the Deformation Temporal Evolution Using Airborne Differential SAR Interferometry. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 1894–1897. [Google Scholar] [CrossRef]
- Prats, P.; Reigber, A.; Mallorqui, J.J.; Scheiber, R.; Moreira, A. Estimation of the Temporal Evolution of the Deformation Using Airborne Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1065–1078. [Google Scholar] [CrossRef]
- Delbridge, B.; Bürgmann, R.; Fielding, E.; Hensley, S. Kinematics of the slumgullion landslide from UAVSAR derived interferograms. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3842–3845. [Google Scholar] [CrossRef]
- Hensley, S.; Chapman, B.; Lavalle, M.; Hawkins, B.; Riel, B.; Michel, T.; Muellerschoen, R.; Lou, Y.; Simard, M. Uavsar L-Band and P-Band Tomographic Experiments in Boreal Forests. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8679–8682. [Google Scholar] [CrossRef]
- Tebaldini, S.; d’Alessandro, M.M.; Ulander, L.M.; Bennet, P.; Gustavsson, A.; Coccia, A.; Macedo, K.; Disney, M.; Wilkes, P.; Spors, H.J.; et al. TomoSense: A unique 3D dataset over temperate forest combining multi-frequency mono- and bi-static tomographic SAR with terrestrial, UAV and airborne lidar, and in-situ forest census. Remote Sens. Environ. 2023, 290, 113532. [Google Scholar] [CrossRef]
- Rudolf, H.; Leva, D.; Tarchi, D.; Sieber, A. A mobile and versatile SAR system. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; Volume 1, pp. 592–594. [Google Scholar] [CrossRef]
- Leva, D.; Nico, G.; Tarchi, D.; Fortuny, J.; Sieber, A. Temporal analysis of a landslide by means of a ground-based SAR Interferometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 745–752. [Google Scholar] [CrossRef]
- Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Guidi, G.; Moia, F.; Atzeni, C. Ground-based radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2454–2466. [Google Scholar] [CrossRef]
- Rödelsperger, S.; Coccia, A.; Vicente, D.; Meta, A. Introduction to the new metasensing ground-based SAR: Technical description and data analysis. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012, Munich, Germany, 22–27 July 2012; pp. 4790–4792. [Google Scholar] [CrossRef]
- Aguasca, A.; Broquetas, A.; Mallorqui, J.J.; Fabregas, X. A solid state L to X-band flexible ground-based SAR system for continuous monitoring applications. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 2, pp. 757–760. [Google Scholar] [CrossRef]
- Iglésias, R.; Aguasca, A.; Fàbregas, X.; Mallorquí, J.J.; Monells, D.; López-Martínez, C.; Pipia, L. Ground-Based Polarimetric SAR Interferometry for the Monitoring of Terrain Displacement Phenomena-Part I: Theoretical Description. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 980–993. [Google Scholar] [CrossRef]
- Iglésias, R.; Aguasca, A.; Fàbregas, X.; Mallorquí, J.J.; Monells, D.; López-Martínez, C.; Pipia, L. Ground-Based Polarimetric SAR Interferometry for the Monitoring of Terrain Displacement Phenomena-Part II: Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 994–1007. [Google Scholar] [CrossRef]
- Frey, O.; Werner, C.L.; Coscione, R. Car-borne and UAV-borne mobile mapping of surface displacements with a compact repeat-pass interferometric SAR system at L-band. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 274–277. [Google Scholar] [CrossRef]
- Luebeck, D.; Wimmer, C.; Moreira, L.F.; Alcântara, M.; Oré, G.; Góes, J.A.; Oliveira, L.P.; Teruel, B.; Bins, L.S.; Gabrielli, L.H.; et al. Drone-borne Differential SAR Interferometry. Remote Sens. 2020, 12, 778. [Google Scholar] [CrossRef]
- Lort, M.; Aguasca, A.; Lopez-Martinez, C.; Marín, T.M. Initial evaluation of SAR capabilities in UAV multicopter platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 127–140. [Google Scholar] [CrossRef]
- Mustieles Pérez, V.; Kanz, J.; Bonfert, C.; Grathwohl, A.; Lamberti, L.L.; Kim, S.; Krieger, G.; Villano, M. Experimental Demonstration of UAV-Based Ultra-Wideband Multi-Baseline SAR Interferometry. In Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Munich, Germany, 26 April 2024; pp. 1156–1161. [Google Scholar]
- Bekar, A.; Bekar, M.; Baker, C.J.; Antoniou, M. Coherent Change Detection for High-Resolution Drone-Borne SAR at 24 GHz. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 84–94. [Google Scholar] [CrossRef]
- Moreira, L.; Lübeck, D.; Wimmer, C.; Castro, F.; Góes, J.A.; Castro, V.; Alcântara, M.; Oré, G.; Oliveira, L.P.; Bins, L.; et al. Drone-Borne P-band Single-Pass InSAR. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yan, J.; Guo, J.; Lu, Q.; Wang, K.; Liu, X. X-band mini SAR radar on eight-rotor mini-UAV. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6702–6705. [Google Scholar] [CrossRef]
- Baqué, R.; Castet, N.; Nouvel, J.F.; Duteil, G.; Henrion, J.; Boisot, O.; de Milly, X. ONERA SAR-Light UAV Platform Latest Developments and SAR Results. In Proceedings of the 2023 20th European Radar Conference (EuRAD), Berlin, Germany, 20–22 September 2023. [Google Scholar] [CrossRef]
- Jankiraman, M. FMCW Radar Design; Artech House Radar Library, Artech House: Norwood, MA, USA, 2018. [Google Scholar]
- Hensley, S.; Wheeler, K.; Sadowy, G.; Jones, C.; Shaffer, S.; Zebker, H.; Miller, T.; Heavey, B.; Chuang, E.; Chao, R.; et al. The UAVSAR instrument: Description and first results. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Horn, R.; Jaeger, M.; Keller, M.; Limbach, M.; Nottensteiner, A.; Pardini, M.; Reigber, A.; Scheiber, R. F-SAR—Recent upgrades and campaign activities. In Proceedings of the 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 28–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
- Dubois-Fernandez, P.; du Plessis, O.; le Coz, D.; Dupas, J.; Vaizan, B.; Dupuis, X.; Cantalloube, H.; Coulombeix, C.; Titin-Schnaider, C.; Dreuillet, P.; et al. The ONERA RAMSES SAR system. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1723–1725. [Google Scholar] [CrossRef]
- Gatelli, F.; Guamieri, A.; Parizzi, F.; Pasquali, P.; Prati, C.; Rocca, F. The Wavenumber Shift in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 1994, 29, 855–865. [Google Scholar] [CrossRef]
- Rodriguez, E.; Martin, J.M. Theory and design of interferometric synthetic aperture radars. IEEE Proc. F (Radar Signal Process.) 1992, 139, 147. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Duersch, M.I.; Long, D.G. Analysis of time-domain back-projection for stripmap SAR. Int. J. Remote Sens. 2015, 36, 2010–2036. [Google Scholar] [CrossRef]
- Chapin, E.; Chau, A.; Chen, J.; Heavey, B.; Hensley, S.; Lou, Y.; Machuzak, R.; Moghaddam, M. AirMOSS: An Airborne P-band SAR to measure root-zone soil moisture. In Proceedings of the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; pp. 0693–0698. [Google Scholar] [CrossRef]
- Reigber, A.; Jager, M.; Fischer, J.; Horn, R.; Scheiber, R.; Prats, P.; Nottensteiner, A. System status and calibration of the F-SAR airborne SAR instrument. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar] [CrossRef]
- de Macedo, K.A.C.; Wimmer, C.; Barbin, S.E.; Perna, S. Airborne D-InSAR at X-band: Results with the complete repeat-pass processing methodology. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 4, pp. IV-861–IV-864. [Google Scholar] [CrossRef]
- de Macedo, K.A.C.; Scheiber, R.; Moreira, A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 4886–4889. [Google Scholar] [CrossRef]
- Cooper, G. The shuttle radar topography mission: A new source of near-global digital elevation data. Explor. Geophys. 2005, 36, 334–340. [Google Scholar]
- Fiedler, H.; Krieger, G.; Zink, M.; Younis, M.; Bachmann, M.; Huber, S.; Hajnsek, I.; Moreira, A. The TanDEM-X mission: An overview. In Proceedings of the 2008 International Conference on Radar, Adelaide, SA, Australia, 2–5 September 2008; pp. 60–64. [Google Scholar] [CrossRef]
- Stringham, C. GPU Processing for UAS-Based LFM-CW Stripmap SAR. ISPRS J. Photogramm. Remote Sens. 2014, 80, 1107–1115. [Google Scholar] [CrossRef]
- Lagoy, D. Time Domain SAR Processing with GPUS for Airborne Platforms. Master’s Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2017. [Google Scholar]
- Frey, O.; Werner, C.; Caduff, R. Car-borne Mobile Mapping of Ground Motion by Means of Repeat-Pass SAR Interferometry: Case Studies and Application Development Based on L-Band and Ku-band SAR Data Acquisitions. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 1902–1905. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Proc. IEEE 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Esposito, C.; Pauciullo, A.; Berardino, P.; Lanari, R.; Perna, S. A Simple Solution for the Phase Offset Estimation of Airborne SAR Interferograms Without Using Corner Reflectors. IEEE Geosci. Remote Sens. Lett. 2017, 14, 379–383. [Google Scholar] [CrossRef]
- Prats, P.; Andres, C.; Scheiber, R.; de Macedo, K.A.C.; Fischer, J.; Reigber, A. Glacier displacement field estimation using airborne SAR interferometry. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar] [CrossRef]
- Prats, P.; Scheiber, R.; Reigber, A.; Andres, C.; Horn, R. Estimation of the Surface Velocity Field of the Aletsch Glacier Using Multibaseline Airborne SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2009, 47, 419–430. [Google Scholar] [CrossRef]
- Prats, P.; Reigber, A.; Mallorqui, J.; Broquetas, A. Efficient detection and correction of residual motion errors in airborne SAR interferometry. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 2, pp. 992–995. [Google Scholar] [CrossRef]
Specification | Value |
---|---|
Center frequency | 17.2 GHz |
Wavelength | 17.44 mm |
Bandwidth | 200 MHz |
Range resolution | 0.75 m |
Sweep time | 0.1–2 ms |
Pulse Repetition Frequency | 0.5–10 kHz |
Sampling frequency | 10–17.5 MS/s |
Output power | 20–30 dBm |
Maximum power consumption | 30 W |
Weight | 5 kg |
Perpendicular Baseline | Height Sensitivity Relative Error | |
---|---|---|
Median | 90th Percentile | |
0 to 25 cm | 0.12 | 0.60 |
25 to 50 cm | 0.06 | 0.32 |
Larger than 50 cm | 0.03 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Carregal, G.; Lort Cuenca, M.; Yam, L.; Masalias, G.; Makhoul, E.; Iglesias, R.; Heredia, A.; González, Á.; Centolanza, G.; Gili-Zaragoza, A.; et al. Ku-Band SAR-Drone System and Methodology for Repeat-Pass Interferometry. Remote Sens. 2024, 16, 4069. https://doi.org/10.3390/rs16214069
Ruiz-Carregal G, Lort Cuenca M, Yam L, Masalias G, Makhoul E, Iglesias R, Heredia A, González Á, Centolanza G, Gili-Zaragoza A, et al. Ku-Band SAR-Drone System and Methodology for Repeat-Pass Interferometry. Remote Sensing. 2024; 16(21):4069. https://doi.org/10.3390/rs16214069
Chicago/Turabian StyleRuiz-Carregal, Gerard, Marc Lort Cuenca, Luis Yam, Gerard Masalias, Eduard Makhoul, Rubén Iglesias, Antonio Heredia, Álex González, Giuseppe Centolanza, Albert Gili-Zaragoza, and et al. 2024. "Ku-Band SAR-Drone System and Methodology for Repeat-Pass Interferometry" Remote Sensing 16, no. 21: 4069. https://doi.org/10.3390/rs16214069
APA StyleRuiz-Carregal, G., Lort Cuenca, M., Yam, L., Masalias, G., Makhoul, E., Iglesias, R., Heredia, A., González, Á., Centolanza, G., Gili-Zaragoza, A., Faridi, A., Monells, D., & Duro, J. (2024). Ku-Band SAR-Drone System and Methodology for Repeat-Pass Interferometry. Remote Sensing, 16(21), 4069. https://doi.org/10.3390/rs16214069