Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data of Water Parameters
2.3. Field Measurement of Water Spectral Signatures (Rrs)
2.4. Satellite Image Data and Atmospheric Correction Methods
2.4.1. Landsat-8 OLI Satellite Imagery
2.4.2. Atmospheric Correction Methods
- (1)
- The first tested model was ACOLITE developed by RBINS (Royal Belgian Institute of Natural Sciences), commonly used to apply the AC on satellite images in applications related to inland and coastal waters. ACOLITE uses the approach known as dark spectrum adjustment to perform the atmospheric correction [31,32,33,34,35]. ACOLITE is designed to remove atmospheric influences, such as scattering and absorption, and to improve the accuracy of remote sensing data for different applications. It includes algorithms to detect and quantify sun-glint (specular reflection of sunlight on the water surface) in satellite imagery, which can introduce significant errors in remote sensing data, especially in coastal and oceanic regions. Once sun-glint is detected, ACOLITE applies correction algorithms to adjust pixel values to compensate for the overestimation of reflectance caused by the effect of the solar reflection. In this study, the v20210114.0 version was used.
- (2)
- The second tested model was iCOR, developed by De Keukelaere et al. [36] to process satellite data acquired over coastal, inland, or transitional waters and land. iCOR employs the moderate-resolution atmospheric radiance and the transmittance model 5, known as MODTRAN5 [37], to perform radiative transfer calculations. In addition, it uses the look-up-table (LUT) mode to speed up retrieval processes. An important aspect of iCOR is its ability to identify whether a pixel belongs to a water or land area, allowing its application to a specific atmospheric correction [38]. The iCOR version used was v3.0 in the SNAP 8.0 software.
- (3)
- The third model was the Land Surface Reflectance Code (LaSRC), developed by E. Vermote [39], National Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC) that was later modified by the USGS Earth Resources Observation and Science (EROS) center. The LaSRC model generates top-of-atmosphere reflectance (TOA) and top-of-atmosphere brightness temperature (BT) using calibration parameters provided in the metadata. Then, atmospheric correction routines are applied to the L-8 TOA reflectance data using additional information such as water vapor, ozone, and aerosol optical thickness (AOT) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). In addition, the digital elevation model derived from the Earth Topography Five Minute Grid (ETOPO5) is used to generate surface reflectance [39]. This product can be downloaded from the USGS website (https://www.usgs.gov/landsat-missions/landsat-surface-reflectance; accessed on 15 June 2023). Finally, scaling Equation (2) was applied to normalize the reflectance values between 0 and 1 and hence to compare with the other methods.
- (4)
- The last method was C2RCC (Case 2 Regional CoastColour), which is based on a deep learning approach using a set of trained neural networks to simulate reflectance data in water bodies and radiances in the upper atmosphere. Its main outputs are associated with the inherent optical properties (IOPs) of water, i.e., those that depend exclusively on the absorption and scattering of its constituents [40]. This method considers three sets of neural networks for the calculation of reflectance depending on the research objective: the C2RCC-Nets (standard neural network suggested for eutrophic or mesotrophic water bodies), the C2X-Nets (specialized neural networks applied to water bodies with high concentrations of suspended matter and chlorophyll concentration) and the C2X-COMPLEX-Nets (suggested mainly for use in inland waters) [41]. C2RCC can be used as a complement in the SNAP 8.0 software, and it allows the calculation of reflectance in Sentinel 3 OLCI, Sentinel 2 MSI, Landsat-8/9, MODIS and MERIS satellite images (e.g., [42,43]).
2.5. Methodology for Water Quality Modeling
2.6. Selection of Spectral Indices
Parameter | Indices/Band Combinations | Formula | Reference |
---|---|---|---|
Chl-a | Normalized difference vegetation index (NDVI) | (B5 − B4)/(B5 + B4) | [46] |
Green normalized difference vegetation index (GNDVI) | (B5 − B3)/(B5 + B3) | [48] | |
Green chlorophyll index (GCI) | (B5/B3) − 1 | [50] | |
Turbidity | Near infrared/red | B5/B4 | [53] |
Near-infrared | B5 | [11] | |
Blue/green | B2/B3 | [44] | |
Red + near-infrared | B4 + B5 | [44] | |
Normalized difference turbidity index (NDTI) | (B4 − B3)/(B4 + B3) | [51] | |
Red | B4 | [52] |
2.7. Statistical Assessment
3. Results
3.1. Field Measurements of Water Parameters
3.2. Atmospheric Correction
3.2.1. Evaluation of Aerosol Levels at the Sampling Station Points
3.2.2. Evaluation of Atmospheric Correction Methods
3.3. Empirical Retrieval Models for Chl-a and Turbidity
3.3.1. Chl-a Estimation Analysis
3.3.2. Turbidity Estimation Analysis
3.4. Statistical Evaluation and Model Robustness
3.4.1. Statistical Evaluation and Robustness of the Chl-a Estimation Model
3.4.2. Statistical Evaluation and Robustness of the Turbidity Estimation Model
3.5. Spatial and Temporal Variability
4. Discussion
- (i)
- Implementation of atmospheric correction methods
- (ii)
- Development of an empirical retrieval model
- (iii)
- Assessment of the spatial–temporal variability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Cooke, G.D.; Welch, E.B.; Peterson, S.; Nichols, S.A. Restoration and Management of Lakes and Reservoirs; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Abdelal, Q.; Assaf, M.N.; Al-Rawabdeh, A.; Arabasi, S.; Rawashdeh, N.A. Assessment of Sentinel-2 and Landsat-8 OLI for small-scale inland water quality modeling and monitoring based on handheld hyperspectral ground truthing. J. Sens. 2022, 2022, 4643924. [Google Scholar] [CrossRef]
- Van Rees, C.B.; Waylen, K.A.; Schmidt-Kloiber, A.; Thackeray, S.J.; Kalinkat, G.; Martens, K.; Domisch, S.; Lillebø, A.I.; Hermoso, V.; Grossart, H.P. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conserv. Lett. 2021, 14, e12771. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes 1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Lei, F.; Yu, Y.; Zhang, D.; Feng, L.; Guo, J.; Zhang, Y.; Fang, F. Water remote sensing eutrophication inversion algorithm based on multilayer convolutional neural network. J. Intell. Fuzzy Syst. 2020, 39, 5319–5327. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, X.; Wang, H.; Hwang, C.; He, X. Monitoring Inland Water Quantity Variations: A Comprehensive Analysis of Multi-Source Satellite Observation Technology Applications. Remote Sens. 2023, 15, 3945. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GIScience Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Usta, D.B.; Duran-Llacer, I.; Alvarez, L.B.; Yépez, S.; Bourrel, L.; Frappart, F.; Urrutia, R. Estimation of Water Quality Parameters through a Combination of Deep Learning and Remote Sensing Techniques in a Lake in Southern Chile. Remote Sens. 2023, 15, 4157. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Vicente, E.; Urrego, P.; Pereira-Sandoval, M.; Ruíz-Verdú, A.; Delegido, J.; Soria, J.M.; Moreno, J. Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Sci. Total Environ. 2020, 698, 134305. [Google Scholar] [CrossRef]
- Yepez, S.; Laraque, A.; Martinez, J.-M.; De Sa, J.; Carrera, J.M.; Castellanos, B.; Gallay, M.; Lopez, J.L. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela). Comptes Rendus Geosci. 2018, 350, 20–30. [Google Scholar] [CrossRef]
- Steissberg, T.; Schladow, G.; Hook, S. Monitoring Past, Present, and Future Water Quality Using Remote Sensing; Tahoe Environmental Research Center and Jet Propulsion Laboratory (NASA): Pasadena, CA, USA, 2010; Volume 108. [Google Scholar]
- Niroumand-Jadidi, M.; Bovolo, F.; Bresciani, M.; Gege, P.; Giardino, C. Water quality retrieval from landsat-9 (OLI-2) imagery and comparison to sentinel-2. Remote Sens. 2022, 14, 4596. [Google Scholar] [CrossRef]
- Abbas, M.; Rasib, A.; Ahmad, B.; Musa, T.; Abbas, T.; Dutsenwai, H. Landsat data to estimate a model of water quality parameters in Tigris and Euphrates Rivers—Iraq. Int. J. Adv. Appl. Sci. 2019, 6, 50–58. [Google Scholar] [CrossRef]
- Normandin, C.; Lubac, B.; Sottolichio, A.; Frappart, F.; Ygorra, B.; Marieu, V. Analysis of suspended sediment variability in a large highly turbid estuary using a 5-year-long remotely sensed data archive at high resolution. J. Geophys. Res. Ocean. 2019, 124, 7661–7682. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Remote sensing for regional lake water quality assessment: Capabilities and limitations of current and upcoming satellite systems. In Advances in Watershed Science and Assessment; Springer International Publishing: Cham, Switzerland, 2015; pp. 111–140. [Google Scholar]
- Schaeffer, B.A.; Schaeffer, K.G.; Keith, D.; Lunetta, R.S.; Conmy, R.; Gould, R.W. Barriers to adopting satellite remote sensing for water quality management. Int. J. Remote Sens. 2013, 34, 7534–7544. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Yang, F.; Liu, H.; Yang, X.; Fu, C.; He, B. Using C2X to Explore the Uncertainty of In Situ Chlorophyll-a and Improve the Accuracy of Inversion Models. Sustainability 2023, 15, 9516. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Thao, N.T.P.; Koike, K.; Nhuan, M.T. Selecting the best band ratio to estimate chlorophyll-a concentration in a tropical freshwater lake using sentinel 2A images from a case study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar] [CrossRef]
- Parra, O.O. La eutroficación de la Laguna Grande de San Pedro, Concepción, Chile: Un caso de estudio. Ambiente Desarro. 1989, V, 117–136. [Google Scholar]
- Garg, V.; Kumar, A.S.; Aggarwal, S.; Kumar, V.; Dhote, P.R.; Thakur, P.K.; Nikam, B.R.; Sambare, R.S.; Siddiqui, A.; Muduli, P.R. Spectral similarity approach for mapping turbidity of an inland waterbody. J. Hydrol. 2017, 550, 527–537. [Google Scholar] [CrossRef]
- Lillo-Saavedra, M.F.; Gonzalo, C. Aplicación de la Metodología de Fusión de Imágenes Multidirección-Multiresolución (MDMR) a la Estimación de la Turbidez en Lagos. Inf. Tecnológica 2008, 19, 137–146. [Google Scholar] [CrossRef]
- Quintana-Sotomayor, C.; Lillo-Saavedra, M.; Gonzalo-Martín, C.; Barrera-Berrocal, J.A. Metodología para estimación de la turbidez de un lago mediante la clasificación orientada a objetos de imágenes multiespectrales. Tecnol. Cienc. Agua 2012, 3, 143–150. [Google Scholar]
- Rojas Jordán, A. Evaluación de los Efectos del Cambio de Uso de Suelo Sobre las Tasas de Sedimentación en Laguna Grande de San Pedro de la Paz (Chile) Durante los Últimos 30 Años; Universidad de Concepción: Concepción, Chile, 2018. [Google Scholar]
- Pedreros-Guarda, M.; Abarca-del-Río, R.; Escalona, K.; García, I.; Parra, Ó. A Google Earth Engine application to retrieve long-term surface temperature for small lakes. Case: San Pedro lagoons, Chile. Remote Sens. 2021, 13, 4544. [Google Scholar] [CrossRef]
- Cruces, F.; Urrutia, R.; Araneda, A.; Torres, L.; Cisternas, M.; Vyverman, W. Evolución trófica de Laguna Grande de San Pedro (VIII Región, Chile) durante el último siglo, mediante el análisis de registros sedimentarios. Rev. Chil. Hist. Nat. 2001, 74, 407–418. [Google Scholar] [CrossRef]
- Urrutia, R. Estudio del estado trófico de los cuerpos de agua existentes en San Pedro de la Paz. In Proceedings of the Seminario EULA, Concepción, Chile, 28 October 2021. [Google Scholar]
- Arar, E.J.; Collins, G.B. Method 445.0: In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence; United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory: Cincinnati, OH, USA, 1997. [Google Scholar]
- Milton, E. Review article principles of field spectroscopy. Int. J. Remote Sens. 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sens. Environ. 2021, 256, 112284. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Daily metre-scale mapping of water turbidity using CubeSat imagery. Opt. Express 2019, 27, A1372–A1399. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre-and decametre-scale satellite imagery using autonomous hyperspectral radiometry. Opt. Express 2020, 28, 29948–29965. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Hoke, M.L. MODTRAN5: 2006 update. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, Orlando, FL, USA, 17–20 April 2006; pp. 508–515. [Google Scholar]
- Wolters, E.; Toté, C.; Sterckx, S.; Adriaensen, S.; Henocq, C.; Bruniquel, J.; Scifoni, S.; Dransfeld, S. iCOR Atmospheric correction on Sentinel-3/OLCI over land: Intercomparison with AERONET, RadCalNet, and SYN Level-2. Remote Sens. 2021, 13, 654. [Google Scholar] [CrossRef]
- USGS. Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide; USGS: Sioux Falls, SD, USA, 2023; pp. 1–43. [Google Scholar]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; p. 54. [Google Scholar]
- Soriano-González, J.; Urrego, E.P.; Sòria-Perpinyà, X.; Angelats, E.; Alcaraz, C.; Delegido, J.; Ruíz-Verdú, A.; Tenjo, C.; Vicente, E.; Moreno, J. Towards the combination of C2RCC processors for improving water quality retrieval in inland and coastal areas. Remote Sens. 2022, 14, 1124. [Google Scholar] [CrossRef]
- Kyryliuk, D.; Kratzer, S. Evaluation of Sentinel-3A OLCI products derived using the Case-2 Regional CoastColour processor over the Baltic Sea. Sensors 2019, 19, 3609. Available online: https://www.mdpi.com/1424-8220/19/16/3609 (accessed on 15 February 2022). [CrossRef] [PubMed]
- Schiller, H.; Doerffer, R. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. Int. J. Remote Sens. 1999, 20, 1735–1746. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; Gonzalez-Rodriguez, L.; Abarca-del-Rio, R.; Cárdenas, R.; Parra, O.; Martinez-Retureta, R.; Urrutia, R. Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Dang, X.; Du, J.; Wang, C.; Zhang, F.; Wu, L.; Liu, J.; Wang, Z.; Yang, X.; Wang, J. A Hybrid Chlorophyll a Estimation Method for Oligotrophic and Mesotrophic Reservoirs Based on Optical Water Classification. Remote Sens. 2023, 15, 2209. Available online: https://www.mdpi.com/2072-4292/15/8/2209 (accessed on 15 September 2023). [CrossRef]
- Raynolds, M.K.; Comiso, J.C.; Walker, D.A.; Verbyla, D. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sens. Environ. 2008, 112, 1884–1894. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Bannari, A.; Khurshid, K.S.; Staenz, K.; Schwarz, J.W. A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3063–3074. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Baughman, C.A.; Jones, B.M.; Bartz, K.K.; Young, D.B.; Zimmerman, C.E. Reconstructing turbidity in a glacially influenced lake using the Landsat TM and ETM+ surface reflectance climate data record archive, Lake Clark, Alaska. Remote Sens. 2015, 7, 13692–13710. [Google Scholar] [CrossRef]
- Cui, M.; Sun, Y.; Huang, C.; Li, M. Water turbidity retrieval based on uav hyperspectral remote sensing. Water 2022, 14, 128. [Google Scholar] [CrossRef]
- Yang, Z.; Reiter, M.; Munyei, N. Estimation of chlorophyll-a concentrations in diverse water bodies using ratio-based NIR/Red indices. Remote Sens. Appl. Soc. Environ. 2017, 6, 52–58. [Google Scholar] [CrossRef]
- Johan, F.B.; Jafri, M.Z.B.M.; San, L.H.; Omar, W.M.W.; Ho, T.C. Chlorophyll a Concentration of Fresh Water Phytoplankton Analysed by Algorithmic based Spectroscopy. J. Phys. Conf. Ser. 2018, 1083, 012015. [Google Scholar] [CrossRef]
- Silvoso, J.; Izaguirre, I.; Allende, L. Picoplankton structure in clear and turbid eutrophic shallow lakes: A seasonal study. Limnologica 2011, 41, 181–190. [Google Scholar] [CrossRef]
- Asim, M.; Matsuoka, A.; Ellingsen, P.G.; Brekke, C.; Eltoft, T.; Blix, K. A new spectral harmonization algorithm for Landsat-8 and Sentinel-2 remote sensing reflectance products using machine learning: A case study for the Barents Sea (European Arctic). IEEE Trans. Geosci. Remote Sens. 2022, 61, 1–19. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Alikas, K.; Anstee, J.; Barbosa, C.; Binding, C.; Bresciani, M.; Cremella, B.; Giardino, C.; Gurlin, D. Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens. Environ. 2022, 270, 112860. [Google Scholar] [CrossRef]
- Smith, B.; Pahlevan, N.; Schalles, J.; Ruberg, S.; Errera, R.; Ma, R.; Giardino, C.; Bresciani, M.; Barbosa, C.; Moore, T. A chlorophyll-a algorithm for Landsat-8 based on mixture density networks. Front. Remote Sens. 2021, 1, 623678. [Google Scholar] [CrossRef]
- Choo, Y.; Kang, G.; Kim, D.; Lee, S. A study on the evaluation of water-bloom using image processing. Environ. Sci. Pollut. Res. 2018, 25, 36775–36780. [Google Scholar] [CrossRef]
- Guimarães, T.T.; Veronez, M.R.; Koste, E.C.; Gonzaga, L., Jr.; Bordin, F.; Inocencio, L.C.; Larocca, A.P.C.; De Oliveira, M.Z.; Vitti, D.C.; Mauad, F.F. An alternative method of spatial autocorrelation for chlorophyll detection in water bodies using remote sensing. Sustainability 2017, 9, 416. [Google Scholar] [CrossRef]
- Kim, E.-J.; Nam, S.-H.; Koo, J.-W.; Hwang, T.-M. Hybrid approach of unmanned aerial vehicle and unmanned surface vehicle for assessment of chlorophyll-a imagery using spectral indices in stream, South Korea. Water 2021, 13, 1930. [Google Scholar] [CrossRef]
24 October 2022 (40 Samples) | 6 January 2023 (25 Samples) | 1 March 2023 (20 Samples) | ||||
---|---|---|---|---|---|---|
Statistics | Chl-a mg·m−3 | Turbidity NTU | Chl-a mg·m−3 | Turbidity NTU | Chl-a mg·m−3 | Turbidity NTU |
Mean | 4.7 | 2.4 | 3.4 | 1.9 | 6.4 | 7.3 |
Standard Deviation | 0.6 | 0.5 | 0.6 | 0.8 | 1.3 | 4.1 |
Max. | 6.7 | 3.8 | 4.4 | 3.8 | 8.7 | 20.2 |
Min. | 3.5 | 1.5 | 2.2 | 0.6 | 3.8 | 2.4 |
Temperature (C°) | Dissolved Oxygen (mg·L−1) | Oxygen Saturation (%) | Conductivity (mhos·cm−1) | pH | |
---|---|---|---|---|---|
Mean | 21.3 | 7.1 | 78.7 | 118.1 | 7.2 |
Min. | 20.9 | 6.7 | 76.1 | 115.0 | 6.4 |
Max. | 21.8 | 8.4 | 87.6 | 119.9 | 7.4 |
Standard deviation | 0.3 | 0.5 | 2.9 | 1.1 | 0.3 |
Image ID | In Situ Date | Image Date | Days | Path/Row |
---|---|---|---|---|
LC08_L1TP_001085_20221021_20221101_02_T1 | 24 October 2022 | 21 October 2022 | ±3 | 001/085 |
LC08_L1TP_001086_20230109_20230124_02_T1 | 6 January 2023 | 9 January 2023 | ±3 | 001/086 |
LC08_L1TP_001086_20230226_20230301_02_T1 | 1 March 2023 | 26 February 2023 | ±3 | 001/086 |
Attribute | Pixel Value (DN) |
---|---|
Low-level aerosol | 66, 68, 96, 100 |
Medium-level aerosol | 130, 132, 160, 164 |
High-level aerosol | 192, 194, 196, 224, 228 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yépez, S.; Velásquez, G.; Torres, D.; Saavedra-Passache, R.; Pincheira, M.; Cid, H.; Rodríguez-López, L.; Contreras, A.; Frappart, F.; Cristóbal, J.; et al. Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile. Remote Sens. 2024, 16, 427. https://doi.org/10.3390/rs16020427
Yépez S, Velásquez G, Torres D, Saavedra-Passache R, Pincheira M, Cid H, Rodríguez-López L, Contreras A, Frappart F, Cristóbal J, et al. Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile. Remote Sensing. 2024; 16(2):427. https://doi.org/10.3390/rs16020427
Chicago/Turabian StyleYépez, Santiago, Germán Velásquez, Daniel Torres, Rodrigo Saavedra-Passache, Martin Pincheira, Hayleen Cid, Lien Rodríguez-López, Angela Contreras, Frédéric Frappart, Jordi Cristóbal, and et al. 2024. "Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile" Remote Sensing 16, no. 2: 427. https://doi.org/10.3390/rs16020427
APA StyleYépez, S., Velásquez, G., Torres, D., Saavedra-Passache, R., Pincheira, M., Cid, H., Rodríguez-López, L., Contreras, A., Frappart, F., Cristóbal, J., Pons, X., Flores, N., & Bourrel, L. (2024). Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile. Remote Sensing, 16(2), 427. https://doi.org/10.3390/rs16020427