Detection of Benggang in Remote Sensing Imagery through Integration of Segmentation Anything Model with Object-Based Classification
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Image Segmentation Using the SAM
3.2. Feature Extraction
- 8 (3 bands × 2 + 2) features related to the spectrum (e.g., Mean of each layer, Standard Deviation of each layer and Max. Diff.);
- 22 features related to geometry (e.g., area, border, length, and shape index);
- 12 features related to texture (e.g., gray level co-occurrence matrix (GLCM) Homogeneity, GLCM Contrast, gray-level difference vector (GLDV) Entropy, GLDV Mean).
3.3. Benggang Identification Using the Random Forest Algorithm
4. Results
4.1. Benggang Detection Results Obtained with the Proposed Method
4.2. Comparison between the Proposed Method with Other Commonly Used Methods
4.3. Importance of Features Used in Classification
- i is the row number;
- j is the column number;
- Pi,j is the normalized value in the cell i, j;
- N is the number of rows or columns;
- Vk is the image object level, k = 1,…n.
4.4. Contribution of Textural and Geometrical Features in Benggang Detection
5. Discussion
5.1. Contribution of the SAM to Benggang Identification
5.2. Improvement Created by Textural Features in Identifying Benggang Areas
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Type | Name |
---|---|
Spectral Feature | Max. diff. |
Standard deviation (Layer 3) | |
Standard deviation (Layer 2) | |
Standard deviation (Layer 1) | |
Mean (Layer 3) | |
Mean (Layer 2) | |
Mean (Layer 1) | |
Brightness | |
Geometrical Feature | Border length |
Width | |
Asymmetry | |
Rel. Border to Image Border | |
Elliptic Fit | |
Density | |
Average length of edges (polygon) | |
Radius of smallest enclosing ellipse | |
Rectangular Fit | |
Length | |
Length/Width | |
Compactness (polygon) | |
Volume | |
Radius of largest enclosed ellipse | |
Main direction | |
Shape index | |
Thickness | |
Compactness | |
Roundness | |
Border index | |
Area | |
Number of edges | |
Textural Feature * | GLCM Correlation |
GLDV Contrast | |
GLCM Homogeneity | |
GLCM Contrast | |
GLCM StdDev | |
GLDV Mean | |
GLDV Ang. 2nd moment | |
GLCM Ang. 2nd moment | |
GLCM Dissimilarity | |
GLCM Mean | |
GLDV Entropy | |
GLCM Entropy |
References
- Zhu, X.; Gao, L.; Wei, X.; Li, T.; Shao, M. Progress and prospect of studies of Benggang erosion in southern China. Geoderma 2023, 438, 116656. [Google Scholar]
- Duan, X.; Deng, Y.; Tao, Y.; He, Y.; Lin, L.; Chen, J. The soil configuration on granite residuals affects Benggang erosion by altering the soil water regime on the slope. Int. Soil Water Conserv. Res. 2021, 9, 419–432. [Google Scholar] [CrossRef]
- Xu, J.X. Benggang erosion: The influencing factors. Catena 1996, 27, 249–263. [Google Scholar] [CrossRef]
- Ni, S.; Peng, J.; Wang, J.; Zhu, L.; Wang, D.; Cai, C. Impacts of slope morphological evolution on subsequent erosion for a coarse-textured soil. Geoderma 2023, 430, 116320. [Google Scholar] [CrossRef]
- Long, L.; Ding, S.; Cai, C.; Xia, D.; Liao, X. The Harm and Control of Collapse Erosion on Farmland in Granite Red Soil Hilly Areas. Soil Water Conserv. China 2013, 12, 24–26. [Google Scholar]
- Tang, X.; Hu, J.; Lu, Y.; Qiu, J.; Dong, Y.; Li, B. Soil C, N, P stocks and stoichiometry as related to land use types and erosion conditions in lateritic red soil region, south China. Catena 2022, 210, 105888. [Google Scholar] [CrossRef]
- The State Councilthe People’s Republic of China. Available online: https://www.gov.cn/zhengce/zhengceku/2022-01/05/content_5666545.htm (accessed on 19 November 2023).
- Zhang, X. Scientific and Technological Support Planning of Soil and Water Conservation in the 14th Five-Year Plan of Guangdong Province. Soil Water Conserv. China 2022, 6, 20–23. [Google Scholar]
- Liao, K.; Song, Y.; Xie, S.; Luo, Y.; Liu, Q.; Lin, H. Quantitative Analysis of the Factors Influencing the Spatial Distribution of Benggang Landforms Based on a Geographical Detector. ISPRS Int. J. Geo-Inf. 2022, 11, 337. [Google Scholar] [CrossRef]
- Dong, X.; Huang, R. Application of 3D Laser Scanning Technology to Geologic Survey of High and Steep Slope. Chin. J. Rock Mech. Eng. 2006, 52, 3629–3635. [Google Scholar]
- Du, Y.; Li, S.; Ding, S.; He, Y.; Deng, Y. Study of CORS–RTK combined with GIS in collapsing gully monitoring of southeast Hubei Province. Yangtze River 2015, 46, 87–90. [Google Scholar]
- Lyu, B.; Li, W.; Shen, E. Deformation monitoring of rockfall and landslide based on 3D laser scanning technology. Geotech. Investig. Surv. 2017, 45, 45–47. [Google Scholar]
- Liu, X.; Zhang, D. Temporal-spatial analyses of collapsed gully erosion based on three-dimensional laser scanning. Trans. Chin. Soc. Agric. Eng. 2015, 31, 204–211. [Google Scholar]
- Zhang, D.; Liu, X. Application of 3D Laser Scanning to Monitoring the Landform Changes of Collapsing Hill and Gully: A Case Study of Liantanggang Collapsing Hill and Gully in the Wuhua County of Guangdong. Trop. Geogr. 2014, 34, 133–140. [Google Scholar]
- Obertj, L.R.; Xu, G. Soil erosion measurement methods. Technol. Soil Water Conserv. 1994, 2, 54–57. [Google Scholar]
- Li, Z.; Liu, X.; Liu, J.; Gao, Y. Plan of Soil and Water Conservation Survey in National Census for Water Resources. Bull. Soil Water Conserv. 2010, 30, 87–91. [Google Scholar]
- Liang, Z.; Zhou, H.; Wu, G.; Ma, J. Research on the Spatial Distribution Characteristics of Benggang Erosion Based on UAV Imagery. Jiangsu Agric. Sci. 2018, 46, 220–224. [Google Scholar]
- Jiang, X.; Liang, Z.; Zhou, H.; Dai, Y.; Chen, Y.H. Dynamic Change Monitoring of Collapse Based on UAV Oblique Photograph Technique. Trop. Geogr. 2019, 39, 597–603. [Google Scholar]
- Li, Z.; Zhong, L.; Huang, Y.; Ge, H.; Zhu, Y.; Jiang, F.; Li, X.; Zhang, Y.; Lin, J. Monitoring technology for collapse erosion based on the nap of the object photograph of UAV. Trans. Chin. Soc. Agric. Eng. 2021, 37, 151–159. [Google Scholar]
- Liao, K.T. Study on the spatiotemporal changes of landslide erosion gullies based on drone imagery. Technol. Soil Water Conserv. 2021, 4, 1–2. [Google Scholar]
- Li, H.; Xie, H.; Xu, W.; Liu, H. Effects of Spatial Resolution of Remote Sensing Image on the Accuracy of Extracted Slope Collapse Data. J. Anhui Agric. Sci. 2016, 44, 227–229+246. [Google Scholar]
- Shen, S.; Zhao, Y.; Cheng, D.; Zhang, P.C. An Efficient Method of Investigating Slope Collapse by Unmanned Aerial Vehicle Remote Sensing. J. Yangtze River Sci. Res. Inst. 2018, 35, 43–47+53. [Google Scholar]
- Cai, Z. Study on the Collapsing Hills and Gullies of Survey and Evaluation Based on RS/GIS. Master’s Thesis, Guangxi Normal University, Guilin, China, 2016. [Google Scholar]
- Liu, J.; Liao, K.; Song, Y.; Lai, G.; Zheng, H. Comprehensive analysis of PLEIADES fusion for collapsing erosion in south China. Jiangxi Hydraul. Sci. Technol. 2020, 46, 235–239. [Google Scholar]
- Liu, J.; Liao, K.; Song, Y.; Lai, G.; Zheng, H. Research on Collapse Extraction Based on GF-2 Satellite Data. Geospat. Inf. 2021, 19, 85–87. [Google Scholar]
- Sheng, J.; Liao, A. Erosion control in South China. Catena 1997, 29, 211–221. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Wu, X.; Zhang, Y.; Cui, T.; Cai, C.; Guo, Z.; Wang, J.; Cheng, D. Can Benggang be regarded as gully erosion? CATENA 2021, 207, 105648. [Google Scholar] [CrossRef]
- Luk, S.H.; Yao, Q.Y.; Gao, J.Q.; Zhang, J.Q.; He, Y.G.; Huang, S.M. Environmental analysis of soil erosion in Guangdong Province: A Deqing case study. CATENA 1997, 29, 97–113. [Google Scholar] [CrossRef]
- Li, J.; Deng, Y.; Duan, X.; Cai, C.; Ding, S. Does joint structure promote the development of gully erosion? CATENA 2022, 214, 106233. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, Y.; Cai, C.; Huang, J.; Huang, W. Multifractal analysis on spatial variability of soil particles and nutrients of Benggang in granite hilly region, China. CATENA 2021, 207, 105594. [Google Scholar] [CrossRef]
- Liu, D.; Qi, Z.; Zhang, H.; Li, X.; Yeh, A.G.; Wang, J. Investigation of the capability of multitemporal RADARSAT-2 fully polarimetric SAR images for land cover classification: A case of Panyu, Guangdong province. Eur. J. Remote Sens. 2021, 54, 338–350. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Ren, S.; Luzi, F.; Lahrichi, S.; Kassaw, K.; Collins, L.M.; Bradbury, K.; Malof, J.M. Segment anything, from space? arXiv 2023, arXiv:2304.13000. [Google Scholar]
- Zhang, C.; Marfatia, P.; Farhan, H.; Di, L.; Lin, L.; Zhao, H.; Li, H.; Islam, M.D.; Yang, Z. Enhancing USDA NASS Cropland Data Layer with Segment Anything Model. In Proceedings of the 2023 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Wuhan, China, 25–28 July 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Giannakis, I.; Bhardwaj, A.; Sam, L.; Leontidis, G. Deep learning universal crater detection using Segment Anything Model (SAM). arXiv 2023, arXiv:2304.07764. [Google Scholar] [CrossRef]
- Shen, S.; Chen, J.; Zhang, T.; Liu, H.; Ye, S. Fine extraction of Benggang using high-resolution digital orthophoto and digital surface model. In Proceedings of the 2022 China Hydraulics Academic Conference, Beijing, China, 8 November 2022; Chinese Hydraulic Engineering Society; Yellow River Hydraulics Publishing House: Zhengzhou, China, 2022. [Google Scholar]
- Liang, Y.; Ning, D.; Pan, X.; Li, D.; Zhang, B. Characteristics and control of Benggang erosion in red soil region of southern China. Chin. Water Soil Conserv. 2009, 1, 31–34. [Google Scholar]
- Zhong, B.; Peng, S.; Zhang, Q.; Ma, H.; Cao, S. Using an ecological economics approach to support the restoration of collapsing gullies in southern China. Land Use Policy 2013, 32, 119–124. [Google Scholar] [CrossRef]
- Liao, J. Discussion on the status and control measures of Benggang erosion in Guangdong Province. Subtrop. Soil Water Conserv. 2005, 4, 28–30+48. [Google Scholar]
- Liao, Y.; Yuan, Z.; Li, D.; Zheng, M.; Huang, B.; Xie, Z.; Wu, X.; Luo, X. What kind of gully can develop into benggang? CATENA 2023, 225, 107024. [Google Scholar] [CrossRef]
- Sun, B.; Dong, Y.; Xu, M.; Zeng, X. Promote Development of Modern High-Efficient Ecological AgricultureBased on Divisional Remediation of Red Soil Degradation in Hilly Region of Southeastern China. Soils 2015, 47, 204–209. [Google Scholar]
- Liang, Y.; Zhang, B.; Pan, X.; Shi, D. Current status and comprehensive control strategies of soil erosion for hilly region in the Southern China. Sci. Soil Water Conserv. 2008, 1, 22–27. [Google Scholar]
- Baatz, M.; Benz, U.; Dehghani, S.; Heynen, M.; Holtje, A.; Hofmann, P.; Lingenfelder, I.; Mimler, M.; Sohlbach, M.; Weber, M. eCognition Professional User Guide 4; ADefiniens Imaging: Munich, Germany, 2004. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Fawagreh, K.; Gaber, M.M.; Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng. 2014, 2, 602–609. [Google Scholar] [CrossRef]
- Esch, T.; Thiel, M.; Bock, M.; Roth, A.; Dech, S. Improvement of image segmentation accuracy based on multiscale optimization procedure. IEEE Geosci. Remote Sens. Lett. 2008, 5, 463–467. [Google Scholar] [CrossRef]
- Belgiu, M.; Drǎguţ, L. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS J. Photogramm. Remote Sens. 2014, 96, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Schwieder, M.; Suess, S.; Hostert, P. The EnMAP-Box—A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Lin, J.; Huang, Y.; Zhao, G.; Jiang, F.; Wang, M.; Ge, H. Flow-driven soil erosion processes and the size selectivity of eroded sediment on steep slopes using colluvial deposits in a permanent gully. CATENA 2017, 157, 47–57. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, C.; Zou, Z.; Liu, Z.; Yang, X.; Tian, Z.; He, Y.; Lin, L.; Chen, J. Effects of sediment yield fluctuations on the niche-like ephemeral gully formation in granite red soil. CATENA 2022, 219, 106624. [Google Scholar] [CrossRef]
Parameter Name | Final Parameters |
---|---|
Sampling-point-density | 360 |
IOU-threshold | 0.86 |
Stability-score-threshold | 0.92 |
Number-of-layers | 1 |
Downscale-factor | 2 |
Minimum-mask-area | 100 |
Class | Training Samples | Validation Samples | ||
---|---|---|---|---|
Objects | Pixels | Objects | Pixels | |
Benggang | 50 | 182,453 | 73 | 212,530 |
Non-Benggang | 250 | 1,149,857 | / | 1,753,550 |
Accuracy Statistics | RFC-PBC | MRS-OBC | SAM-OBC |
---|---|---|---|
Detection accuracy | 36.83% | 51.34% | 85.46% |
False alarm rate | 8.84% | 4.25% | 2.19% |
Overall accuracy | 85.29% | 90.95% | 96.48% |
Kappa coefficient | 0.26 | 0.50 | 0.82 |
Accuracy Statistics | MRS-OBC | MRS-OBC Spectral Features Used Only | SAM-OBC | SAM-OBC Spectral Features Used Only |
---|---|---|---|---|
Detection accuracy | 51.34% | 63.48% | 85.46% | 75.59% |
False alarm rate | 4.25% | 8.65% | 2.19% | 8.65% |
Overall accuracy | 90.95% | 88.34% | 96.48% | 89.60% |
Kappa coefficient | 0.50 | 0.48 | 0.82 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Qi, Z.; Zhou, Z.; Qin, Y. Detection of Benggang in Remote Sensing Imagery through Integration of Segmentation Anything Model with Object-Based Classification. Remote Sens. 2024, 16, 428. https://doi.org/10.3390/rs16020428
Hu Y, Qi Z, Zhou Z, Qin Y. Detection of Benggang in Remote Sensing Imagery through Integration of Segmentation Anything Model with Object-Based Classification. Remote Sensing. 2024; 16(2):428. https://doi.org/10.3390/rs16020428
Chicago/Turabian StyleHu, Yixin, Zhixin Qi, Zhexun Zhou, and Yan Qin. 2024. "Detection of Benggang in Remote Sensing Imagery through Integration of Segmentation Anything Model with Object-Based Classification" Remote Sensing 16, no. 2: 428. https://doi.org/10.3390/rs16020428
APA StyleHu, Y., Qi, Z., Zhou, Z., & Qin, Y. (2024). Detection of Benggang in Remote Sensing Imagery through Integration of Segmentation Anything Model with Object-Based Classification. Remote Sensing, 16(2), 428. https://doi.org/10.3390/rs16020428