Twin Satellites HY-1C/D Reveal the Local Details of Astronomical Tide Flooding into the Qiantang River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Data Processing
2.3.1. Data Preprocessing
2.3.2. Inversion Model of the SSC in the Qiantang River
2.4. Methods of Extracting Qiantang River Tidal Bore
2.4.1. The Exploration of Qiantang Tidal Sensitive Band
2.4.2. Tidal Texture Extraction Method
3. Results
3.1. Tidal Bore Information Extracting from HY-1C/D CZI, GF-1 WFV
3.2. The Change in Water Surface Roughness Induced by the Qiantang River Tidal Bore
3.3. The Change in SSC Induced by the Qiantang River Tidal Bore
4. Discussion
4.1. Applicability of QRI for Qiantang River Tidal Bore Extraction
4.2. Mechanisms of Tidal Bore Impacting on the Water Environment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chanson, H. Environmental, ecological and cultural impacts of tidal bores, benaks, bonos and burros. In Proceedings of the International Workshop on Environmental Hydraulics: Theoretical, Experimental and Computational Solutions, Valencia, Spain, 29–30 October 2009; pp. 1–20. [Google Scholar]
- Tierney, C.C.; Kantha, L.H.; Born, G.H. Shallow and deep water global ocean tides from altimetry and numerical modeling. J. Geophys. Res. Ocean. 2000, 105, 11259–11277. [Google Scholar] [CrossRef]
- Egbert, G.D.; Ray, R.D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 2000, 405, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, D.E.; Ray, R. Oceanic tides from Geosat altimetry. J. Geophys. Res. Ocean. 1990, 95, 3069–3090. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.-Y.; Zhang, Y.; Li, Y.-F. Classification of land-cover types in muddy tidal flat wetlands using remote sensing data. J. Appl. Remote Sens. 2014, 7, 073457. [Google Scholar] [CrossRef]
- Whyte, A.; Ferentinos, K.P.; Petropoulos, G.P. A new synergistic approach for monitoring wetlands using Sentinels -1 and 2 data with object-based machine learning algorithms. Environ. Model. Softw. 2018, 104, 40–54. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Won, J.-S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar] [CrossRef]
- Murray, N.; Phinn, S.; Clemens, R.; Roelfsema, C.; Fuller, R. Continental Scale Mapping of Tidal Flats across East Asia Using the Landsat Archive. Remote Sens. 2012, 4, 3417–3426. [Google Scholar] [CrossRef]
- Angeles, G.R.; Perillo, G.M.E.; Piccolo, M.C.; Pierini, J.O. Fractal analysis of tidal channels in the Bahía Blanca Estuary (Argentina). Geomorphology 2004, 57, 263–274. [Google Scholar] [CrossRef]
- Mason, D.C.; Scott, T.R.; Wang, H.-J. Extraction of tidal channel networks from airborne scanning laser altimetry. ISPRS J. Photogramm. Remote Sens. 2006, 61, 67–83. [Google Scholar] [CrossRef]
- Kelly, M.; Tuxen, K. Remote sensing support for tidal wetland vegetation research and management. In Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management; Springer: Berlin/Heidelberg, Germany, 2009; pp. 341–363. [Google Scholar]
- Magolan, J.L.; Halls, J.N. A Multi-Decadal Investigation of Tidal Creek Wetland Changes, Water Level Rise, and Ghost Forests. Remote Sens. 2020, 12, 1141. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A comprehensive review. GIScience Remote Sens. 2017, 55, 623–658. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Berard, O. Supervised wetland classification using high spatial resolution optical, SAR, and LiDAR imagery. J. Appl. Remote Sens. 2020, 14, 024502. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Amani, M.; Granger, J.; Brisco, B.; Huang, W. A dynamic classification scheme for mapping spectrally similar classes: Application to wetland classification. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101914. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Riva, R.; Frederikse, T. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations. Ocean Sci. 2018, 14, 187–204. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, I.; Kim, J.O. Analysis on tidal channels based on UAV photogrammetry: Focused on the west coast, South Korea case analysis. J. Coast. Res. 2017, 79, 199–203. [Google Scholar] [CrossRef]
- Amani, M.; Moghimi, A.; Mirmazloumi, S.M.; Ranjgar, B.; Ghorbanian, A.; Ojaghi, S.; Ebrahimy, H.; Naboureh, A.; Nazari, M.E.; Mahdavi, S. Ocean Remote Sensing Techniques and Applications: A Review (Part I). Water 2022, 14, 3400. [Google Scholar] [CrossRef]
- Egbert, G.D.; Ray, R.D. Tidal prediction. J. Mar. Res. 2017, 75, 189–237. [Google Scholar] [CrossRef]
- Ray, R.D.; Zaron, E.D. Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Chen, L. Detection of shoreline changes for tideland areas using multi-temporal satellite images. Int. J. Remote Sens. 1998, 19, 3383–3397. [Google Scholar] [CrossRef]
- Tseng, K.-H.; Kuo, C.-Y.; Lin, T.-H.; Huang, Z.-C.; Lin, Y.-C.; Liao, W.-H.; Chen, C.-F. Reconstruction of time-varying tidal flat topography using optical remote sensing imageries. ISPRS J. Photogramm. Remote Sens. 2017, 131, 92–103. [Google Scholar] [CrossRef]
- Passaro, M.; Fenoglio-Marc, L.; Cipollini, P. Validation of significant wave height from improved satellite altimetry in the German Bight. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2146–2156. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.; Wu, K.; Wang, Z.; Yu, H.; Zhang, S.; Hou, Y.; Kelly, R.M. A global high-resolution ocean wave model improved by assimilating the satellite altimeter significant wave height. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 43–50. [Google Scholar] [CrossRef]
- Pan, C.-H.; Lu, H.-Y.; Zeng, J. Characteristic and numerical simulation of tidal bore in Qiantang River. Hydro-Sci. Eng. 2008, 2, 1–9. [Google Scholar]
- Huang, T.; Zhang, H.; Shi, Y. Numerical simulation of the tidal bore in the Qiantang River based on Boussinesq-type equations. Chin. J. Geophys. 2022, 65, 79–95. [Google Scholar]
- Tu, J.; Fan, D.; Voulgaris, G. Field observations of turbulence, sediment suspension, and transport under breaking tidal bores. Mar. Geol. 2021, 437, 106498. [Google Scholar] [CrossRef]
- Li, Y.; Pan, D.-Z.; Chanson, H.; Pan, C.-H. Real-time characteristics of tidal bore propagation in the Qiantang River Estuary, China, recorded by marine radar. Cont. Shelf Res. 2019, 180, 48–58. [Google Scholar] [CrossRef]
- Cai, L.; Chen, S.; Yan, X.; Bai, Y.; Bu, J. Study on High-Resolution Suspended Sediment Distribution under the Influence of Coastal Zone Engineering in the Yangtze River Mouth, China. Remote Sens. 2022, 14, 486. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Fisher, J.B.; Zhang, Y.; Cheng, J.; Chen, J.; Jia, K.; Zhang, X.; Bei, X.; Shang, K.; et al. A Novel NIR–Red Spectral Domain Evapotranspiration Model From the Chinese GF-1 Satellite: Application to the Huailai Agricultural Region of China. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4105–4119. [Google Scholar] [CrossRef]
- Hang, X.; Li, Y.; Li, X.; Xu, M.; Sun, L. Estimation of Chlorophyll-a Concentration in Lake Taihu from Gaofen-1 Wide-Field-of-View Data through a Machine Learning Trained Algorithm. J. Meteorol. Res. 2022, 36, 208–226. [Google Scholar] [CrossRef]
- Huang, X.; Xuan, F.; Dong, Y.; Su, W.; Wang, X.; Huang, J.; Li, X.; Zeng, Y.; Miao, S.; Li, J. Identifying Corn Lodging in the Mature Period Using Chinese GF-1 PMS Images. Remote Sens. 2023, 15, 894. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, X.; Sun, Z.; Liang, D.; An, X.; Chen, L.; Yang, G.; Huang, L.; Xu, S.; Yang, M. Estimation of Winter Wheat Residue Coverage Based on GF-1 Imagery and Machine Learning Algorithm. Agronomy 2022, 12, 1051. [Google Scholar] [CrossRef]
- Cai, L.; Yu, M.; Yan, X.; Zhou, Y.; Chen, S. HY-1C/D Reveals the Chlorophyll-a Concentration Distribution Details in the Intensive Islands’ Waters and Its Consistency with the Distribution of Fish Spawning Ground. Remote Sens. 2022, 14, 4270. [Google Scholar] [CrossRef]
- Liu, R.; Xiao, Y.; Ma, Y.; Cui, T.; An, J. Red tide detection based on high spatial resolution broad band optical satellite data. ISPRS J. Photogramm. Remote Sens. 2022, 184, 131–147. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, Y.; Peng, L.; He, Y.; Zha, M. An Improved Retrieval Method for Porphyra Cultivation Area Based on Suspended Sediment Concentration. Remote Sens. 2022, 14, 4338. [Google Scholar] [CrossRef]
- Ye, X.; Liu, J.; Lin, M.; Ding, J.; Zou, B.; Song, Q.; Teng, Y. Evaluation of Sea Surface Temperatures Derived From the HY-1D Satellite. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 654–665. [Google Scholar] [CrossRef]
- Huang, S.; Liu, J.; Cai, L.; Zhou, M.; Bu, J.; Xu, J. Satellites HY-1C and Landsat 8 Combined to Observe the Influence of Bridge on Sea Surface Temperature and Suspended Sediment Concentration in Hangzhou Bay, China. Water 2020, 12, 2595. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, B.; Xu, J.; Song, L.; Wang, X. Application of neural network and MODIS 250 m imagery for estimating suspended sediments concentration in Hangzhou Bay, China. Environ. Geol. 2009, 56, 1093–1101. [Google Scholar] [CrossRef]
- Cheng, L.; Sui, J.; Yun, H.; Hirshfield, F. Changes in runoff and sediment load from major Chinese rivers to the Pacific Ocean over the period 1955–2010. Int. J. Sediment Res. 2013, 28, 486–495. [Google Scholar]
- Wang, Q.; Pan, C.; Pan, D. Numerical study of the effect of typhoon Yagi on the Qiantang River tidal bore. Reg. Stud. Mar. Sci. 2021, 44, 101780. [Google Scholar] [CrossRef]
- Bu, J.; Cai, L.; Yan, X.; Xu, H.; Hu, H.; Jiang, J. Monitoring the Chl-a Distribution Details in the Yangtze River Mouth Using Satellite Remote Sensing. Water 2022, 14, 1295. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Tian, L.; Huang, J.; Feng, L. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: Radiometric and spatial considerations. ISPRS J. Photogramm. Remote Sens. 2015, 106, 145–156. [Google Scholar] [CrossRef]
- Tong, C.; Mu, B.; Liu, R.-J.; Ding, J.; Zhang, M.-W.; Xiao, Y.-F.; Liang, X.-J.; Chen, X.-Y. Atmospheric correction algorithm for HY-1C CZI over turbid waters. J. Coast. Res. 2019, 90, 156–163. [Google Scholar] [CrossRef]
- Cai, L.; Zhou, M.; Liu, J.; Tang, D.; Zuo, J. HY-1C Observations of the Impacts of Islands on Suspended Sediment Distribution in Zhoushan Coastal Waters, China. Remote Sens. 2020, 12, 1766. [Google Scholar] [CrossRef]
- Zeng, M.; Peng, J.; Jiang, L.; Feng, J. Temporal and Spatial Distribution of Suspended Sediment Concentration in Lakes Based on Satellite Remote Sensing and Internet of Things. IEEE Access 2021, 9, 87849–87856. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J. Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Remote Sens. 2022, 14, 331. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Gao, W.; Zhang, Y.; Hou, X. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Environ. Sci. Pollut. Res. 2023, 30, 83628–83642. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Wang, B.; Park, H.; Yang, H.; Wu, Y. A deep learning method of water body extraction from high resolution remote sensing images with multisensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3120–3132. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Zheng, F.; Wang, H.; Yang, H. An Overview of Coastline Extraction from Remote Sensing Data. Remote Sens. 2023, 15, 4865. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Jin, S.; Sun, C.; Wei, X. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites. ISPRS J. Photogramm. Remote Sens. 2019, 150, 27–43. [Google Scholar] [CrossRef]
- Yang, H.; Chen, M.; Xi, X.; Wang, Y. A Novel Approach for Instantaneous Waterline Extraction for Tidal Flats. Remote Sens. 2024, 16, 413. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Li, J.; Sui, Y. Automatic Extraction of Green Tide From GF-3 SAR Images Based on Feature Selection and Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10598–10613. [Google Scholar] [CrossRef]
- Chen, S. Seasonal, neap-spring variation of sediment concentration in the joint area between Yangtze Estuary and Hangzhou Bay. Sci. China Ser. B Chem. 2001, 44, 57–62. [Google Scholar] [CrossRef]
- Xie, D.; Gao, S.; Wang, Z.B.; Pan, C.; Wu, X.; Wang, Q. Morphodynamic modeling of a large inside sandbar and its dextral morphology in a convergent estuary: Qiantang Estuary, China. J. Geophys. Res. Earth Surf. 2017, 122, 1553–1572. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, M.; Li, Y.; Huang, Y.; Fan, B.; Lv, W.; Yu, P.; Wu, D.; Zhao, Y. Different effects of reclamation methods on macrobenthos community structure in the Yangtze Estuary, China. Mar. Pollut. Bull. 2018, 127, 429–436. [Google Scholar] [CrossRef]
Sensor | Band No. | Spectral Range/µm |
---|---|---|
HY-1C/D CZI | Band 1 (Blue) | 0.421–0.500 |
Band 2 (Green) | 0.517–0.598 | |
Band 3 (Red) | 0.608–0.690 | |
Band 4 (NIR) | 0.761–0.891 | |
GF-1 WFV | Band 1 (Blue) | 0.450–0.520 |
Band 2 (Green) | 0.520–0.590 | |
Band 3 (Red) | 0.630–0.690 | |
Band 4 (NIR) | 0.770–0.890 |
Band 1 | Band 2 | Band 3 | Band 4 | |
---|---|---|---|---|
Group 1 | 0.001 | 0.0015 | 0.0035 | 0.0112 |
Group 2 | 0.0009 | 0.0015 | 0.0039 | 0.0116 |
Group 3 | 0.001 | 0.0014 | 0.0043 | 0.012 |
Group 4 | 0.001 | 0.0011 | 0.0046 | 0.0122 |
Group 5 | 0.0012 | 0.0009 | 0.005 | 0.0123 |
Group 6 | 0.0015 | 0.0007 | 0.0053 | 0.0124 |
Group 7 | 0.0016 | 0.0011 | 0.005 | 0.0126 |
Group 8 | 0.0017 | 0.0015 | 0.0047 | 0.0128 |
Group 9 | 0.0018 | 0.0019 | 0.0044 | 0.0128 |
Group 10 | 0.0018 | 0.0019 | 0.0045 | 0.013 |
Group 11 | 0.0018 | 0.0019 | 0.0048 | 0.0132 |
Group 12 | 0.0019 | 0.0018 | 0.0051 | 0.0135 |
Group 13 | 0.0015 | 0.0018 | 0.0056 | 0.0145 |
Group 14 | 0.0011 | 0.0019 | 0.006 | 0.0153 |
Group 15 | 0.0006 | 0.0017 | 0.0061 | 0.0159 |
Average value | 0.00136 | 0.00151 | 0.00485 | 0.01302 |
Band 1 | Band 2 | Band 3 | Band 4 | |
---|---|---|---|---|
Group 1 | 0.0051 | 0.0097 | 0.0123 | 0.0163 |
Group 2 | 0.0059 | 0.0089 | 0.0114 | 0.0146 |
Group 3 | 0.0068 | 0.0098 | 0.0118 | 0.0158 |
Group 4 | 0.0064 | 0.0122 | 0.0154 | 0.0175 |
Group 5 | 0.0072 | 0.0127 | 0.0163 | 0.0174 |
Group 6 | 0.0086 | 0.0141 | 0.0164 | 0.0181 |
Group 7 | 0.0105 | 0.017 | 0.0189 | 0.0214 |
Group 8 | 0.0115 | 0.0187 | 0.022 | 0.0256 |
Group 9 | 0.0107 | 0.0173 | 0.0241 | 0.0328 |
Group 10 | 0.0102 | 0.0164 | 0.0236 | 0.0382 |
Average value | 0.00829 | 0.01368 | 0.01722 | 0.02177 |
Band 1 | Band 2 | Band 3 | Band 4 | |
---|---|---|---|---|
Group 1 | 114 | 180 | 188 | 346 |
Group 2 | 103 | 175 | 167 | 357 |
Group 3 | 114 | 194 | 169 | 346 |
Group 4 | 98 | 199 | 164 | 312 |
Group 5 | 82 | 103 | 141 | 270 |
Group 6 | 80 | 107 | 149 | 239 |
Group 7 | 76 | 126 | 161 | 192 |
Group 8 | 33 | 157 | 153 | 189 |
Group 9 | 37 | 108 | 153 | 217 |
Group 10 | 63 | 104 | 152 | 217 |
Group 11 | 49 | 112 | 134 | 205 |
Group 12 | 56 | 106 | 136 | 205 |
Group 13 | 21 | 108 | 133 | 209 |
Group 14 | 31 | 94 | 101 | 217 |
Group 15 | 23 | 63 | 107 | 236 |
Average value | 65.3 | 129.1 | 147.2 | 250.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Zhang, H.; Ye, X.; Yin, J.; Tang, R. Twin Satellites HY-1C/D Reveal the Local Details of Astronomical Tide Flooding into the Qiantang River, China. Remote Sens. 2024, 16, 1507. https://doi.org/10.3390/rs16091507
Cai L, Zhang H, Ye X, Yin J, Tang R. Twin Satellites HY-1C/D Reveal the Local Details of Astronomical Tide Flooding into the Qiantang River, China. Remote Sensing. 2024; 16(9):1507. https://doi.org/10.3390/rs16091507
Chicago/Turabian StyleCai, Lina, Hengpan Zhang, Xiaomin Ye, Jie Yin, and Rong Tang. 2024. "Twin Satellites HY-1C/D Reveal the Local Details of Astronomical Tide Flooding into the Qiantang River, China" Remote Sensing 16, no. 9: 1507. https://doi.org/10.3390/rs16091507
APA StyleCai, L., Zhang, H., Ye, X., Yin, J., & Tang, R. (2024). Twin Satellites HY-1C/D Reveal the Local Details of Astronomical Tide Flooding into the Qiantang River, China. Remote Sensing, 16(9), 1507. https://doi.org/10.3390/rs16091507