Evaluating the Efficacy of Segment Anything Model for Delineating Agriculture and Urban Green Spaces in Multiresolution Aerial and Spaceborne Remote Sensing Images
Abstract
:1. Introduction
2. Study Area and Data Used
3. Methodology
3.1. Segment Anything Model
3.2. Data Preprocessing and Image Segmentation
- Evaluation of SAM results for images with varied resolutions covering the same study area frame;
- Evaluation of SAM results for images of different study areas at the same spatial resolution.
3.3. Validation of Results
4. Result
4.1. Same Study Area Size at Different Resolutions
4.2. Same Resolution with Different Study Area Size
5. Discussion: Limitations and Future Work
- Preliminary object-oriented segmentation excels in accurately segmenting individual agricultural regions, producing smooth images with minimal noise compared to pixel-based algorithms, as demonstrated in Figure 25′s pixel-based segmentation image results;
- SAM’s processing speed is exceptional with the existing framework of trained models, allowing for zero-shot generalization to unfamiliar objects and images without the need for additional training.
- For green belts inside the city, the segmentation effect based on SAM performs poorly regardless of the resolution or size, and when buildings and green belts are interspersed with each other in the urban system, which is relatively complex to display on the image, as shown in Figure 28, the SAM performance is very weak;
- Various types of large-sized images, SAM shows poor results, which may be affected by too many types of objects;
- For unsupervised classification, the segmentation of the images is consistently poor, and the overall accuracy and stability are ineffective.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wolanin, A.; Mateo-García, G.; Camps-Valls, G.; Gómez-Chova, L.; Meroni, M.; Duveiller, G.; Liangzhi, Y.; Guanter, L. Estimating and Understanding Crop Yields with Explainable Deep Learning in the Indian Wheat Belt. Environ. Res. Lett. 2020, 15, 024019. [Google Scholar] [CrossRef]
- Mathivanan, S.K.; Jayagopal, P. Simulating Crop Yield Estimation and Prediction through Geospatial Data for Specific Regional Analysis. Earth Sci. Inform. 2023, 16, 1005–1023. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent Challenges in Modeling of Urban Heat Island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Zhang, Q. The Development Simulation of Urban Green Space System Layout Based on the Land Use Scenario: A Case Study of Xuchang City, China. Sustainability 2020, 12, 326. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Zhang, Q.; Zhang, G.; Teng, J. Predicting the Surface Urban Heat Island Intensity of Future Urban Green Space Development Using a Multi-Scenario Simulation. Sustain. Cities Soc. 2021, 66, 102698. [Google Scholar] [CrossRef]
- Luo, Z.; Yang, W.; Yuan, Y.; Gou, R.; Li, X. Semantic Segmentation of Agricultural Images: A Survey. In Information Processing in Agriculture; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Akanksha; Martín-Torres, F.J.; Kumar, R. UAVs as Remote Sensing Platform in Glaciology: Present Applications and Future Prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Gaffey, C.; Bhardwaj, A. Applications of Unmanned Aerial Vehicles in Cryosphere: Latest Advances and Prospects. Remote Sens. 2020, 12, 948. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.-P.; Ramírez Luque, J.A. UAV Imaging of a Martian Brine Analogue Environment in a Fluvio-Aeolian Setting. Remote Sens. 2019, 11, 2104. [Google Scholar] [CrossRef]
- Sam, L.; Bhardwaj, A.; Singh, S.; Martin-Torres, F.J.; Zorzano, M.-P.; Ramírez Luque, J.A. Small Lava Caves as Possible Exploratory Targets on Mars: Analogies Drawn from UAV Imaging of an Icelandic Lava Field. Remote Sens. 2020, 12, 1970. [Google Scholar] [CrossRef]
- Guijarro, M.; Riomoros, I.; Pajares, G.; Zitinski, P. Discrete Wavelets Transform for Improving Greenness Image Segmentation in Agricultural Images. Comput. Electron. Agric. 2015, 118, 396–407. [Google Scholar] [CrossRef]
- David, L.C.G.; Ballado, A.H. Vegetation Indices and Textures in Object-Based Weed Detection from UAV Imagery. In Proceedings of the 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 25–27 November 2016; pp. 273–278. [Google Scholar]
- Raei, E.; Akbari Asanjan, A.; Nikoo, M.R.; Sadegh, M.; Pourshahabi, S.; Adamowski, J.F. A deep learning image segmentation model for agricultural irrigation system classification. Comput. Electron. Agric. 2022, 198, 106977. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Vine Disease Detection in UAV Multispectral Images Using Optimized Image Registration and Deep Learning Segmentation Approach. Comput. Electron. Agric. 2020, 174, 105446. [Google Scholar] [CrossRef]
- Osco, L.P.; Nogueira, K.; Marques Ramos, A.P.; Faita Pinheiro, M.M.; Furuya, D.E.G.; Gonçalves, W.N.; de Castro Jorge, L.A.; Marcato Junior, J.; dos Santos, J.A. Semantic Segmentation of Citrus-Orchard Using Deep Neural Networks and Multispectral UAV-Based Imagery. Precis. Agric. 2021, 22, 1171–1188. [Google Scholar] [CrossRef]
- Bah, M.D.; Hafiane, A.; Canals, R. CRowNet: Deep Network for Crop Row Detection in UAV Images. IEEE Access 2020, 8, 5189–5200. [Google Scholar] [CrossRef]
- Peng, C.; Li, Y.; Jiao, L.; Chen, Y.; Shang, R. Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2612–2626. [Google Scholar] [CrossRef]
- Xu, B.; Fan, J.; Chao, J.; Arsenijevic, N.; Werle, R.; Zhang, Z. Instance Segmentation Method for Weed Detection Using UAV Imagery in Soybean Fields. Comput. Electron. Agric. 2023, 211, 107994. [Google Scholar] [CrossRef]
- Wilke, M.; de Haan, B.; Juenger, H.; Karnath, H.-O. Manual, Semi-Automated, and Automated Delineation of Chronic Brain Lesions: A Comparison of Methods. NeuroImage 2011, 56, 2038–2046. [Google Scholar] [CrossRef]
- Baker, M.E.; Weller, D.E.; Jordan, T.E. Comparison of Automated Watershed Delineations. Photogramm. Eng. Remote Sens. 2006, 72, 159–168. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.; Kunert, A.; Kamp, U. Automated Delineation of Debris-Covered Glaciers Based on ASTER Data. In Proceedings of the 27th EARSeL Symposium, Bolzano, Italy, 4–7 June 2007; pp. 403–410. [Google Scholar]
- Kotaridis, I.; Lazaridou, M. Remote Sensing Image Segmentation Advances: A Meta-Analysis. ISPRS J. Photogramm. Remote Sens. 2021, 173, 309–322. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Fu, R.; Fang, H.; Liu, Y.; Wang, Z.; Xu, Y.; Jin, Y. Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation. arXiv 2023, arXiv:2304.12620. [Google Scholar]
- Mazurowski, M.A.; Dong, H.; Gu, H.; Yang, J.; Konz, N.; Zhang, Y. Segment Anything Model for Medical Image Analysis: An Experimental Study. Med. Image Anal. 2023, 89, 102918. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, X.; Liu, L.; Zhou, H.; Chang, A.; Zhou, X.; Chen, R.; Yu, J.; Chen, J.; Chen, C.; et al. Segment Anything Model for Medical Images? Med. Image Anal. 2023, 92, 103061. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Wald, T.; Koehler, G.; Rokuss, M.R.; Disch, N.; Holzschuh, J.; Zimmerer, D.; Maier-Hein, K.H. SAM.MD: Zero-Shot Medical Image Segmentation Capabilities of the Segment Anything Model. arXiv 2023, arXiv:2304.05396. [Google Scholar]
- Hu, M.; Li, Y.; Yang, X. SkinSAM: Empowering Skin Cancer Segmentation with Segment Anything Model. arXiv 2023, arXiv:2304.13973. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Liang, F.; Wu, B.; Dai, X.; Li, K.; Zhao, Y.; Zhang, H.; Zhang, P.; Vajda, P.; Marculescu, D. Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP. arXiv 2023, arXiv:2210.04150. [Google Scholar]
- Liang, Y.; Wu, C.; Song, T.; Wu, W.; Xia, Y.; Liu, Y.; Ou, Y.; Lu, S.; Ji, L.; Mao, S.; et al. TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs. arXiv 2023, arXiv:2303.16434. [Google Scholar]
- Liu, S.; Zeng, Z.; Ren, T.; Li, F.; Zhang, H.; Yang, J.; Li, C.; Yang, J.; Su, H.; Zhu, J.; et al. Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. arXiv 2023, arXiv:2303.05499. [Google Scholar]
- Liu, L. A Comprehensive Survey on Segment Anything Model for Vision and Beyond. arXiv 2023, arXiv:2305.08196. [Google Scholar]
- Mo, S.; Tian, Y. AV-SAM: Segment Anything Model Meets Audio-Visual Localization and Segmentation. arXiv 2023, arXiv:2305.0183. [Google Scholar]
- Ahmadi, M.; Lonbar, A.G.; Sharifi, A.; Beris, A.T.; Nouri, M.; Javidi, A.S. Application of Segment Anything Model for Civil Infrastructure Defect Assessment. arXiv 2023, arXiv:2304.12600. Available online: https://arxiv.org/abs/2304.12600v1 (accessed on 14 November 2023).
- Zhang, Z.; Wei, Z.; Zhang, S.; Dai, Z.; Zhu, S. UVOSAM: A Mask-Free Paradigm for Unsupervised Video Object Segmentation via Segment Anything Model. arXiv 2023, arXiv:2305.12659. Available online: https://arxiv.org/abs/2305.12659v1 (accessed on 14 November 2023).
- Ren, S.; Luzi, F.; Lahrichi, S.; Kassaw, K.; Collins, L.M.; Bradbury, K.; Malof, J.M. Segment Anything, from Space? arXiv 2023, arXiv:2304.13000. Available online: https://arxiv.org/abs/2304.13000v4 (accessed on 14 November 2023).
- Giannakis, I.; Bhardwaj, A.; Sam, L.; Leontidis, G. A Flexible Deep Learning Crater Detection Scheme Using Segment Anything Model (SAM). Icarus 2024, 408, 115797. [Google Scholar] [CrossRef]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
Vehicle Designation | Sensor | Spatial Resolution | Spectral Bands Used | Web Site for Data Acquisition |
---|---|---|---|---|
Aerial vehicle | Z/I DMC | 0.5 m | RGB | https://earthexplorer.usgs.gov/ (accessed on 14 December 2023) |
Aerial vehicle | Leica ADS80 | 1 m | RGB | https://earthexplorer.usgs.gov/ (accessed on 15 December 2023) |
PlanetScope | Dove Classic (PS2) | 3 m | RGB | https://www.planet.com/explorer/ (accessed on 16 December 2023) |
Sentinel-2 | MSI | 10 m | RGB | https://dataspace.copernicus.eu/browser/ (accessed on 12 December 2023) |
Landsat 8 | OLI | 30 m | RGB | https://earthexplorer.usgs.gov/ (accessed on 13 December 2023) |
Spatial Resolution | Original Image Size (in Pixels) | Output Image Size (in Pixels) | Sensor | Spectral Bands Used |
---|---|---|---|---|
0.5 m | 10,000 × 10,000 | 8000 × 8000 | Z/I DMC | RGB |
1 m | 5000 × 5000 | 4000 × 4000 | Leica ADS80 | RGB |
3 m | 8908 × 4319 | 2000 × 2000 | Dove Classic (PS2) | RGB |
10 m | 10,980 × 10,980 | 400 × 400 | MSI | RGB |
20 m | 5490 × 5490 | 200 × 200 | MSI | RGB |
30 m | 1830 × 1830 | 150 × 150 | OLI | RGB |
Resolution | Large Size (in Pixels) | Medium Size (in Pixels) | Small Area Size (in Pixels) | Sensor | Spectral Bands Used |
---|---|---|---|---|---|
0.5 m | 10,000 × 10,000 | 5000 × 5000 | 2500 × 2500 | Z/I DMC | RGB |
1 m | 5000 × 5000 | 2500 × 2500 | 1250 × 1250 | Leica ADS80 | RGB |
3 m | 5000 × 5000 | 2500 × 2500 | 1250 × 1250 | Dove Classic (PS2) | RGB |
10 m | 5000 × 5000 | 2500 × 2500 | 1250 × 1250 | MSI | RGB |
20 m | 5000 × 5000 | 2500 × 2500 | 1250 × 1250 | MSI | RGB |
30 m | 5000 × 5000 | 2500 × 2500 | 1250 × 1250 | OLI | RGB |
Resolution | Serial Number | Unsupervised (SAE) | Conditional (SAE) |
---|---|---|---|
0.5 m | A_1 | 0.84 | 0.92 |
A_2 | 0.94 | 0.96 | |
A_3 | 0.92 | 0.96 | |
A_4 | 0.90 | 0.92 | |
A_5 | 0.98 | 0.74 | |
A_6 | 0.96 | 0.94 | |
A_7 | 0.94 | 0.98 | |
A_8 | 0.98 | 1 | |
A_9 | 0.74 | 0.78 | |
A_10 | 0.94 | 0.98 | |
1 m | B_1 | 0.84 | 0.90 |
B_2 | 0.94 | 0.98 | |
B_3 | 1 | 0.90 | |
B_4 | 0.94 | 0.98 | |
B_5 | 0.74 | 0.94 | |
B_6 | 0.98 | 0.92 | |
B_7 | 0.98 | 0.94 | |
B_8 | 0.92 | 1 | |
B_9 | 0.94 | 0.98 | |
B_10 | 0.94 | 0.96 | |
3 m | C_1 | 0.2 | 0.5 |
C_2 | 1 | 1 | |
C_3 | 0.1 | 0.9 | |
C_4 | 0.9 | 0.6 | |
C_5 | 0.5 | 0.85 | |
C_6 | 0.9 | 0.55 | |
C_7 | 1 | 1 | |
C_8 | 1 | 1 | |
C_9 | 0.4 | 0.75 | |
C_10 | 0.5 | 0.9 | |
10 m | D_1 | 0.54 | 0.9 |
D_2 | 0.8 | 0.98 | |
D_3 | 0.84 | 0.94 | |
D_4 | 0.54 | 0.64 | |
D_5 | 0.32 | 0.94 | |
D_6 | 0.94 | 0.96 | |
D_7 | 0.88 | 0.96 | |
D_8 | 0.74 | 0.94 | |
D_9 | 0.94 | 1 | |
D_10 | 0.98 | 0.98 | |
20 m | E_1 | 0.34 | 0.94 |
E_2 | 0.24 | 0.99 | |
E_3 | 0.44 | 0.89 | |
E_4 | 0.57 | 0.94 | |
E_5 | 0.94 | 0.98 | |
E_6 | 0.47 | 0.81 | |
E_7 | 0.92 | 0.99 | |
E_8 | 0.21 | 0.97 | |
E_9 | 0.92 | 0.98 | |
E_10 | 0.21 | 0.91 | |
30 m | F_1 | 0.94 | 0.98 |
F_2 | 0.98 | 1 | |
F_3 | 0.84 | 0.94 | |
F_4 | 0.88 | 0.94 | |
F_5 | 0.9 | 0.9 | |
F_6 | 0.92 | 0.98 | |
F_7 | 0.98 | 1 | |
F_8 | 0.98 | 0.98 | |
F_9 | 0.94 | 0.96 | |
F_10 | 0.66 | 0.74 |
Resolution | Serial Number | Area Size | Unsupervised (SAE) | Conditional (SAE) |
---|---|---|---|---|
0.5 m | H_1 | 1250 × 1250 (Small) | 0.94 | 0.98 |
H_2 | 1250 × 1250 (Small) | 0.56 | 0.94 | |
H_3 | 1250 × 1250 (Small) | 0.92 | 0.98 | |
H_4 | 2500 × 2500 (Medium) | 0.94 | 0.96 | |
H_5 | 2500 × 2500 (Medium) | 0.92 | 0.96 | |
H_6 | 2500 × 2500 (Medium) | 0.74 | 0.98 | |
H_7 | 5000 × 5000 (Large) | 0.94 | 0.96 | |
H_8 | 5000 × 5000 (Large) | 0.46 | 0.64 | |
H_9 | 5000 × 5000 (Large) | 0.94 | 0.98 | |
1 m | I_1 | 1250 × 1250 (Small) | 0.94 | 0.96 |
I_2 | 1250 × 1250 (Small) | 0.98 | 0.98 | |
I_3 | 1250 × 1250 (Small) | 1 | 0.98 | |
I_4 | 2500 × 2500 (Medium) | 0.98 | 1 | |
I_5 | 2500 × 2500 (Medium) | 0.96 | 1 | |
I_6 | 2500 × 2500 (Medium) | 1 | 1 | |
I_7 | 5000 × 5000 (Large) | 0.92 | 1 | |
I_8 | 5000 × 5000 (Large) | 0.54 | 0.52 | |
I_9 | 5000 × 5000 (Large) | 0.94 | 0.98 | |
3 m | J_1 | 1250 × 1250 (Small) | 0.44 | 0.94 |
J_2 | 1250 × 1250 (Small) | 0.94 | 0.96 | |
J_3 | 1250 × 1250 (Small) | 0.96 | 0.98 | |
J_4 | 2500 × 2500 (Medium) | 0.94 | 1 | |
J_5 | 2500 × 2500 (Medium) | 0.74 | 0.98 | |
J_6 | 2500 × 2500 (Medium) | 0.44 | 0.84 | |
J_7 | 5000 × 5000 (Large) | 0.74 | 0.88 | |
J_8 | 5000 × 5000 (Large) | 0.56 | 0.84 | |
J_9 | 5000 × 5000 (Large) | 0.44 | 0.88 | |
10 m | K_1 | 1250 × 1250 (Small) | 0.68 | 0.94 |
K_2 | 1250 × 1250 (Small) | 0.74 | 0.90 | |
K_3 | 1250 × 1250 (Small) | 0.32 | 0.95 | |
K_4 | 2500 × 2500 (Medium) | 0.92 | 0.96 | |
K_5 | 2500 × 2500 (Medium) | 0.53 | 0.82 | |
K_6 | 2500 × 2500 (Medium) | 0.78 | 0.88 | |
K_7 | 5000 × 5000 (Large) | 0.94 | 0.98 | |
K_8 | 5000 × 5000 (Large) | 0.44 | 0.84 | |
K_9 | 5000 × 5000 (Large) | 0.76 | 0.64 | |
20 m | L_1 | 1250 × 1250 (Small) | 0.43 | 0.83 |
L_2 | 1250 × 1250 (Small) | 0.82 | 0.93 | |
L_3 | 1250 × 1250 (Small) | 0.43 | 0.92 | |
L_4 | 2500 × 2500 (Medium) | 0.47 | 0.56 | |
L_5 | 2500 × 2500 (Medium) | 0.67 | 0.82 | |
L_6 | 2500 × 2500 (Medium) | 0.33 | 0.44 | |
L_7 | 5000 × 5000 (Large) | 0.24 | 0.43 | |
L_8 | 5000 × 5000 (Large) | 0.69 | 0.90 | |
L_9 | 5000 × 5000 (Large) | 0.41 | 0.24 | |
30 m | M_1 | 1250 × 1250 (Small) | 0.14 | 0.68 |
M_2 | 1250 × 1250 (Small) | 0.42 | 0.68 | |
M_3 | 1250 × 1250 (Small) | 0.24 | 0.74 | |
M_4 | 2500 × 2500 (Medium) | 0.68 | 0.98 | |
M_5 | 2500 × 2500 (Medium) | 0.24 | 0.84 | |
M_6 | 2500 × 2500 (Medium) | 0.12 | 0.86 | |
M_7 | 5000 × 5000 (Large) | 0.08 | 0.84 | |
M_8 | 5000 × 5000 (Large) | 0.04 | 0.56 | |
M_9 | 5000 × 5000 (Large) | 0.22 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, B.; Bhardwaj, A.; Sam, L. Evaluating the Efficacy of Segment Anything Model for Delineating Agriculture and Urban Green Spaces in Multiresolution Aerial and Spaceborne Remote Sensing Images. Remote Sens. 2024, 16, 414. https://doi.org/10.3390/rs16020414
Gui B, Bhardwaj A, Sam L. Evaluating the Efficacy of Segment Anything Model for Delineating Agriculture and Urban Green Spaces in Multiresolution Aerial and Spaceborne Remote Sensing Images. Remote Sensing. 2024; 16(2):414. https://doi.org/10.3390/rs16020414
Chicago/Turabian StyleGui, Baoling, Anshuman Bhardwaj, and Lydia Sam. 2024. "Evaluating the Efficacy of Segment Anything Model for Delineating Agriculture and Urban Green Spaces in Multiresolution Aerial and Spaceborne Remote Sensing Images" Remote Sensing 16, no. 2: 414. https://doi.org/10.3390/rs16020414
APA StyleGui, B., Bhardwaj, A., & Sam, L. (2024). Evaluating the Efficacy of Segment Anything Model for Delineating Agriculture and Urban Green Spaces in Multiresolution Aerial and Spaceborne Remote Sensing Images. Remote Sensing, 16(2), 414. https://doi.org/10.3390/rs16020414