River Ice Mapping from Landsat-8 OLI Top of Atmosphere Reflectance Data by Addressing Atmospheric Influences with Random Forest: A Case Study on the Han River in South Korea
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Landsat-8 OLI Data
2.3. MODIS-Based Atmospheric Factors and GLO-30 DEM
3. Methodology
3.1. Development of Random Forest-Based River Ice Mapping Models
3.2. Evaluation of the River Ice Mapping Models
4. Results
4.1. Performance of River Ice Mapping Models Evaluated Based on Test Samples
4.2. Performance of River Ice Mapping Models Evaluated Based on Manually Interpreted Maps for Test Site
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltaos, S.; Prowse, T. River-ice hydrology in a shrinking cryosphere. Hydrol. Process. 2009, 23, 122–144. [Google Scholar] [CrossRef]
- Prowse, T.D. River-ice ecology. I: Hydrologic, geomorphic, and water-quality aspects. J. Cold Reg. Eng. 2001, 15, 1–16. [Google Scholar] [CrossRef]
- Prowse, T.D.; Beltaos, S. Climatic control of river-ice hydrology: A review. Hydrol. Process. 2002, 16, 805–822. [Google Scholar] [CrossRef]
- Rokaya, P.; Budhathoki, S.; Lindenschmidt, K.E. Trends in the timing and magnitude of ice-jam floods in Canada. Sci. Rep. 2018, 8, 5834. [Google Scholar] [CrossRef]
- Thellman, A.; Jankowski, K.J.; Hayden, B.; Yang, X.; Dolan, W.; Smits, A.P.; O’Sullivan, A.M. The ecology of river ice. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006275. [Google Scholar] [CrossRef]
- Beltaos, S. Progress in the study and management of river ice jams. Cold Reg. Sci. Tech. 2008, 51, 2–19. [Google Scholar] [CrossRef]
- Das, A.; Rokaya, P.; Lindenschmidt, K.E. Ice-jam flood risk assessment and hazard mapping under future climate. J. Water Resour. Plan. Manag. 2020, 146, 04020029. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Das, A.; Rokaya, P.; Chu, T. Ice-jam flood risk assessment and mapping. Hydrol. Process. 2016, 30, 3754–3769. [Google Scholar] [CrossRef]
- Lesack, L.F.W.; Marsh, P.; Hicks, F.E.; Forbes, D.L. Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophys. Res. Lett. 2014, 41, 1560–1566. [Google Scholar] [CrossRef]
- Chen, Y.; She, Y. Long-term variations of river ice breakup timing across Canada and its response to climate change. Cold Reg. Sci. Tech. 2020, 176, 103091. [Google Scholar] [CrossRef]
- Oh, S.-B.; Byun, H.-R. Long-term variation of the freezing climate near the Han River and Seoul in Korea. J. Kor. Earth Sci. Soc. 2011, 32, 761–769. [Google Scholar] [CrossRef]
- de Roda Husman, S.; van der Sanden, J.J.; Lhermitte, S.; Eleveld, M.A. Integrating intensity and context for improved supervised river ice classification from dual-pol Sentinel-1 SAR data. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102359. [Google Scholar] [CrossRef]
- Engram, M.; Meyer, F.J.; Brown, D.R.N.; Clement, S.; Bondurant, A.C.; Spellman, K.V.; Oxtoby, L.E.; Arp, C.D. Detecting early winter open-water zones on Alaska rivers using dual-polarized C-band Sentinel-1 synthetic aperture radar (SAR). Remote Sens. Environ. 2024, 305, 114096. [Google Scholar] [CrossRef]
- Mermoz, S.; Allain, S.; Bernier, M.; Pottier, E.; Gherboudj, I. Classification of river ice using polarimetric SAR data. Can. J. Remote Sens. 2009, 35, 460–473. [Google Scholar] [CrossRef]
- Sobiech, J.; Dierking, W. Observing lake- and river-ice decay with SAR: Advantages and limitations of the unsupervised k-means classification approach. Ann. Glaciol. 2013, 54, 65–72. [Google Scholar] [CrossRef]
- Stonevicius, E.; Uselis, G.; Grendaite, D. Ice Detection with Sentinel-1 SAR backscatter threshold in long sections of temperate climate rivers. Remote Sens. 2022, 14, 1627. [Google Scholar] [CrossRef]
- Mermoz, S.; Allain-Bailhache, S.; Bernier, M.; Pottier, E.; Van Der Sanden, J.J.; Chokmani, K. Retrieval of river ice thickness from C-Band PolSAR data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3052–3062. [Google Scholar] [CrossRef]
- Barbieux, K.; Charitsi, A.; Merminod, B. Icy lakes extraction and water-ice classification using Landsat 8 OLI multispectral data. Int. J. Remote Sens. 2018, 39, 3646–3678. [Google Scholar] [CrossRef]
- Gatto, L.W. Monitoring river ice with Landsat images. Remote Sens. Environ. 1990, 32, 1–16. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Wang, J.; Hao, X. Monitoring high-altitude river ice distribution at the basin scale in the northeastern Tibetan Plateau from a Landsat time-series spanning 1999–2018. Remote Sens. Environ. 2020, 247, 111915. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Wang, J.; Hao, X. Identifying river ice on the Tibetan Plateau based on the relative difference in spectral bands. J. Hydrol. 2021, 601, 126613. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Wang, J.; Hao, X. Revealing the river ice phenology on the Tibetan Plateau using Sentinel-2 and Landsat 8 overlapping orbit imagery. J. Hydrol. 2023, 619, 129285. [Google Scholar] [CrossRef]
- Yang, X.; Pavelsky, T.M.; Allen, G.H. The past and future of global river ice. Nature 2020, 577, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Kääb, A.; Altena, B.; Mascaro, J. River-ice and water velocities using the Planet optical cubesat constellation. Hydrol. Earth Syst. Sci. 2019, 23, 4233–4247. [Google Scholar] [CrossRef]
- Zakharov, I.; Puestow, T.; Khan, A.A.; Briggs, R.; Barrette, P. Review of River Ice Observation and Data Analysis Technologies. Hydrology 2024, 11, 126. [Google Scholar] [CrossRef]
- Chaouch, N.; Temimi, M.; Romanov, P.; Cabrera, R.; McKillop, G.; Khanbilvardi, R. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data. Hydrol. Process. 2014, 28, 62–73. [Google Scholar] [CrossRef]
- Cooley, S.W.; Pavelsky, T.M. Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery. Remote Sens. Environ. 2016, 175, 310–322. [Google Scholar] [CrossRef]
- Beaton, A.; Whaley, R.; Corston, K.; Kenny, F. Identifying historic river ice breakup timing using MODIS and Google Earth Engine in support of operational flood monitoring in Northern Ontario. Remote Sens. Environ. 2019, 224, 352–364. [Google Scholar] [CrossRef]
- Temimi, M.; Abdelkader, M.; Tounsi, A.; Chaouch, N.; Carter, S.; Sjoberg, B.; Macneil, A.; Bingham-Maas, N. An Automated System to Monitor River Ice Conditions Using Visible Infrared Imaging Radiometer Suite Imagery. Remote Sens. 2023, 15, 4896. [Google Scholar] [CrossRef]
- Kraatz, S.; Khanbilvardi, R.; Romanov, P. A Comparison of MODIS/VIIRS Cloud Masks over Ice-Bearing River: On Achieving Consistent Cloud Masking and Improved River Ice Mapping. Remote Sens. 2017, 9, 229. [Google Scholar] [CrossRef]
- Kraatz, S.; Khanbilvardi, R.; Romanov, P. River ice monitoring with MODIS: Application over Lower Susquehanna River. Cold Reg. Sci. Tech. 2016, 131, 116–128. [Google Scholar] [CrossRef]
- Griffina, C.G.; McClelland, J.W.; Frey, K.E.; Fiske, G.; Holmes, R.M. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote Sens. Environ. 2018, 209, 395–409. [Google Scholar] [CrossRef]
- Heinilä, K.; Mattila, O.-P.; Metsämäki, S.; Väkevä, S.; Luojus, K.; Schwaizer, G.; Koponen, S. A novel method for detecting lake ice cover using optical satellite data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102566. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Sola, I.; García-Martín, A.; Sandonís-Pozo, L.; Álvarez-Mozos, J.; Pérez-Cabello, F.; González-Audícana, M.; Llovería, R.M. Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 63–76. [Google Scholar] [CrossRef]
- Sayler, K. Landsat 8-9 Collection 2 Level 2 Science Product Guide. Version 6.0. 2024. Available online: https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide (accessed on 12 July 2024).
- Martins, V.S.; Barbosa, C.C.F.; De Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.D.L.; Novo, E.M.L.d.M. Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef]
- Kim, D.; Won, Y.J.; Han, S.; Han, H. A Study on the retrieval of river turbidity based on KOMPSAT-3/3A images. Korean J. Remote Sens. 2022, 38, 1285–1300. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- NASA. Worldwide Reference System. Available online: https://landsat.gsfc.nasa.gov/about/the-worldwide-reference-system (accessed on 20 August 2024).
- Vermote, E.; Roger, J.C.; Franch, B.; Skakun, S. LaSRC (Land Surface Reflectance Code): Overview, Application and Validation Using MODIS, VIIRS, LANDSAT and Sentinel 2 Data’s. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8173–8176. [Google Scholar] [CrossRef]
- Guanter, L.; Del Carmen González-Sanpedro, M.; Moreno, J. A method for the atmospheric correction of ENVISAT/MERIS data over land targets. Int. J. Remote Sens. 2007, 28, 709–728. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Mattar, C.; Franch, B. Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products. Remote Sens. Environ. 2010, 114, 2195–2210. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Béal, D.; Baret, F.; Bacour, C.; Gu, X.-F. A method for aerosol correction from the spectral variation in the visible and near infrared: Application to the MERIS sensor. Int. J. Remote Sens. 2007, 28, 761–779. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D.; Müller, A. An automatic atmospheric correction algorithm for visible/NIR imagery. Int. J. Remote Sens. 2006, 27, 2077–2085. [Google Scholar] [CrossRef]
- Wang, M. Extrapolation of the aerosol reflectance from the near-infrared to the visible: The single-scattering epsilon vs multiple-scattering epsilon method. Int. J. Remote Sens. 2004, 25, 3637–3650. [Google Scholar] [CrossRef]
- Waquet, F.; Péré, J.-C.; Peers, F.; Goloub, P.; Ducos, F.; Thieuleux, F.; Tanré, D. Global detection of absorbing aerosols over the ocean in the red and near-infrared spectral region. J. Geophys. Res. Atmos. 2016, 121, 10902–10918. [Google Scholar] [CrossRef]
- Orphal, J.; Staehelin, J.; Tamminen, J.; Braathen, G.; De Backer, M.-R.; Bais, A.; Balis, D.; Barbe, A.; Bhartia, P.K.; Birk, M.; et al. Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015. J. Mol. Spectrosc. 2016, 327, 105–121. [Google Scholar] [CrossRef]
- Pei, L.; Min, Q.; Du, Y.; Wang, Z.; Yin, B.; Yang, K.; Disterhoft, P.; Pongetti, T.; Zhu, L. Water vapor near-UV absorption: Laboratory spectrum, field evidence, and atmospheric impacts. J. Geophys. Res. Atmos. 2019, 124, 14310–14324. [Google Scholar] [CrossRef]
- Van Laake, P.E.; Sanchez-Azofeifa, G.A. Simplified atmospheric radiative transfer modelling for estimating incident PAR using MODIS atmosphere products. Remote Sens. Environ. 2004, 91, 98–113. [Google Scholar] [CrossRef]
- Wie, J.; Moon, B.-K. Seasonal relationship between meteorological conditions and surface ozone in Korea based on an offline chemistry–climate model. Atmos. Pollut. Res. 2016, 7, 385–392. [Google Scholar] [CrossRef]
- Bernardo, N.; Watanabe, F.; Rodrigues, T.; Alcântara, E. Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Adv. Space Res. 2017, 59, 2335–2348. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Festa, D.; Casagli, N.; Casu, F.; Confuorto, P.; De Luca, C.; Del Soldato, M.; Lanari, R.; Manunta, M.; Manzo, M.; Raspini, F. Automated classification of A-DInSAR-based ground deformation by using random forest. GISci. Remote Sens. 2022, 59, 1749–1766. [Google Scholar] [CrossRef]
- Han, H.; Im, J.; Kim, M.; Sim, S.; Kim, J.; Kim, D.-j.; Kang, S.-H. Retrieval of melt ponds on Arctic multiyear sea ice in summer from TerraSAR-X dual-polarization data using machine learning approaches: A case study in the Chukchi Sea with mid-incidence angle data. Remote Sens. 2016, 8, 57. [Google Scholar] [CrossRef]
- Han, H.; Hong, S.-H.; Kim, H.-c.; Chae, T.-B.; Choi, H.-J. A study of the feasibility of using KOMPSAT-5 SAR data to map sea ice in the Chukchi Sea in late summer. Remote Sens. Lett. 2017, 8, 468–477. [Google Scholar] [CrossRef]
- Han, H.; Lee, S.; Kim, H.-C.; Kim, M. Retrieval of summer sea ice concentration in the Pacific Arctic Ocean from AMSR2 observations and numerical weather data using random forest regression. Remote Sens. 2021, 13, 2283. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.-C.; Im, J.; Lee, S.; Han, H. Object-based landfast sea ice detection over West Antarctica using time series ALOS PALSAR data. Remote Sens. Environ. 2020, 242, 111782. [Google Scholar] [CrossRef]
- Kollert, A.; Mayr, A.; Dullinger, S.; Hülber, K.; Moser, D.; Lhermitte, S.; Gascoin, S.; Rutzinger, M. Downscaling MODIS NDSI to Sentinel-2 fractional snow cover by random forest regression. Remote Sens. Lett. 2024, 15, 363–372. [Google Scholar] [CrossRef]
- Liang, T.; Sun, L.; Li, H. MODIS aerosol optical depth retrieval based on random forest approach. Remote Sens. Lett. 2020, 12, 179–189. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, W.; Peng, K.; Li, Z.; Rao, P. A framework for fine classification of urban wetlands based on random forest and knowledge rules: Taking the wetland cities of Haikou and Yinchuan as examples. GISci. Remote Sens. 2022, 59, 2144–2163. [Google Scholar] [CrossRef]
- RColorBrewer, S.; Liaw, M.A. Package ‘Randomforest’; University of California: Berkeley, CA, USA, 2018. [Google Scholar]
- Ihlen, V. Landsat 8 (L8) Data Users Handbook. Version 5.0. 2019. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 12 July 2024).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Lamare, M.; Danne, O.; Brockmann, C.; Dumont, M.; Picard, G.; Arnaud, L.; Favier, V.; Jourdain, B.; Le Meur, E.; et al. Retrieval of snow properties from the Sentinel-3 Ocean and Land Colour instrument. Remote Sens. 2019, 11, 2280. [Google Scholar] [CrossRef]
- Dastour, H.; Ghaderpour, E.; Hassan, Q.K. A combined approach for monitoring monthly surface water/ice dynamics of Lesser Slave Lake via earth observation data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 6402–6417. [Google Scholar] [CrossRef]
- Kneib, M.; Miles, E.S.; Jola, S.; Buri, P.; Herreid, S.; Bhattacharya, A.; Watson, C.S.; Bolch, T.; Quincey, D.; Pellicciotti, F. Mapping ice cliffs on debris-covered glaciers using multispectral satellite images. Remote Sens. Environ. 2021, 253, 112201. [Google Scholar] [CrossRef]
- Sojka, M.; Ptak, M.; Zhu, S. Use of Landsat satellite images in the assessment of the variability in ice cover on Polish lakes. Remote Sens. 2023, 15, 3030. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A.-L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Dabija, A.; Kluczek, M.; Zagajewski, B.; Raczko, E.; Kycko, M.; Al-Sulttani, A.H.; Tardà, A.; Pineda, L.; Corbera, J. Comparison of support vector machines and random forests for Corine Land Cover mapping. Remote Sens. 2021, 13, 777. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Wu, Y.; Duguay, C.R.; Xu, L. Assessment of machine learning classifiers for global lake ice cover mapping from MODIS TOA reflectance data. Remote Sens. Environ. 2021, 253, 112206. [Google Scholar] [CrossRef]
- Gross, G.; Helder, D.; Begeman, C.; Leigh, L.; Kaewmanee, M.; Shah, R. Initial cross-calibration of Landsat 8 and Landsat 9 using the simultaneous underfly event. Remote Sens. 2022, 14, 2418. [Google Scholar] [CrossRef]
- Kabir, S.; Pahlevan, N.; O’Shea, R.E.; Barnes, B.B. Leveraging Landsat-8/-9 underfly observations to evaluate consistency in reflectance products over aquatic environments. Remote Sens. Environ. 2023, 296, 113755. [Google Scholar] [CrossRef]
- Xu, H.; Ren, M.; Lin, M. Cross-comparison of Landsat-8 and Landsat-9 data: A three-level approach based on underfly images. GISci. Remote Sens. 2024, 61, 2318071. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Román, M.O.; Justice, C.; Paynter, I.; Boucher, P.B.; Devadiga, S.; Endsley, A.; Erb, A.; Friedl, M.; Gao, H.; Giglio, L.; et al. Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 land products. Remote Sens. Environ. 2024, 302, 113963. [Google Scholar] [CrossRef]
Usage | Date | Path/Row | Mean AOD | Mean WV Content (g/cm2) | Mean OZ Concentration (cm atm) | |
---|---|---|---|---|---|---|
Training | 22 January 2014 | 116/34 | 0.12 | 0.42 | 0.36 | |
31 January 2014 | 115/34 | 0.15 | 0.52 | 0.34 | ||
2 January 2015 | 115/34 | 0.08 | 0.35 | 0.39 | ||
9 January 2015 | 116/34 | 0.16 | 0.44 | 0.32 | ||
12 January 2016 | 116/34 | 0.07 | 0.29 | 0.37 | ||
6 February 2016 | 115/34 | 0.10 | 0.40 | 0.41 | ||
23 January 2017 | 115/34 | 0.12 | 0.25 | 0.39 | ||
16 December 2017 | 116/34 | 0.31 | 0.31 | 0.33 | ||
25 December 2017 | 115/34 | 0.06 | 0.32 | 0.34 | ||
1 January 2018 | 116/34 | 0.15 | 0.38 | 0.35 | ||
10 January 2018 | 115/34 | 0.09 | 0.29 | 0.39 | ||
2 February 2018 | 116/34 | 0.16 | 0.43 | 0.37 | ||
12 December 2018 | 115/34 | 0.05 | 0.29 | 0.31 | ||
28 December 2018 | 115/34 | 0.04 | 0.18 | 0.30 | ||
20 January 2019 | 116/34 | 0.11 | 0.37 | 0.32 | ||
29 January 2019 | 115/34 | 0.05 | 0.27 | 0.27 | ||
5 February 2019 | 116/34 | 0.25 | 0.52 | 0.32 | ||
2 January 2021 | 115/34 | 0.05 | 0.24 | 0.33 | ||
12 January 2022 | 116/34 | 0.08 | 0.30 | 0.36 | ||
6 February 2022 | 115/34 | 0.08 | 0.35 | 0.35 | ||
Test | 15 February 2017 | 116/34 | 0.31 | 0.52 | 0.32 | |
24 February 2017 | 115/34 | 0.08 | 0.45 | 0.35 | ||
28 January 2022 | 116/34 | 0.08 | 0.31 | 0.33 |
Scheme No. | Variable Combination | Optimal Hyperparameters | |
---|---|---|---|
ntree | mtry | ||
Scheme 1 | Multispectral TOA reflectance (Bands 1–7 and 9) | 2000 | 3 |
Scheme 2 | Multispectral TOA reflectance (Bands 1–7 and 9), NDWI, NDSI, NDBI | 900 | 5 |
Scheme 3 | Multispectral TOA reflectance (Bands 1–7 and 9), AOD, WV, OZ, surface elevation | 1700 | 1 |
Scheme 4 | NDWI, NDSI, NDBI, AOD, WV, OZ, surface elevation | 1600 | 1 |
Scheme 5 | Multispectral TOA reflectance (Bands 1–7 and 9), NDWI, NDSI, NDBI, AOD, WV, OZ, surface elevation | 900 | 2 |
Scheme 6 | Atmospherically corrected multispectral surface reflectance (Bands 1–7 and 9) | 300 | 3 |
Reference | Water | Snow-Free Ice | Snow-Covered Ice | Sum | User’s Accuracy (%) | |
---|---|---|---|---|---|---|
Classified as | ||||||
Water | 69,739 | 3163 | 187 | 73,089 | 95.42 | |
Snow-free ice | 2908 | 91,374 | 12,015 | 106,297 | 85.96 | |
Snow-covered ice | 192 | 15,083 | 63,666 | 78,941 | 80.65 | |
Sum | 72,839 | 109,620 | 75,868 | 258,327 | ||
Producer’s accuracy (%) | 95.74 | 83.36 | 83.92 | |||
Overall accuracy (%) | 87.01 | |||||
Kappa coefficient | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Kim, T.; Kim, S. River Ice Mapping from Landsat-8 OLI Top of Atmosphere Reflectance Data by Addressing Atmospheric Influences with Random Forest: A Case Study on the Han River in South Korea. Remote Sens. 2024, 16, 3187. https://doi.org/10.3390/rs16173187
Han H, Kim T, Kim S. River Ice Mapping from Landsat-8 OLI Top of Atmosphere Reflectance Data by Addressing Atmospheric Influences with Random Forest: A Case Study on the Han River in South Korea. Remote Sensing. 2024; 16(17):3187. https://doi.org/10.3390/rs16173187
Chicago/Turabian StyleHan, Hyangsun, Taewook Kim, and Seohyeon Kim. 2024. "River Ice Mapping from Landsat-8 OLI Top of Atmosphere Reflectance Data by Addressing Atmospheric Influences with Random Forest: A Case Study on the Han River in South Korea" Remote Sensing 16, no. 17: 3187. https://doi.org/10.3390/rs16173187
APA StyleHan, H., Kim, T., & Kim, S. (2024). River Ice Mapping from Landsat-8 OLI Top of Atmosphere Reflectance Data by Addressing Atmospheric Influences with Random Forest: A Case Study on the Han River in South Korea. Remote Sensing, 16(17), 3187. https://doi.org/10.3390/rs16173187