Stripe Noise Removal Algorithm for Infrared Remote Sensing Images Based on Adaptive Weighted Variable Order Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining the Noise Image through Multi-Level and Multi-Scale Wavelet Transform
2.1.1. Multi-Level and Multi-Scale Wavelet Decomposition
2.1.2. The Wavelet Reconstruction
2.1.3. The Selection of the Wavelet Decomposition Level
2.2. Adaptive Weighted Variable Order Model
2.2.1. Problem Description
2.2.2. Characteristics Description
2.2.3. Adaptive Selection of the Order of the Fractional Derivative
2.2.4. A Weight Operator That Adapts to the Gradient of the Image
2.2.5. The Stripe Noise Removal Model
2.3. ADMM Optimization
Algorithm 1: The proposed algorithm. |
|
2.4. Obtaining the Final Denoised Image through Multi-Level and Multi-Scale Inverse Wavelet Transform
3. Experiment and Analysis
3.1. Experimental Setup
3.1.1. Evaluation Indexes
3.1.2. Parameter Selection
3.2. Ablation Experiment
3.3. Results and Discussion
3.3.1. The Simulated Infrared Remote Sensing Image Data
3.3.2. The Actual Infrared Remote Sensing Image Data
4. Conclusions
4.1. Summary
4.2. Limitations of the Proposed Algorithm
4.3. Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; He, Z.; Yang, J.; Cao, Y.; Yang, M.Y. Spatially adaptive column fixed-pattern noise correction in infrared imaging system using 1D horizontal differential statistics. IEEE Photonics J. 2017, 9, 7803513. [Google Scholar] [CrossRef]
- Liu, C.; Sui, X.; Gu, G.; Chen, Q. Shutterless non-uniformity correction for the long-term stability of an uncooled long-wave infrared camera. Meas. Sci. Technol. 2018, 29, 025402. [Google Scholar] [CrossRef]
- Chen, B.; Feng, X.; Wu, R.; Guo, Q.; Wang, X.; Ge, S. Adaptive wavelet filter with edge compensation for remote sensing image denoising. IEEE Access 2019, 7, 91966–91979. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, M.Y.; Tisse, C.L. Effective strip noise removal for low-textured infrared images based on 1-D guided filtering. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 2176–2188. [Google Scholar] [CrossRef]
- Li, Z.; Shen, T.; Lou, S. Scene-based nonuniformity correction based on bilateral filter with reduced ghosting. Infrared Phys. Technol. 2016, 77, 360–365. [Google Scholar] [CrossRef]
- Shao, Y.; Sun, Y.; Zhao, M.; Chang, Y.; Zheng, Z.; Tian, C.; Zhang, Y. Infrared image stripe noise removing using least squares and gradient domain guided filtering. Infrared Phys. Technol. 2021, 119, 103968. [Google Scholar] [CrossRef]
- Geng, L.; Chen, Q.; Shi, F.; Wang, C.; Yu, X. An improvement for scene-based nonuniformity correction of infrared image sequences. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications; SPIE: Bellingham, WA, USA, 2013; Volume 8907, pp. 669–677. [Google Scholar]
- Gao, H.t.; Liu, W.; He, H.y.; Zhang, B.x.; Jiang, C. De-striping for tdiccd remote sensing image based on statistical features of histogram. Int. Arch. Photogramm. Remote Sensing And Spat. Inf. Sci. 2016, 41, 311–316. [Google Scholar] [CrossRef]
- Yan, J.; Kang, Y.; Ni, Y.; Zhang, Y.; Fan, J.; Hu, X. Non-uniformity correction method of remote sensing images based on adaptive moving window moment matching. J. Imaging Sci. Technol. 2022, 66, 50502. [Google Scholar] [CrossRef]
- Guan, J.; Lai, R.; Xiong, A. Wavelet deep neural network for stripe noise removal. IEEE Access 2019, 7, 44544–44554. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, Z.; Wang, Z.; Li, X.; Xu, B.; Zhang, Y.; Fang, H. D3CNNs: Dual denoiser driven convolutional neural networks for mixed noise removal in remotely sensed images. Remote Sens. 2023, 15, 443. [Google Scholar] [CrossRef]
- Islam, M.R.; Xu, C.; Han, Y.; Ashfaq, R.A.R. A novel weighted variational model for image denoising. Int. J. Pattern Recognit. Artif. 2017, 31, 1754022. [Google Scholar] [CrossRef]
- Boutemedjet, A.; Deng, C.; Zhao, B. Edge-aware unidirectional total variation model for stripe non-uniformity correction. Sensors 2018, 18, 1164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shao, Y.; Shen, J.; Lu, Y.; Zheng, Z.; Sidib, Y.; Yu, B. Infrared image impulse noise suppression using tensor robust principal component analysis and truncated total variation. Appl. Opt. 2021, 60, 4916–4929. [Google Scholar] [CrossRef] [PubMed]
- Farsiu, S.; Robinson, M.D.; Elad, M.; Milanfar, P. Fast and robust multiframe super resolution. IEEE Trans. Image Process. 2004, 13, 1327–1344. [Google Scholar] [CrossRef]
- Bouali, M.; Ladjal, S. Toward optimal destriping of MODIS data using a unidirectional variational model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2924–2935. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Y.; Yan, X.; Gu, H. Remote sensing images stripe noise removal by double sparse regulation and region separation. Remote Sens. 2018, 10, 998. [Google Scholar] [CrossRef]
- Song, Q.; Huang, Z.; Ni, H.; Bai, K.; Li, Z. Remote sensing images destriping with an enhanced low-rank prior and total variation regulation. Signal, Image Video Process. 2022, 16, 1895–1903. [Google Scholar] [CrossRef]
- Papafitsoros, K.; Schönlieb, C.B. A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 2014, 48, 308–338. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhao, X.L.; Ma, T.H.; Chen, Y.; Huang, T.Z.; Ding, M. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 2020, 363, 124–144. [Google Scholar] [CrossRef]
- Xie, W.S.; Yang, Y.F.; Zhou, B. An ADMM algorithm for second-order TV-based MR image reconstruction. Numerical Algorithms 2014, 67, 827–843. [Google Scholar] [CrossRef]
- Xu, J.; Wang, N.; Xu, Z.; Xu, K. Weighted lp norm sparse error constraint based ADMM for image denoising. Math. Probl. Eng. 2019, 2019, 1262171. [Google Scholar] [CrossRef]
- Wang, E.; Jiang, P.; Hou, X.; Zhu, Y.; Peng, L. Infrared stripe correction algorithm based on wavelet analysis and gradient equalization. Appl. Sci. 2019, 9, 1993. [Google Scholar] [CrossRef]
- Wang, E.; Jiang, P.; Li, X.; Cao, H. Infrared stripe correction algorithm based on wavelet decomposition and total variation-guided filtering. J. Eur. Opt.-Soc.-Rapid Publ. 2020, 16, 1. [Google Scholar] [CrossRef]
- Liu, J.; Xu, M.; Xu, X.; Huang, Y. Nonreference image quality evaluation algorithm based on wavelet convolutional neural network and information entropy. Entropy 2019, 21, 1070. [Google Scholar] [CrossRef]
- Zhou, G.; Fang, H.; Yan, L.; Zhang, T.; Hu, J. Removal of stripe noise with spatially adaptive unidirectional total variation. Optik 2014, 125, 2756–2762. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Shen, H.; Yuan, Q.; Jiao, Y.; Zhang, L. Stripe noise separation and removal in remote sensing images by consideration of the global sparsity and local variational properties. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3049–3060. [Google Scholar] [CrossRef]
- Kłosowski, M.; Sun, Y. Fixed pattern noise reduction and linearity improvement in time-mode CMOS image sensors. Sensors 2020, 20, 5921. [Google Scholar] [CrossRef]
- Guo, D.; Tu, Z.; Wang, J.; Xiao, M.; Du, X.; Qu, X. Salt and pepper noise removal with multi-class dictionary learning and l0 norm regularizations. Algorithms 2018, 12, 7. [Google Scholar] [CrossRef]
- Gu, Y.; Jin, J.; Mei, S. l_{0} norm constraint LMS algorithm for sparse system identification. IEEE Signal Process. Lett. 2009, 16, 774–777. [Google Scholar]
- Kim, N.; Han, S.S.; Jeong, C.S. ADOM: ADMM-based optimization model for stripe noise removal in remote sensing image. IEEE Access 2023, 11, 106587–106606. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, M.; Yan, L.; Zhao, X.L.; Li, Y.; Zhong, S. Toward universal stripe removal via wavelet-based deep convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2880–2897. [Google Scholar] [CrossRef]
- Wu, X.; Qu, H.; Zheng, L.; Gao, T.; Zhang, Z. A remote sensing image destriping model based on low-rank and directional sparse constraint. Remote Sens. 2021, 13, 5126. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, L. A MAP-based algorithm for destriping and inpainting of remotely sensed images. IEEE Trans. Geosci. Remote Sens. 2008, 47, 1492–1502. [Google Scholar] [CrossRef]
- Wang, J.L.; Huang, T.Z.; Ma, T.H.; Zhao, X.L.; Chen, Y. A sheared low-rank model for oblique stripe removal. Appl. Math. Comput. 2019, 360, 167–180. [Google Scholar] [CrossRef]
- Zeng, Q.; Qin, H.; Yan, X.; Yang, T. Fourier domain anomaly detection and spectral fusion for stripe noise removal of TIR imagery. Remote Sens. 2020, 12, 3714. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, R.; Wang, Y. A method for the destriping of an orbita hyperspectral image with adaptive moment matching and unidirectional total variation. Remote Sens. 2019, 11, 2098. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.Z.; Deng, L.J.; Zhao, X.L.; Wang, M. Group sparsity based regularization model for remote sensing image stripe noise removal. Neurocomputing 2017, 267, 95–106. [Google Scholar] [CrossRef]
- Wang, J.L.; Huang, T.Z.; Zhao, X.L.; Huang, J.; Ma, T.H.; Zheng, Y.B. Reweighted block sparsity regularization for remote sensing images destriping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4951–4963. [Google Scholar] [CrossRef]
Image | Index | The Model without Weight Operator | The Model with Weight Operator |
---|---|---|---|
Sea | PSNR | 47.2728 | 54.0076 |
SSIM | 0.9988 | 0.9995 |
Image | Mountain | City | Desert |
---|---|---|---|
Method | D = 0.6, I = (−60 60) | D = 0.6, I = (−60 60) | D = 0.6, I = (−60 60) |
1D-GF | 29.8048 | 29.5313 | 29.1719 |
ADOM | 46.1819 | 43.1334 | 44.5839 |
TSWEU | 35.0983 | 34.1862 | 36.8261 |
LRDS | 40.1324 | 39.6324 | 40.5343 |
OURS | 48.0334 | 44.2528 | 46.2962 |
Image | Mountain | City | Desert |
---|---|---|---|
Method | D = 0.6, I = (−60 60) | D = 0.6, I = (−60 60) | D = 0.6, I = (−60 60) |
1D-GF | 0.9346 | 0.9537 | 0.9367 |
ADOM | 0.9916 | 0.9942 | 0.9963 |
TSWEU | 0.9732 | 0.9782 | 0.9884 |
LRDS | 0.9965 | 0.9961 | 0.9967 |
OURS | 0.9983 | 0.9981 | 0.9987 |
Image | Mountain | Building | Cloud | City | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | NR | MRD(%) | ID | NR | MRD(%) | ID | NR | MRD(%) | ID | NR | MRD(%) | ID |
1D-GF | 3.3898 | 3.961 | 0.9542 | 3.0775 | 3.759 | 0.9542 | 3.0238 | 3.861 | 0.9456 | 3.7702 | 3.962 | 0.9460 |
ADOM | 4.3845 | 2.753 | 0.9676 | 4.3512 | 3.012 | 0.9660 | 3.2238 | 3.434 | 0.9540 | 4.1397 | 2.807 | 0.9536 |
TSWEU | 3.9749 | 3.148 | 0.9596 | 3.5770 | 3.657 | 0.9333 | 3.1478 | 3.960 | 0.9421 | 3.8474 | 3.462 | 0.9373 |
LRDS | 3.8007 | 3.262 | 0.9643 | 3.9062 | 3.290 | 0.9555 | 3.2045 | 3.513 | 0.9476 | 4.0051 | 3.210 | 0.9566 |
OURS | 4.6026 | 2.543 | 0.9692 | 4.6485 | 3.018 | 0.9794 | 3.3198 | 3.415 | 0.9510 | 4.2613 | 2.544 | 0.9609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Gao, M.; Yuan, H.; Li, M.; Nie, T. Stripe Noise Removal Algorithm for Infrared Remote Sensing Images Based on Adaptive Weighted Variable Order Model. Remote Sens. 2024, 16, 3189. https://doi.org/10.3390/rs16173189
Huang L, Gao M, Yuan H, Li M, Nie T. Stripe Noise Removal Algorithm for Infrared Remote Sensing Images Based on Adaptive Weighted Variable Order Model. Remote Sensing. 2024; 16(17):3189. https://doi.org/10.3390/rs16173189
Chicago/Turabian StyleHuang, Liang, Mingyang Gao, Hangfei Yuan, Mingxuan Li, and Ting Nie. 2024. "Stripe Noise Removal Algorithm for Infrared Remote Sensing Images Based on Adaptive Weighted Variable Order Model" Remote Sensing 16, no. 17: 3189. https://doi.org/10.3390/rs16173189
APA StyleHuang, L., Gao, M., Yuan, H., Li, M., & Nie, T. (2024). Stripe Noise Removal Algorithm for Infrared Remote Sensing Images Based on Adaptive Weighted Variable Order Model. Remote Sensing, 16(17), 3189. https://doi.org/10.3390/rs16173189