Assessing Habitat Suitability: The Case of Black Rhino in the Ngorongoro Conservation Area
Abstract
:1. Introduction
2. Study Area
3. Datasets and Methods
3.1. Datasets
3.1.1. Sentinel-2
3.1.2. Planet Scope
3.1.3. Human Activity
3.1.4. Land Cover Layer
3.1.5. Rhino Presence Data
3.2. Methods
3.2.1. Recursive Feature Elimination
3.2.2. Fuzzy Analysis
4. Results
4.1. Habitat Suitability Using Field Data
4.2. Habitat Suitability without Field Data
5. Discussion
5.1. Seasonal Differences
5.2. Anthropogenic Factors
5.3. Habitat Suitability with and without Field Data
5.4. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boyce, M.S.; Johnson, C.J.; Merrill, E.H.; Nielsen, S.E.; Solberg, E.J.; van Moorter, B. REVIEW: Can Habitat Selection Predict Abundance? J. Anim. Ecol. 2016, 85, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Emslie, R. Diceros Bicornis. The IUCN Red List of Threatened Species 2020: E.T6557A152728945. Available online: https://www.iucnredlist.org/species/6557/152728945(accessed on 2 September 2021).
- Freeman, E.W.; Meyer, J.M.; Bird, J.; Adendorff, J.; Schulte, B.A.; Santymire, R.M. Impacts of Environmental Pressures on the Reproductive Physiology of Subpopulations of Black Rhinoceros (Diceros Bicornis Bicornis) in Addo Elephant National Park, South Africa. Conserv. Physiol. 2014, 2, cot034. [Google Scholar] [CrossRef] [PubMed]
- Tatman, S.C.; Stevens-Wood, B.; Smith, V.B.T. Ranging Behaviour and Habitat Usage in Black Rhinoceros, Diceros Bicornis, in a Kenyan Sanctuary. Afr. J. Ecol. 2000, 38, 163–172. [Google Scholar] [CrossRef]
- Kohi, E.M.; Lobora, A.L. Conservation and Management Plan for Black Rhino in Tanzania 2019–2023, 4th ed.; TAWIRI: Arusha, Tanzania, 2019. [Google Scholar]
- Knight, M. African Rhino Specialist Group Report/Rapport Du Groupe de Spécialistes Du Rhinocéros d’Afrique. Pachyderm 2019, 60, 14–39. [Google Scholar]
- Emslie, R.H.; Adcock, K. Feeding Ecology of the Black Rhinoceros. In Proceedings of the a Symposium on Rhinos as Game Ranch Animal, Wildlife Group of the South African Veterinary Association, Onderstepoort, South Africa, 9–10 September 1994; pp. 65–81. [Google Scholar]
- Goddard, J. Home Range, Behaviour and Recruitment Rates of Two Black Rhinoceros Populations. Afr. J. Ecol. 1967, 5, 133–150. [Google Scholar] [CrossRef]
- Buk, K.G.; Knight, M.H. Seasonal Diet Preferences of Black Rhinoceros in Three Arid South African National Parks. Afr. J. Ecol. 2010, 48, 1064–1075. [Google Scholar] [CrossRef]
- Ganqa, N.M.; Scogings, P.F.; Raats, J.G. Diet Selection and Forage Quality Factors Affecting Woody Plant Selection by Black Rhinoceros in the Great Fish River Reserve, South Africa. S. Afr. J. Wildl. Res. 2005, 35, 77–83. [Google Scholar]
- Leader-Williams, N. Black Rhino in South Luangwa National Park: Their Distribution and Future Protection. Oryx 1985, 19, 27–33. [Google Scholar] [CrossRef]
- Chanyandura, A.; Muposhi, V.K.; Gandiwa, E.; Muboko, N. An Analysis of Threats, Strategies, and Opportunities for African Rhinoceros Conservation. Ecol. Evol. 2021, 11, 5892–5910. [Google Scholar] [CrossRef]
- Leader-Williams, N. Regulation and Protection: Successes and Failures in Rhinoceros Conservation. In The Trade in Wildlife; Routledge: London, UK, 2002; ISBN 978-1-84977-393-5. [Google Scholar]
- Landman, M.; Schoeman, D.S.; Kerley, G.I.H. Shift in Black Rhinoceros Diet in the Presence of Elephant: Evidence for Competition? PLoS ONE 2013, 8, 8. [Google Scholar] [CrossRef]
- Berger, J. Science, Conservation and Black Rhinos. J. Mammal. 1994, 75, 298–308. [Google Scholar] [CrossRef]
- Okita-Ouma, B. Population Performance of Black Rhinoceros (Diceros Bicornis Michaeli) in Six Kenyan Rhino Sanctuaries. Master’s Thesis, University of Kent, Canterbury, UK, 2004. [Google Scholar]
- Okita-Ouma, B.; Pettifor, R.; Clauss, M.; Prins, H.H.T. Effect of High Population Density of Eastern Black Rhinoceros, a Mega-Browser, on the Quality of Its Diet. Afr. J. Ecol. 2021, 59, 826–841. [Google Scholar] [CrossRef]
- Emslie, R.; Brooks, M. African Rhino. Status Survey and Conservation Action Plan; IUCN: Gland, Switzerland; Cambridge, UK, 1999; pp. 1–102. [Google Scholar]
- Buk, K.G.; Knight, M.H. Habitat Suitability Model for Black Rhinoceros in Augrabies Falls National Park, South Africa. S. Afr. J. Wildl. Res. 2012, 42, 82–93. [Google Scholar] [CrossRef]
- Lush, L.; Mulama, M.; Jones, M. Predicting the Habitat Usage of African Black Rhinoceros (Diceros Bicornis) Using Random Forest Models. Afr. J. Ecol. 2015, 53, 346–354. [Google Scholar] [CrossRef]
- Cerling, T.E.; Andanje, S.A.; Gakuya, F.; Kariuki, J.M.; Kariuki, L.; Kingoo, J.W.; Khayale, C.; Lekolool, I.; Macharia, A.N.; Anderson, C.R.; et al. Stable Isotope Ecology of Black Rhinos (Diceros Bicornis) in Kenya. Oecologia 2018, 187, 1095–1105. [Google Scholar] [CrossRef]
- Muntifering, J.R.; Linklater, W.L.; Naidoo, R.; Uri-Khob, S.; du Preez, P.; Beytell, P.; Jacobs, S.; Knight, A.T. Black Rhinoceros Avoidance of Tourist Infrastructure and Activity: Planning and Managing for Coexistence. Oryx 2021, 55, 150–159. [Google Scholar] [CrossRef]
- Harris, W.; de Kort, S.; Bettridge, C.; Borges, J.; Cain, B.; Hamadi; Dulle, I.; Fyumagwa, R.; Gadiye, D.; Jones, M.; et al. A Learning Network Approach to Resolve Conservation Challenges in the Ngorongoro Conservation Area. Afr. J. Ecol. 2020, 59, 326–331. [Google Scholar] [CrossRef]
- Lyimo, E.; Kohi, E.; Maliti, H.; Kimaro, J.; Mwita, M.; Kija, H. Population Trends in the Ngorongoro Conservation Area since 1995 to 2018; Tanzania Wildlife Research Institute: Arusha, Tanzania, 2020. [Google Scholar]
- Manzano, P.; Yamat, L. Livestock Sector in the Ngorongoro District: Analysis, Shortcomings and Options for Improvement; Famine Early Warning Systems Network: Washington, DC, USA, 2018. [Google Scholar]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Araújo, M.B.; New, M. Ensemble Forecasting of Species Distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting Species Distributions for Conservation Decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting Species Distribution: Offering More than Simple Habitat Models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Guisan, A.; Zimmermann, N.E. Predictive Habitat Distribution Models in Ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The Importance of Correcting for Sampling Bias in MaxEnt Species Distribution Models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking Receiver Operating Characteristic Analysis Applications in Ecological Niche Modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Pratzer, M.; Nill, L.; Kuemmerle, T.; Zurell, D.; Fandos, G. Large Carnivore Range Expansion in Iberia in Relation to Different Scenarios of Permeability of Human-Dominated Landscapes. Divers. Distrib. 2023, 29, 75–88. [Google Scholar] [CrossRef]
- Heinrichs, J.A.; Bender, D.J.; Gummer, D.L.; Schumaker, N.H. Assessing Critical Habitat: Evaluating the Relative Contribution of Habitats to Population Persistence. Biol. Conserv. 2010, 143, 2229–2237. [Google Scholar] [CrossRef]
- Brett, R.A. Conservation Strategy and Management Plan for the Black Rhinoceros (Diceros Bicornis) in Kenya; Kenya Wildlife Service: Nairobi, Kenya, 1993. [Google Scholar]
- Mills, A.; Morkel, P.; Runyoro, V.; Amiyo, A.; Muruthi, P.; Borner, M.; Thirgood, S. (PDF) Management of Black Rhino in the Ngorongoro Crater; Ngorongoro Conservation Area Authority, African Wildlife Foundation, Frankfurt Zoological Society: Arusha, Tanzania, 2003. [Google Scholar]
- Muya, S.M.; Oguge, N.O. Effects of Browse Availability and Quality on Black Rhino (Diceros Bicornis Michaeli) Diet in Nairobi National Park, Kenya. Afr. J. Ecol. 2000, 38, 62–71. [Google Scholar] [CrossRef]
- Amiyo, T.A. Ngorongoro Crater Rangelands: Condition, Management and Monitoring. Master’ s Thesis, University of Kwazulu-Natal, Durban, South Africa, 2006. [Google Scholar]
- Hunter, F.D.L.; Mitchard, E.T.A.; Tyrrell, P.; Russell, S. Inter-Seasonal Time Series Imagery Enhances Classification Accuracy of Grazing Resource and Land Degradation Maps in a Savanna Ecosystem. Remote Sens. 2020, 12, 198. [Google Scholar] [CrossRef]
- Boone, R.B.; Galvin, K.A.; Thornton, P.K.; Swift, D.M.; Coughenour, M.B. Cultivation and Conservation in Ngorongoro Conservation Area, Tanzania. Hum. Ecol. 2006, 34, 809–828. [Google Scholar] [CrossRef]
- Borges, J.; Higginbottom, T.P.; Symeonakis, E.; Jones, M. Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons. Remote Sens. 2020, 12, 3862. [Google Scholar] [CrossRef]
- Herlocker, D.J.; Dirschl, H.J. Vegetation of the Ngorongoro Conservation Area, Tanzania; Canadian Wildlife Service: Ottawa, ON, Canada, 1972. [Google Scholar]
- Borges, J.; Higginbottom, T.P.; Cain, B.; Gadiye, D.E.; Kisingo, A.; Jones, M.; Symeonakis, E. Landsat Time Series Reveal Forest Loss and Woody Encroachment in the Ngorongoro Conservation Area, Tanzania. Remote Sens. Ecol. Conserv. 2022, 8, 808–826. [Google Scholar] [CrossRef]
- Swanson, L.A. Ngorongoro Conservation Area: Spring of Life; Master of Environmental Studies Capstone Projects; University of Pennsylvania: Philadelphia, PA, USA, 2007. [Google Scholar]
- Masao, C.A.; Makoba, R.; Sosovele, H. Will Ngorongoro Conservation Area Remain a World Heritage Site amidst Increasing Human Footprint? Int. J. Biodivers. Conserv. 2015, 7, 394–407. [Google Scholar] [CrossRef]
- Niboye, E.P. Vegetation Cover Changes in Ngorongoro Conservation Area from 1975 to 2000: The Importance of Remote Sensing Images. Open Geogr. J. 2010, 3, 15–27. [Google Scholar] [CrossRef]
- Scogings, P.F.; Johansson, T.; Hjalten, J.; Kruger, J. Responses of Woody Vegetation to Exclusion of Large Herbivores in Semi-Arid Savannas. Austral Ecol. 2012, 37, 56–66. [Google Scholar] [CrossRef]
- Wigley, B.J.; Fritz, H.; Coetsee, C.; Bond, W.J. Herbivores Shape Woody Plant Communities in the Kruger National Park: Lessons from Three Long-Term Exclosures. Koedoe 2014, 56, a1165. [Google Scholar] [CrossRef]
- Anderson, M.; Ngoti, P.M.; Nzunda, M.L.; Griffith, D.M.; Speed, J.D.M.; Fossøy, F.; Røskaft, E.; Graae, B.J. The Burning Question: Does Fire Affect Habitat Selection and Forage Preference of the Black Rhinoceros Diceros Bicornis in East African Savannahs? Oryx 2020, 54, 234–243. [Google Scholar] [CrossRef]
- Ludwig, A.; Meyer, H.; Nauss, T. Automatic Classification of Google Earth Images for a Larger Scale Monitoring of Bush Encroachment in South Africa. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 89–94. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Demarchi, L.; Kania, A.; Ciężkowski, W.; Piórkowski, H.; Oświecimska-Piasko, Z.; Chormański, J. Recursive Feature Elimination and Random Forest Classification of Natura 2000 Grasslands in Lowland River Valleys of Poland Based on Airborne Hyperspectral and LiDAR Data Fusion. Remote Sens. 2020, 12, 1842. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification Using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Gadiye, D.; Eshiamwatta, G.W.; OdadiI, W.O. Spatial-Temporal Distribution of the Black Rhino Population in the Ngorongoro Crater, Tanzania. Int. J. Biol. Res. 2016, 4, 232–236. [Google Scholar] [CrossRef]
- Goddard, J. Food Preferences of Two Black Rhinoceros Populations. East Afr. Wildl. J. 1968, 6, 1–18. [Google Scholar] [CrossRef]
- Adriaenssens, V.; Baets, B.D.; Goethals, P.L.M.; Pauw, N.D. Fuzzy Rule-Based Models for Decision Support in Ecosystem Management. Sci. Total Environ. 2004, 319, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gwynn, V.; Symeonakis, E. Rule-Based Habitat Suitability Modelling for the Reintroduction of the Grey Wolf (Canis Lupus) in Scotland. PLoS ONE 2022, 17, e0265293. [Google Scholar] [CrossRef]
- Pestka, Z.; Zbyryt, A.; Menderski, S.; Jakubas, D. Habitat Suitability Mapping of White Stork Ciconia Ciconia in One of Its Key European Breeding Areas. Ecol. Indic. 2023, 151, 110278. [Google Scholar] [CrossRef]
- Zabihi, K.; Paige, G.B.; Hild, A.L.; Miller, S.N.; Wuenschel, A.; Holloran, M.J. A Fuzzy Logic Approach to Analyse the Suitability of Nesting Habitat for Greater Sage-Grouse in Western Wyoming. J. Spat. Sci. 2017, 62, 215–234. [Google Scholar] [CrossRef]
- Qiu, F.; Chastain, B.; Zhou, Y.; Zhang, C.; Sridharan, H. Modeling Land Suitability/Capability Using Fuzzy Evaluation. GeoJournal 2014, 79, 167–182. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Gopal, S. Fuzzy Set Theory and Thematic Maps: Accuracy Assessment and Area Estimation. Int. J. Geogr. Inf. Sci. 2000, 14, 153–172. [Google Scholar] [CrossRef]
- Frantz, D. FORCELandsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sens. 2019, 11, 1124. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground-Based Multispectral Data. In Proceedings of the 5th International Conference on Precision Agriculture and Other Resource Management, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-Band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33, L1140. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977; 43, 1541–1552. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Symeonakis, E.; Veron, S.; Baldi, G.; Banchero, S.; de Abelleyra, D.; Castellanos, G. Savannah Land Cover Characterisation: A Quality Assessment Using Sentinel 1/2, Landsat, PALSAR and PlanetScope. In Proceedings of the Living Planet Symposium, Milan, Italy, 7 January 2019. [Google Scholar]
- Gadiye, D. Population Dynamics and Feeding Ecology of the Black Rhino (Diceros Bicornis) in Ngorongoro Conservation Area, Tanzania. Master’s Thesis, Egerton University, Nakuru, Kenya, 2016. [Google Scholar]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample Selection Bias and Presence-Only Distribution Models: Implications for Background and Pseudo-Absence Data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Li, X.J.; Cheng, X.W.; Chen, W.T.; Chen, G.; Liu, S.W. Identification of Forested Landslides Using LiDar Data, Object-Based Image Analysis, and Machine Learning Algorithms. Remote Sens. 2015, 7, 9705–9726. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Symeonakis, E.; Higginbottom, T.P.; Petroulaki, K.; Rabe, A. Optimisation of Savannah Land Cover Characterisation with Optical and SAR Data. Remote Sens. 2018, 10, 499. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E.; Meyer, H.; van der Linden, S. Mapping Fractional Woody Cover in Semi-Arid Savannahs Using Multi-Seasonal Composites from Landsat Data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 88–102. [Google Scholar] [CrossRef]
- Haro-Carrion, X.; Southworth, J. Understanding Land Cover Change in a Fragmented Forest Landscape in a Biodiversity Hotspot of Coastal Ecuador. Remote Sens. 2018, 10, 1980. [Google Scholar] [CrossRef]
- Makaure, J.; Makaure, C. Biological Sciences Department, Midlands State University Dry Season Browse Preference for the Black Rhinoceros (Diceros Bicornis): The Case of the Midlands Black Rhino Conservancy (MBRC), Zimbabwe. Greener J. Biol. Sci. 2013, 3, 031–047. [Google Scholar] [CrossRef]
- Oloo, T.W.; Brett, R.; Young, T.P. Seasonal Variation in Feeding Ecology of Black Rhinoceros (Diceros Bicornis) in Laikipia, Kenya. Afr. J. Ecol. 1994, 32, 142–157. [Google Scholar] [CrossRef]
- Baltensperger, A.P.; Joly, K. Using Seasonal Landscape Models to Predict Space Use and Migratory Patterns of an Arctic Ungulate. Mov. Ecol. 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Van Moorter, B.; Engen, S.; Fryxell, J.M.; Panzacchi, M.; Nilsen, E.B.; Mysterud, A. Consequences of Barriers and Changing Seasonality on Population Dynamics and Harvest of Migratory Ungulates. Theor. Ecol. 2020, 13, 595–605. [Google Scholar] [CrossRef]
- Odendaal-Holmes, K.; Marshal, J.P.; Parrini, F. Disturbance and Habitat Factors in a Small Reserve: Space Use by Establishing Black Rhinoceros (Diceros Bicornis). S. Afr. J. Wildl. Res. 2014, 44, 148–160. [Google Scholar] [CrossRef]
- Hearn, M.E.; Loutit, B.D.; Uri-Khob, S. The Black Rhinoceros of North-Western Namibia (Diceros Bicornis Bicornis): The Role of Density-Dependence and Its Management Implications. J.-Namib. Sci. Soc. 2000, 48, 11–39. [Google Scholar]
- Mukinya, J.G. Feeding and Drinking Habits of the Black Rhinoceros in Masai Mara Game Reserve. Afr. J. Ecol. 1977, 15, 125–138. [Google Scholar] [CrossRef]
- Beytell, P.C. Reciprocal Impacts of Black Rhino and Community-Based Ecotourism in North-West Namibia. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2010. [Google Scholar]
- Eisfelder, C.; Kuenzer, C.; Dech, S. Derivation of Biomass Information for Semi-Arid Areas Using Remote-Sensing Data. Int. J. Remote Sens. 2012, 33, 2937–2984. [Google Scholar] [CrossRef]
- Yang, J.; Prince, S.D. Remote Sensing of Savanna Vegetation Changes in Eastern Zambia 1972–1989. Int. J. Remote Sens. 2000, 21, 301–322. [Google Scholar] [CrossRef]
- Adole, T.; Dash, J.; Atkinson, P.M. A Systematic Review of Vegetation Phenology in Africa. Ecol. Inform. 2016, 34, 117–128. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Klingel, H.; Klingel, U. The Rhinoceroses of Ngorongoro Crater. Oryx 1966, 8, 302–306. [Google Scholar]
- Kotze, D.C.; Zacharias, P.J.K. Utilization of Woody Browse and Habitat by the Black Rhino (Diceros Bicornis) in Western Itala Game Reserve. Afr. J. Range Forage Sci. 1993, 10, 36–40. [Google Scholar] [CrossRef]
- Leader-Williams, N. Conservation—Deserts Rhinos Dehorned. Nature 1989, 340, 599–600. [Google Scholar] [CrossRef]
- Cord, A.; Rödder, D. Inclusion of Habitat Availability in Species Distribution Models through Multi-Temporal Remote-Sensing Data? Ecol. Appl. 2011, 21, 3285–3298. [Google Scholar] [CrossRef]
- Schwager, P.; Berg, C. Remote Sensing Variables Improve Species Distribution Models for Alpine Plant Species. Basic Appl. Ecol. 2021, 54, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Sheng, Y.; Zhou, Y. Remote Sensing Applications in Monitoring of Protected Areas. Remote Sens. 2020, 12, 1370. [Google Scholar] [CrossRef]
- Boyle, S.A.; Kennedy, C.M.; Torres, J.; Colman, K.; Pérez-Estigarribia, P.E.; de la Sancha, N.U. High-Resolution Satellite Imagery Is an Important yet Underutilized Resource in Conservation Biology. PLoS ONE 2014, 9, e86908. [Google Scholar] [CrossRef]
- Pennino, M.G.; Vilela, R.; Bellido, J.M. Effects of Environmental Data Temporal Resolution on the Performance of Species Distribution Models. J. Mar. Syst. 2019, 189, 78–86. [Google Scholar] [CrossRef]
Name | Equation and Derivation | Reference |
---|---|---|
Normalised Difference Vegetation Index (NDVI) | (NIR − R)/(NIR + R) | [64] |
Green Normalised Difference Vegetation Index (GNDVI) | (NIR − G)/(NIR + G) | [65] |
Normalised Difference Red Edge (NDRE) | (NIR − RE1)/(NIR + RE1) | [69] |
Modified Normalised Difference Water Index (MNDWI) | (G − SWIR1)/G + SWIR1) | [67] |
Normalised Difference Water Index (NDWI) | (NIR − SWIR1)/(NIR + SWIR1) | [68] |
Inverted Red Chlorophyll Index (IreCI) | (NIR − R)/(RE1/RE2) | [70] |
Pigment Specific Simple Ratio (PSSRa) | NIR/R | [71] |
Normalised Difference Index 4 and 5 (NDI45) | (RE1 − R)/(RE1 + R) | [72] |
Chlorophyll Index Red-Edge (CIRE) | ((NIR/RE1) − 1.0) | [73] |
Sentinel-2 Red-Edge Position (S2REP) | 705 + 35 × ((((NIR + R)/2) − RE1)/(RE2 − RE1)) | [70] |
MERIS Terrestrial Chlorophyll Index (MTCI) | (NIR − RE1)/(RE1 − R) | [74] |
Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) | [(RE1 − R) − 0.2 × (RE1 -G)] × (RE1/R) | [75] |
Modified Chlorophyll Absorption in Reflectance Index (MCARI) | 2.5 × ((NIR − R)/((NIR + 6× R − 7.5 × B) + 1)) | [76] |
Enhanced Vegetation Index (EVI) | (2.5 × ((NIR − R)/((NIR + (2.4 × R) + 1)) | [66] |
Land Cover Type | Score | Biological Relevance for Black Rhino in NCA |
---|---|---|
Bareland | 0.0 | No browse available |
Bushland | 1.0 | High browse available, shelter, water sources |
Cropland | 0.0 | No browse available, human–wildlife conflicts |
Forest | 0.4 | Moderate browse available, shelter, water sources |
Grassland | 0.0 | Little browse and no shelter |
Montane heath | 0.0 | Little browse available |
Shrubland | 1.0 | High browse available, shelter, water sources |
Water | 0.0 | Usually salt water, no browse available |
Woodland | 0.6 | Browse available, shelter, water sources |
Wet Season | Dry Season | |
---|---|---|
Roads | Sentinel-2 REDEDGE3 | |
MSAVI2 | Sentinel-2 REDEDGE1 | |
Settlements | Sentinel-2 BROADNIR | |
NDVI | Sentinel-2 Red | |
NDWI | Sentinel-2 Green | |
Planet Scope NIR | Planet Scope NIR | |
NDRE | Settlements | |
Livestock | Sentinel-2 SWIR1 | |
Planet Scope Blue | Sentinel-2 Blue | |
Planet Scope Red | Planet Scope Blue | |
Sentinel-2 REDEDGE1 | CRE | |
PSSRa | ||
GNDVI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, J.; Symeonakis, E.; Higginbottom, T.P.; Jones, M.; Cain, B.; Kisingo, A.; Maige, D.; Oliver, O.; Lobora, A.L. Assessing Habitat Suitability: The Case of Black Rhino in the Ngorongoro Conservation Area. Remote Sens. 2024, 16, 2855. https://doi.org/10.3390/rs16152855
Borges J, Symeonakis E, Higginbottom TP, Jones M, Cain B, Kisingo A, Maige D, Oliver O, Lobora AL. Assessing Habitat Suitability: The Case of Black Rhino in the Ngorongoro Conservation Area. Remote Sensing. 2024; 16(15):2855. https://doi.org/10.3390/rs16152855
Chicago/Turabian StyleBorges, Joana, Elias Symeonakis, Thomas P. Higginbottom, Martin Jones, Bradley Cain, Alex Kisingo, Deogratius Maige, Owen Oliver, and Alex L. Lobora. 2024. "Assessing Habitat Suitability: The Case of Black Rhino in the Ngorongoro Conservation Area" Remote Sensing 16, no. 15: 2855. https://doi.org/10.3390/rs16152855
APA StyleBorges, J., Symeonakis, E., Higginbottom, T. P., Jones, M., Cain, B., Kisingo, A., Maige, D., Oliver, O., & Lobora, A. L. (2024). Assessing Habitat Suitability: The Case of Black Rhino in the Ngorongoro Conservation Area. Remote Sensing, 16(15), 2855. https://doi.org/10.3390/rs16152855