Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biplot Fundamentals
2.2. Uniform Manifold Approximation and Projection (UMAP)
Algorithm 1 Uniform Manifold Approximation and Projection (UMAP) |
2.3. UMAP-Based Local Biplot
2.4. Tested Datasets
2.4.1. Multivariate Gaussians
2.4.2. Forage Grasses
2.4.3. RiceClimaRemote
3. Experiments and Results
3.1. Training Details, Assessment, and Method Comparison
3.2. Multivariate Gaussians Results
3.3. Forage Grasses Dataset Results
3.4. RiceClimaRemote Dataset Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arouna, A.; Dzomeku, I.K.; Shaibu, A.G.; Nurudeen, A.R. Water management for sustainable irrigation in rice (Oryza sativa L.) production: A review. Agronomy 2023, 13, 1522. [Google Scholar] [CrossRef]
- Oumarou Abdoulaye, A.; Lu, H.; Zhu, Y.; Alhaj Hamoud, Y.; Sheteiwy, M. The global trend of the net irrigation water requirement of maize from 1960 to 2050. Climate 2019, 7, 124. [Google Scholar] [CrossRef]
- Gui, Y.W.; Sheteiwy, M.S.; Zhu, S.G.; Batool, A.; Xiong, Y.C. Differentiate effects of non-hydraulic and hydraulic root signaling on yield and water use efficiency in diploid and tetraploid wheat under drought stress. Environ. Exp. Bot. 2021, 181, 104287. [Google Scholar] [CrossRef]
- Al Hamedi, F.; Karthishwaran, K.; Alyafei, M.A.M. Hydroponic wheat production using fresh water and treated wastewater under the semi-arid region. Emir. J. Food Agric 2021, 33, 178. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, H.; Li, B.; Zhang, Z.; Wang, S.; Lin, T. Understanding the non-stationary relationships between corn yields and meteorology via a spatiotemporally varying coefficient model. Agric. For. Meteorol. 2021, 301, 108340. [Google Scholar] [CrossRef]
- Archana, S.; Kumar, P.S. A Survey on Deep Learning Based Crop Yield Prediction. Nat. Environ. Pollut. Technol. 2023, 22. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Sun, L.; Gonçalves, S.L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Assessing the sensitive spectral bands for soybean water status monitoring and soil moisture prediction using leaf-based hyperspectral reflectance. Agric. Water Manag. 2023, 277, 108089. [Google Scholar] [CrossRef]
- Efthimiou, N. Object-oriented soil erosion modelling: A non-stationary approach towards a realistic calculation of soil loss at parcel level. Catena 2023, 222, 106816. [Google Scholar] [CrossRef]
- Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.; Mabhaudhi, T. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sens. 2021, 13, 4091. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of remote sensing for soil measurements and applications: A comprehensive review. Sustainability 2023, 15, 15444. [Google Scholar] [CrossRef]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation scheduling approaches and applications: A review. J. Irrig. Drain. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Xie, X.; Yang, Y.; Li, W.; Liao, N.; Pan, W.; Su, H. Estimation of Leaf Area Index in a Typical Northern Tropical Secondary Monsoon Rainforest by Different Indirect Methods. Remote Sens. 2023, 15, 1621. [Google Scholar] [CrossRef]
- Buthelezi, S.; Mutanga, O.; Sibanda, M.; Odindi, J.; Clulow, A.D.; Chimonyo, V.G.; Mabhaudhi, T. Assessing the prospects of remote sensing maize leaf area index using UAV-derived multi-spectral data in smallholder farms across the growing season. Remote Sens. 2023, 15, 1597. [Google Scholar] [CrossRef]
- Karunathilake, E.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Sobjak, R.; De Souza, E.G.; Bazzi, C.L.; Opazo, M.A.U.; Mercante, E.; Aikes Junior, J. Process improvement of selecting the best interpolator and its parameters to create thematic maps. Precis. Agric. 2023, 24, 1461–1496. [Google Scholar] [CrossRef]
- Dal Prà, A.; Bozzi, R.; Parrini, S.; Immovilli, A.; Davolio, R.; Ruozzi, F.; Fabbri, M.C. Discriminant analysis as a tool to classify farm hay in dairy farms. PLoS ONE 2023, 18, e0294468. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Ramirez, T.; Auat Cheein, F. Cluster Analysis for Agriculture. In Encyclopedia of Smart Agriculture Technologies; Zhang, Q., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Prakash, S.; Reddy, S.S.; Chaudhary, S.; Vimal, S.; Kumar, A. Multivariate analysis in rice (Oryza sativa L.) germplasms for yield attributing traits. Plant Sci. Today 2024, 11, 64–75. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, J.; Jiang, J.; Zhang, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using the time series nitrogen diagnosis curve for precise nitrogen management in wheat and rice. Field Crop. Res. 2024, 307, 109259. [Google Scholar] [CrossRef]
- Derraz, R.; Muharam, F.M.; Nurulhuda, K.; Jaafar, N.A.; Yap, N.K. Ensemble and single algorithm models to handle multicollinearity of UAV vegetation indices for predicting rice biomass. Comput. Electron. Agric. 2023, 205, 107621. [Google Scholar] [CrossRef]
- Satpathi, A.; Setiya, P.; Das, B.; Nain, A.S.; Jha, P.K.; Singh, S.; Singh, S. Comparative analysis of statistical and machine learning techniques for rice yield forecasting for Chhattisgarh, India. Sustainability 2023, 15, 2786. [Google Scholar] [CrossRef]
- Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- Mohammadi, R.; Jafarzadeh, J.; Poursiahbidi, M.M.; Hatamzadeh, H.; Amri, A. Genotype-by-environment interaction and stability analysis for grain yield in durum wheat using GGE biplot and genotypic and environmental covariates. Agric. Res. 2023, 12, 364–374. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar]
- Radočaj, D.; Jurišić, M.; Gašparović, M. The role of remote sensing data and methods in a modern approach to fertilization in precision agriculture. Remote Sens. 2022, 14, 778. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- House, D.; Keyser, J.C. Foundations of Physically Based Modeling and Animation; AK Peters/CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- De Swaef, T.; Maes, W.H.; Aper, J.; Baert, J.; Cougnon, M.; Reheul, D.; Steppe, K.; Roldán-Ruiz, I.; Lootens, P. Applying RGB- and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses. Remote Sens. 2021, 13, 147. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine vision detection parameters for plant species identification. In Precision Agriculture and Biological Quality; SPIE: Paris, France, 1999; Volume 3543, pp. 327–335. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C.; Jones, D.D.; Hindman, T.W. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput. Electron. Agric. 2004, 42, 161–180. [Google Scholar] [CrossRef]
- Genno, H.; Kobayashi, K. Apple growth evaluated automatically with high-definition field monitoring images. Comput. Electron. Agric. 2019, 164, 104895. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martínez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef] [PubMed]
- Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive estimation of anthocyanin content in grapevine leaves. Am. J. Enol. Vitic. 2009, 60, 87–92. [Google Scholar] [CrossRef]
- Xiaoqin, W.; Miaomiao, W.; Shaoqiang, W.; Yundong, W. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31. [Google Scholar]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. b1079–b1083. [Google Scholar]
- Hague, T.; Tillett, N.; Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 2006, 7, 21–32. [Google Scholar] [CrossRef]
- Buchaillot, M.L.; Gracia-Romero, A.; Vergara-Diaz, O.; Zaman-Allah, M.A.; Tarekegne, A.; Cairns, J.E.; Prasanna, B.M.; Araus, J.L.; Kefauver, S.C. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. Sensors 2019, 19, 1815. [Google Scholar] [CrossRef] [PubMed]
- Vories, E.; Tacker, P.; Hogan, R. Multiple inlet approach to reduce water requirements for rice production. Appl. Eng. Agric. 2005, 21, 611–616. [Google Scholar] [CrossRef]
- Rejesus, R.M.; Palis, F.G.; Rodriguez, D.G.P.; Lampayan, R.M.; Bouman, B.A. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 2011, 36, 280–288. [Google Scholar] [CrossRef]
- Kriegler, F.J. Preprocessing transformations and their effects on multspectral recognition. In Proceedings of the Sixth International Symposium on Remote Sesning of Environment, Ann Arbor, MI, USA, 13–16 October 1969; pp. 97–131. [Google Scholar]
- Shaver, T.; Khosla, R.; Westfall, D. Utilizing green normalized difference vegetation indices (GNDVI) for production level management zone delineation in irrigated corn. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006. [Google Scholar]
- Sharifi, A.; Felegari, S. Remotely sensed normalized difference red-edge index for rangeland biomass estimation. Aircr. Eng. Aerosp. Technol. 2023, 95, 1128–1136. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Steven, M.D. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sens. Environ. 1998, 63, 49–60. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Casadesús, J.; Kaya, Y.; Bort, J.; Nachit, M.; Araus, J.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V.; et al. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol. 2007, 150, 227–236. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022. [Google Scholar]
- Triana-Martinez, J.C. Python-gcpds.localbiplot. 2024. Available online: https://github.com/UN-GCPDS/python-gcpds.localbiplot (accessed on 21 March 2024).
- Wu, L.; Yuan, L.; Zhao, G.; Lin, H.; Li, S.Z. Deep clustering and visualization for end-to-end high-dimensional data analysis. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8543–8554. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chang, W.; Yao, Y.; Yao, Z.; Zhao, Y.; Li, S.; Liu, Z.; Zhang, X. Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification. Front. Plant Sci. 2023, 14, 1130659. [Google Scholar] [CrossRef]
Colour Space | VI | Name | Equation |
---|---|---|---|
RGB | R | Red | |
G | Green | ||
B | Blue | ||
RCC | Red Chromatic Coordinate Index [31] | ||
GCC | Green Chromatic Coordinate Index [31] | ||
BCC | Blue Chromatic Coordinate Index [31] | ||
ExG | Excess Green Index [31] | ||
ExG2 | Excess Green Index v2 [31] | ||
ExR | Excess Red Index [32] | ||
ExGR | Excess Green minus Excess Red Index [33] | ||
GRVI | Green Red Vegetation Index [33,34] | ||
GBVI | Green Blue Vegetation Index [35,36] | ||
BRVI | Blue Red Vegetation Index [30] | ||
G/R | Green-Red Ratio [37] | ||
G-R | Green-Red Difference [31] | ||
B-G | Blue-Green Difference [31] | ||
VDVI | Visible-band Difference Vegetation Index [38] | ||
VARI | Visible Atmospherically Resistant Index [33] | ||
MGRVI | Modified Green Red Vegetation Index [39] | ||
CIVE | Colour Index Of Vegetation [40] | ||
VEG | Vegetative Index [41] | ||
WI | Woebbecke Index [31] | ||
HSV/HSL | H | Hue | |
S | Saturation | ||
V | Value | ||
I | Intensity | ||
CIELab | L* | Lightness | |
a* | Green-Red component | ||
b* | Blue-Yellow component | ||
ab | |||
NDLab | Normalized Difference CIELab Index [42] | ||
CIELuv | u* | Green-Red component | |
v* | Blue-Yellow component | ||
uv | |||
NDLuv | Normalized Difference CIELuv Index [42] |
VI | Name | Equation |
---|---|---|
NDVI | Normalized Difference Vegetation Index [45] | |
GNDVI | Green Normalized Difference Vegetation Index [46] | |
NDRE | Normalized Difference Red Edge [47] | |
SAVI | Soil Adjusted Vegetation Index [48] | |
OSAVI | Optimized Soil Adjusted Vegetation Index [49] | |
SR | Simple Ratio [50] | |
GVI | Green Normalized Difference [33] | |
ExG | Excess Green [32] | |
GA | Green Area [51] | |
GGA | Greener Area [51] |
Regressor | All Data | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
---|---|---|---|---|---|
LR | 0.76 ± 0.02 | 0.65 ± 0.04 | 0.48 ± 0.06 | 0.44 ± 0.03 | 0.21± 0.03 |
RF | 0.75 ± 0.02 | 0.65 ± 0.07 | 0.56 ± 0.07 | 0.42 ± 0.06 | 0.20 ± 0.06 |
Sample size | 3174 | 966 | 461 | 651 | 1096 |
Regressor | All Data | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 |
---|---|---|---|---|---|---|
LR | 0.55 ± 0.03 | 0.65 ± 0.16 | 0.63 ± 0.04 | 0.45 ± 0.15 | 0.16 ± 0.18 | −1.23 ± 1.14 |
RF | 0.68 ± 0.05 | 0.67 ± 0.18 | 0.59 ± 0.06 | 0.45 ± 0.14 | 0.28 ± 0.16 | −0.97 ± 0.56 |
Sample size | 768 | 148 | 195 | 182 | 195 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triana-Martinez, J.C.; Álvarez-Meza, A.M.; Gil-González, J.; De Swaef, T.; Fernandez-Gallego, J.A. Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot. Remote Sens. 2024, 16, 2854. https://doi.org/10.3390/rs16152854
Triana-Martinez JC, Álvarez-Meza AM, Gil-González J, De Swaef T, Fernandez-Gallego JA. Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot. Remote Sensing. 2024; 16(15):2854. https://doi.org/10.3390/rs16152854
Chicago/Turabian StyleTriana-Martinez, Jenniffer Carolina, Andrés Marino Álvarez-Meza, Julian Gil-González, Tom De Swaef, and Jose A. Fernandez-Gallego. 2024. "Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot" Remote Sensing 16, no. 15: 2854. https://doi.org/10.3390/rs16152854
APA StyleTriana-Martinez, J. C., Álvarez-Meza, A. M., Gil-González, J., De Swaef, T., & Fernandez-Gallego, J. A. (2024). Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot. Remote Sensing, 16(15), 2854. https://doi.org/10.3390/rs16152854