Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment
Abstract
1. Introduction
2. Theoretical Analysis
3. Image Data Analysis
3.1. Data and Method
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, W.; Zhang, Z.; Yang, Z.; Pang, S.; Chen, J.; Cheng, Q. Spectral Probability Distribution of Closed Connected Water and Remote Sensing Statistical Inference for Yellow Substance. Photogramm. Eng. Remote Sens. 2021, 87, 807–819. [Google Scholar] [CrossRef]
- Zhu, W. Remote sensing statistical inference: Basic theory and forward simulation of water–air statistical radiative transfer. Earth Sci. Inform. 2021, 14, 2145–2159. [Google Scholar] [CrossRef]
- Goodman, J.W. Statistical Optics, 2nd ed.; John Wiley & Sons Press: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kandidov, V. Monte Carlo method in nonlinear statistical optics. Uspekhi Fiz. Nauk. 1996, 166, 1309–1338. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, Z.; He, S.; Cheng, Q. Skewness-Based Classification and Environmental Indication of Spectral Probability Distribution of Global Closed Connected Waters. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Kondratyev, K.Y.; Kozoderov, V.V.; Smokty, O.I. Remote Sensing of the Earth from Space: Atmospheric Correction; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Chavez, P.S. Image-Based Atmospheric Corrections Revisited and Improved, Photogrammetric Engineering and Remote Sensing; Springer: Berlin/Heidelberg, Germany, 1996; Volume 62, pp. 1025–1036. [Google Scholar]
- Emberton, S.; Chittka, L.; Cavallaro, A.; Wang, M. Sensor Capability and Atmospheric Correction in Ocean Colour Remote Sensing. Remote Sens. 2015, 8, 1. [Google Scholar] [CrossRef]
- Song, C.H.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Lin, C.; Wu, C.-C.; Tsogt, K.; Ouyang, Y.-C.; Chang, C.-I. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef]
- Vanonckelen, S.; Lhermitte, S.; Van Rompaey, A. The effect of atmospheric and topographic correction on pixel-based image composites: Improved forest cover detection in mountain environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 320–328. [Google Scholar] [CrossRef]
- Campbell, G.; Phinn, S.R.; Dekker, A.G.; Brando, V.E. Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images. Remote Sens. Environ. 2011, 115, 2402–2414. [Google Scholar] [CrossRef]
- McCarthy, S.C.; Gould, R.W.; Richman, J.; Kearney, C.; Lawson, A. Impact of Aerosol Model Selection on Water-Leaving Radiance Retrievals from Satellite Ocean Color Imagery. Remote Sens. 2012, 4, 3638–3665. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.M.; Lyu, H.; Wang, S.; Du, C.G.; Huang, C.C. An improved land target-based atmospheric correction method for Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 793–803. [Google Scholar] [CrossRef]
- Zhu, W.; Tian, Y.Q.; Yu, Q.; Becker, B.L. Using Hyperion imagery to monitor the spatial and temporal distribution of colored dissolved organic matter in estuarine and coastal regions. Remote Sens. Environ. 2013, 134, 342–354. [Google Scholar] [CrossRef]
- Dodge, Y. The Oxford Dictionary of Statistical Terms, 6th ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Liang, S.L. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Water; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry. Opt. Express 2020, 28, 29948–29965. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
Stat. Para. | B1 | B2 | B3 | B4 | B5 | Average |
---|---|---|---|---|---|---|
Mean | 0.88 | 0.93 | 0.98 | 0.98 | 0.97 | 0.95 |
Median | 0.88 | 0.93 | 0.98 | 0.99 | 0.97 | 0.95 |
Std | 0.95 | 0.95 | 0.97 | 0.98 | 0.98 | 0.97 |
Min | 0.75 | 0.79 | 0.89 | 0.89 | 0.98 | 0.87 |
Max | 0.81 | 0.85 | 0.89 | 0.92 | 0.89 | 0.87 |
Average | 0.86 | 0.89 | 0.94 | 0.95 | 0.96 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Xia, W. Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment. Remote Sens. 2023, 15, 1907. https://doi.org/10.3390/rs15071907
Zhu W, Xia W. Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment. Remote Sensing. 2023; 15(7):1907. https://doi.org/10.3390/rs15071907
Chicago/Turabian StyleZhu, Weining, and Wei Xia. 2023. "Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment" Remote Sensing 15, no. 7: 1907. https://doi.org/10.3390/rs15071907
APA StyleZhu, W., & Xia, W. (2023). Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment. Remote Sensing, 15(7), 1907. https://doi.org/10.3390/rs15071907