Isostatic Anomaly and Isostatic Additional Force Analysis by Multiple Geodetic Observations in Qinling Area
Abstract
:1. Introduction
2. Geological Setting and Observation Data of the Qinling Area
2.1. Geological Setting
2.2. Geodetic Observations and Data Processing
3. Methods
3.1. Isostatic Anomaly Computation
3.2. Isostatic Additional Force Computation
3.3. Persistent Scatterer InSAR Method
4. Results and Analysis
4.1. Isostatic Anomaly
4.2. Isostatic Additional Force
4.3. InSAR Displacement Rate Map over Weihe Basin
5. Discussion
6. Conclusions
- (1)
- The Moho depth ranges between 39 km and 48 km in the study area, and the distribution is increasing steadily from southeast to northwest. The trend is negatively related to the variation in the Bouguer gravity anomaly. The average Moho depth of 409 observation stations is 41.896 km.
- (2)
- Using Airy isostatic theory and topography data, the isostatic depth and the isostatic anomaly are obtained. The crust of most of the study area is in an isostatic state. The positive isostatic anomaly is mainly concentrated in the Weihe Basin and Longnan to Dangchang area; whereas, the negative isostatic anomaly in local areas of the Liuanshan Mountain, the southwestern edge of the Ordos Basin, the Qinling Orogen, and Dabashan indicate the existence of crustal activity.
- (3)
- The upward isostatic additional force reaches about 20 MPa in the Weihe Basin, and the isostatic additional force gradient varies dramatically on both sides of the North Qinling fault. The negative isostatic additional force appears in the Liupanshan Mountains, the southwest margin of the Ordos Basin, the local areas of Qinling Orogen, and Dabashan. In the northern Sichuan Basin, the isostatic additional force is almost zero MPa.
- (4)
- Sentinel-1 SAR image and the persistent scatterer InSAR data processing method are used to obtain the displacement rate of the Weihe Basin. The results show that the vertical deformation of the Weihe Basin is dominated by uplift, and the subsidence areas are mostly located at the Qinling Orogen.
- (5)
- According to the Bouguer gravity anomaly, the Moho depth, and isostatic anomaly, we found that there is middle-lower crustal flow in the northeastern Qinghai-Tibet Plateau (west of Baoji), namely, the Middle Qinling Orogen and the Weihe Basin are affected by subduction and extrusion. The Liupanshan Mountains is formed by the crustal shortening without middle-lower crustal flow.
- (6)
- There are high potential seismic risks near the Liupanshan Mountains, the Weihe Basin, and the P1 profile in the near future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Meng, Q.; Lai, S. Tectonics and Structure of the Qinling Orogenic Belt. Sci. China Ser. B 1995, 38, 1379–1394. [Google Scholar]
- Zhang, G.; Meng, Q.; Yu, Z.; Sun, Y.; Zhou, D.; Guo, A. Orogenesis and Dynamics of the Qinling Orogen. Sci. China Ser. D 1996, 39, 225–234. [Google Scholar]
- Teng, J.; Zhang, Z.; Zhang, X.; Wang, C.; Gao, R.; Yang, B.; Qiao, Y.; Deng, Y. Investigation of the Moho Discontinuity beneath the Chinese Mainland Using Deep Seismic Sounding Profiles. Tectonophysics 2013, 609, 202–216. [Google Scholar] [CrossRef]
- Teng, J.; Deng, Y.; Badal, J.; Zhang, Y. Moho Depth, Seismicity and Seismogenic Structure in China Mainland. Tectonophysics 2014, 627, 108–121. [Google Scholar] [CrossRef]
- Wang, C.; Sandvol, E.; Lou, H.; Wang, X.; Chen, Y. Evidence for a Crustal Root beneath the Paleoproterozoic Collision Zone in the Northern Ordos Block, North China. Precambrian Res. 2017, 301, 124–133. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, H.; Chen, L.; Fang, L.; Wu, Y.; Feng, J. Moho Depth Variations From Receiver Function Imaging in the Northeastern North China Craton and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2019, 124, 1852–1870. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Song, X.; Xu, M.; Wang, L.; Sun, X.; Mi, N.; Yu, D.; Li, H. Crust and Upper Mantle Structure of the North China Craton and the NE Tibetan Plateau and Its Tectonic Implications. Earth Planet. Sci. Lett. 2013, 369, 129–137. [Google Scholar] [CrossRef]
- Liu, M.; Mooney, W.D.; Li, S.; Okaya, N.; Detweiler, S. Crustal Structure of the Northeastern Margin of the Tibetan Plateau from the Songpan-Ganzi Terrane to the Ordos Basin. Tectonophysics 2006, 420, 253–266. [Google Scholar] [CrossRef]
- Wang, C.; Han, W.; Wu, J.; Lou, H.; Chan, W. Crustal Structure beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. J. Geophys. Res. 2007, 112, B07307. [Google Scholar] [CrossRef]
- Zhang, Y.; Teng, J.; Wang, Q.; Hu, G. Density Structure and Isostatic State of the Crust in the Longmenshan and Adjacent Areas. Tectonophysics 2014, 619–620, 51–57. [Google Scholar] [CrossRef]
- Wang, Q.; Teng, J.; Zhang, Y.; Pi, J. Gravity Anomalies and Deep Crustal Structure of the Ordos Basin—Middle Qinling Orogen—Eastern Sichuan Basin. Chin. J. Geophys. 2015, 58, 532–541. (In Chinese) [Google Scholar] [CrossRef]
- She, Y.; Fu, G.; Su, X.; Meng, G.; Zhu, Y.; Guo, S.; Xu, Y. Crustal isostasy and uplifting mechanism of the Liupanshan area. Prog. Geophys. 2016, 31, 1464–1472. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Teng, J.; Wang, Q.; Lü, Q.; Si, X.; Xu, T.; Badal, J.; Yan, J.; Hao, Z. A Gravity Study along a Profile across the Sichuan Basin, the Qinling Mountains and the Ordos Basin (Central China): Density, Isostasy and Dynamics. J. Asian Earth Sci. 2017, 147, 310–321. [Google Scholar] [CrossRef]
- Gao, S.; She, Y.; Fu, G. A New Method for Computing the Vertical Tectonic Stress of the Crust by Use of Hybrid Gravity and GPS Data. Chin. J. Geophys. 2016, 59, 2006–2013. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.; Fu, G.; She, Y. Crustal Density Structure, Lithosphere Flexure Mechanism, and Isostatic State Throughout the Qinling Orogen Revealed by In Situ Dense Gravity Observations. J. Geophys. Res. Solid Earth. 2018, 123, 10,026–10,039. [Google Scholar] [CrossRef]
- She, Y.; Fu, G.; Wang, Z.; Gao, Y. Vertical Tectonic Stress in Eastern Margin of Bayan Har Block Revealed by Gravity and Terrain Data. Chin. J. Geophys. 2017, 60, 2480–2492. (In Chinese) [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Jiang, M.; Zhang, S.; Wu, Y.; Zhong, Y. Extreme Rainfall-Related Accelerations in Landslides in Danba County, Sichuan Province, as Detected by InSAR. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103109. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, T.; Tang, W.; Jiang, M.; Jiang, H.; Yang, C.; Zhan, W.; Ming, Z.; Zhang, S. Inferring Decelerated Land Subsidence and Groundwater Storage Dynamics in Tianjin–Langfang Using Sentinel-1 InSAR. Int. J. Digit. Earth 2022, 15, 1526–1546. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Cheng, S.; Min, W.; Yang, G.; Ren, D. Discussion on Cenozoic Tectonics and Dynamics of Ordos Block. J. Geomech. 1999, 5, 13–21. (In Chinese) [Google Scholar]
- Li, H.; Gao, R.; Xiong, X.; Wang, H.; Li, W. Moho Fabrics of North Qinling Belt, Weihe Graben and Ordos Block in China Constrained from Large Dynamite Shots. Geophys. J. Int. 2017, 209, 643–653. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, W.; Peng, J.; Wang, Q.; Li, Z. Research on Tectonic Causes of Numerous Ground Fissures Development Mechanism and Its Unbalance Distribution between Eastern and Western of Weihe Basin. Chinese J. Geophys. 2012, 55, 2589–2597. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.; Wang, H.; Feng, M.; Thybo, H.; Li, J.; Gao, R.; Shi, W. Coupled Lithospheric Deformation in the Qinling Orogen, Central China: Insights from Seismic Reflection and Surface-Wave Tomography. Geophys. Res. Lett. 2022, 49. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, G. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics 2000, 323, 183–196. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, C.; Ratschbacher, L.; Enkelmann, E.; Jonckheere, R.; Wauschkuhn, B.; Dong, Y. Sichuan Basin and beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. J. Geophys. Res. Solid Earth 2017, 122, 4712–4740. [Google Scholar] [CrossRef]
- Hu, J.; Chen, H.; Qu, H.; Wu, G.; Yang, J.; Zhang, Z. Mesozoic Deformations of the Dabashan in the Southern Qinling Orogen, Central China. J. Asian Earth Sci. 2012, 47, 171–184. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, E.; Hu, J. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block. Geol. Soc. Am. Bull. 2005, 117, 396–410. [Google Scholar] [CrossRef]
- Fu, G.; She, Y. Gravity Anomalies and Isostasy Deduced From New Dense Gravimetry Around the Tsangpo Gorge, Tibet: Dense Gravimetry Around Tsangpo Gorge. Geophys. Res. Lett. 2017, 44, 10,233–10,239. [Google Scholar] [CrossRef]
- Liu, D.; Li, H.; Liu, S. A Data Processing System for Mobile Gravity Measurements—LGADJ; Seismological Press: Beijing, China, 1991; pp. 339–350. ISBN 7-5028-0417-X/P.267. [Google Scholar]
- Fullea, J.; Fernàndez, M.; Zeyen, H. FA2BOUG—A FORTRAN 90 Code to Compute Bouguer Gravity Anomalies from Gridded Free-Air Anomalies: Application to the Atlantic-Mediterranean Transition Zone. Comput. Geosci. 2008, 34, 1665–1681. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B. Etopo1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA Technical Memorandum NESDIS NGDC-24; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2009; pp. 1–19.
- Takaku, J.; Tadono, T.; Tsutsui, K.; Ichikawa, M. VALIDATION OF “AW3D” GLOBAL DSM GENERATED FROM ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhu, L.; Lou, H.; Huang, B.; Yao, Z.; Luo, X. Crustal Thicknesses and Poisson’s Ratios in the Eastern Tibetan Plateau and Their Tectonic Implications. J. Geophys. Res. 2010, 115, B11301. [Google Scholar] [CrossRef]
- Wang, C.; Sandvol, E.; Zhu, L.; Lou, H.; Yao, Z.; Luo, X. Lateral Variation of Crustal Structure in the Ordos Block and Surrounding Regions, North China, and Its Tectonic Implications. Earth Planet. Sci. Lett. 2014, 387, 198–211. [Google Scholar] [CrossRef]
- Fu, G.; Gao, S.; Freymueller, J.T.; Zhang, G.; Zhu, Y.; Yang, G. Bouguer Gravity Anomaly and Isostasy at Western Sichuan Basin Revealed by New Gravity Surveys. J. Geophys. Res. Solid Earth 2014, 119, 3925–3938. [Google Scholar] [CrossRef]
- Guo, L.; Fu, G.; She, Y.; Wang, Z.; Yang, J. Lithosphericisostasy and risk of reservoir-induced earthquakes along the Yarlung Zangbo River between Sangri and Mêdog. Chin. J. Geophys. 2021, 64, 3220–3231. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, M. Sentinel-1 TOPS Co-Registration over Low-Coherence Areas and Its Application to Velocity Estimation Using the All Pairs Shortest Path Algorithm. J. Geod. 2020, 94, 95. [Google Scholar] [CrossRef]
- Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 IWS mode support in the GAMMA software. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015; pp. 431–436. [Google Scholar]
- Shi, X.; Liao, M.; Li, M.; Zhang, L.; Cunningham, C. Wide-Area Landslide Deformation Mapping with Multi-Path ALOS PALSAR Data Stacks: A Case Study of Three Gorges Area, China. Remote Sens. 2016, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Teng, J.; Zhang, X.; Liu, Y.; Si, X.; Ma, X.; Qiao, Y.; Dong, X. Flyover Crustal Structures Beneath the Qinling Orogenic Belt and Its Tectonic Implications. J. Geophys. Res. Solid Earth. 2018, 123, 6703–6718. [Google Scholar] [CrossRef]
- Hao, M.; Wang, Q.; Shen, Z.; Cui, D.; Ji, L.; Li, Y.; Qin, S. Present Day Crustal Vertical Movement Inferred from Precise Leveling Data in Eastern Margin of Tibetan Plateau. Tectonophysics 2014, 632, 281–292. [Google Scholar] [CrossRef]
- Ren, J.; Feng, X.; Wang, F.; Peng, J.; Liu, C.; Dai, W.; Li, G.; Zhang, Y.; Ma, J. Fine Crust Structures of Xi’an Sag in the Weihe Basin Revealed by a Deep Seismic Reflection Profile. Chin. J. Geophys. 2013, 56, 513–521. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, Y.; Zhang, T.; Li, Z.; Wang, Y.; Liang, W. Crustal Deformations in the Northeastern Tibetan Plateau Revealed by Multiple Geodetic Datasets. Pure Appl. Geophys. 2022, 1–12. [Google Scholar] [CrossRef]
- Li, G.; Zhao, C.; Wang, B.; Peng, M.; Bai, L. Evolution of Spatiotemporal Ground Deformation over 30 Years in Xi’an, China, with Multi-Sensor SAR Interferometry. J. Hydrol. 2022, 616, 128764. [Google Scholar] [CrossRef]
- Avouac, J.-P.; Tapponnier, P. Kinematic Model of Active Deformation in Central Asia. Geophys. Res. Lett. 1993, 20, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Royden, L.H.; Burchfiel, B.C.; King, R.W.; Wang, E.; Chen, Z.; Shen, F.; Liu, Y. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science 1997, 276, 788–790. [Google Scholar] [CrossRef]
- Royden, L.H.; Burchfiel, B.C.; van der Hilst, R.D. The Geological Evolution of the Tibetan Plateau. Science 2008, 321, 1054–1058. [Google Scholar] [CrossRef] [Green Version]
- Molnar, P.; England, P.; Martinod, J. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 1993, 31, 357–396. [Google Scholar] [CrossRef]
- Li, H.; Gao, R.; Wang, H.; Li, W. Extracting the Moho structure of Liupanshan by the method of near vertical incidenc. Chin. J. Geophys. 2013, 56, 3811–3818. (In Chinese) [Google Scholar] [CrossRef]
- Gao, R.; Wang, H.; Zeng, L.; Zhang, J.; Guo, T.; Li, Q.; Li, W.; Li, P.; Guan, Y. The Crust Structures and the Connection of the Songpan Block and West Qinling Orogen Revealed by the Hezuo-Tangke Deep Seismic Reflection Profiling. Tectonophysics 2014, 634, 227–236. [Google Scholar] [CrossRef]
- Wang, H.; Gao, R.; Ma, Y.; Zhu, X.; Li, Q.; Kuang, Z.; Li, P.; Lu, Z. Basin range coupling and lithosphere structure between the Zoige and the west Qinling. Chin. J. Geophys. 2007, 50, 472–481. [Google Scholar]
- Yuan, X.; Xu, M.; Tang, W.; Wang, Q. Eastern Qinling seismic reflection profiling. Acta Geophys. Sin. 1994, 37, 749–758. (In Chinese) [Google Scholar]
- Mattauer, M.; Matte, P.; Malavieille, J.; Tapponnier, P.; Maluski, H.; Qin, X.Z.; Lun, L.Y.; Qin, T.Y. Tectonics of the Qinling Belt: Build-up and Evolution of Eastern Asia. Nature 1985, 317, 496–500. [Google Scholar] [CrossRef]
Focal Depth/km | Frequency | Proportion (%) |
---|---|---|
<10 | 125 | 10.9 |
10–20 | 823 | 71.5 |
20–30 | 175 | 15.2 |
>30 | 28 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Wu, Y.; Zhang, Y.; Shi, X.; Bian, S. Isostatic Anomaly and Isostatic Additional Force Analysis by Multiple Geodetic Observations in Qinling Area. Remote Sens. 2023, 15, 740. https://doi.org/10.3390/rs15030740
Yuan H, Wu Y, Zhang Y, Shi X, Bian S. Isostatic Anomaly and Isostatic Additional Force Analysis by Multiple Geodetic Observations in Qinling Area. Remote Sensing. 2023; 15(3):740. https://doi.org/10.3390/rs15030740
Chicago/Turabian StyleYuan, Huaqing, Yunlong Wu, Yi Zhang, Xuguo Shi, and Shaofeng Bian. 2023. "Isostatic Anomaly and Isostatic Additional Force Analysis by Multiple Geodetic Observations in Qinling Area" Remote Sensing 15, no. 3: 740. https://doi.org/10.3390/rs15030740
APA StyleYuan, H., Wu, Y., Zhang, Y., Shi, X., & Bian, S. (2023). Isostatic Anomaly and Isostatic Additional Force Analysis by Multiple Geodetic Observations in Qinling Area. Remote Sensing, 15(3), 740. https://doi.org/10.3390/rs15030740